On the space of orderings and the group H

Daiji KIJIMA and Mieo NISHI (Received September 20, 1982)

Let F be a formally real field and P a preordering of F. In his paper [7], M. Marshall introduced an equivalence relation in the space X(F/P) of orderings by making use of fans of index 8, and the notion of connected components of X(F/P) by an equivalence class of the relation.

The main purpose of this paper is to show that the number of connected components of X(F/P) coincides with the dimension of \mathbb{Z}_2 -vector space H(P)/Pfor a subgroup H(P), which is defined in §2. We also show, in §3, that if $K = F(\sqrt{a})$ is a quadratic extension of F with a an element of Kaplansky's radical, then the number of connected components of X(K/P') equals twice that of X(F/P), where P' is the preordering $\Sigma P \cdot \dot{K}^2$ of K. We should note that the groups H(P) and H(P') are connected by an important relation $N^{-1}(H(P)) = F \cdot H(P')$, where N is the norm map of K to F.

For a subset A in a set B, the cardinality of A will be denoted by |A| and the complementary subset of A in B by B-A or A^c .

§1. Preorderings and fans

Throughout this paper, a field F always means a formally real field. We denote by \dot{F} the multiplicative group of F. For a multiplicative subgroup P of \dot{F} , P is said to be a preordering of F if P is additively closed and $\dot{F}^2 \subseteq P$. We denote by X(F) the space of all orderings σ of F and by X(F/P) the subspace of all orderings σ with $P(\sigma) \supseteq P$, where $P(\sigma)$ is the positive cone of σ . For a subset Y of X(F), we denote by Y^{\perp} the preordering $\cap P(\sigma), \sigma \in Y$. Conversely for any preordering P, there exists a subset $Y \subseteq X(F)$ such that $P = Y^{\perp}$. Thus we have $P = X(F/P)^{\perp}$ and in particular $X(F)^{\perp} = D_F(\infty) = \Sigma \dot{F}^2$. We put $\phi^{\perp} = \dot{F}$ for convenience. The topological structure of X(F) is determined by Harrison sets $H(a) = \{\sigma \in X(F); a \in P(\sigma)\}$ as its subbasis, where a ranges over \dot{F} . An arbitrary open set in X(F) is thus a union of sets of the form $H(a_1, \ldots, a_n) = H(a_1) \cap \cdots \cap H(a_r)$. For a preordering P of F, we write $H(a_1, \ldots, a_n/P) = H(a_1, \ldots, a_n) \cap X(F/P)$ where $a_i \in \dot{F}$.

For two forms f and g over F, we write $f \sim g \pmod{P}$ if for any $\sigma \in X(F/P)$, $sgn_{\sigma}(f) = sgn_{\sigma}(g)$ where $sgn_{\sigma}(f)$ and $sgn_{\sigma}(g)$ are the signatures at σ of f and g, respectively. If $f \sim g \pmod{P}$ and $\dim f = \dim g$, we write $f \cong g \pmod{P}$. For a form $f = \langle a_1, ..., a_n \rangle$ and $b \in F$, if there exist $p_1, ..., p_n \in P \cup \{0\}$ such that $a_1p_1 + \cdots + a_np_n = b$ and $(p_1, ..., p_n) \neq (0, ..., 0)$, then we say that the form f represents b over P. We put $D(f/P) = \{b \in F; f \text{ represents } b \text{ over } P\}$. We say that f is P-isotropic or f is isotropic over P if f represents 0 and P-anisotropic or antisotropic over P otherwise.

Proofs for the following lemmas can be found in [2].

LEMMA 1.1. ([2], Satz 3, Lemma 4, Satz 7). Let P be a preordering of a field F and φ, ψ be forms over F. Then the following statements hold.

(1) φ is *P*-isotropic if and only if $D(\varphi/P) = \dot{F}$.

(2) If $\varphi \cong \psi \pmod{P}$, then $D(\varphi/P) = D(\varphi/P)$.

LEMMA 1.2. ([2], Satz 15). Let P be a preordering of a field F and a, b be elements of \dot{F} . If the form $\langle a, b, ab \rangle$ represents 1 over P, then there exists $c \in \dot{F}$ such that $\langle a, b \rangle \cong \langle (1, c) \rangle (\text{mod } P)$.

LEMMA 1.3. Let P be a preordering of a field F and a, b be elements of \dot{F} . If $\operatorname{sgn}_{\sigma}(\langle \langle a, b \rangle \rangle) = 0$ for any $\sigma \in X(F/P)$, then the form $\langle 1, a, b \rangle$ is P-isotropic.

PROOF. We have $\langle 1, a, b \rangle \cong \langle 1, -1, -ab \rangle \pmod{P}$ by the assumption. Then the assertion follows from Lemma 1.1. Q.E.D.

LEMMA 1.4. Let P be a preordering of a field F and $a_1, ..., a_n$ be elements of \dot{F} . Then $D(\langle a_1, ..., a_n \rangle / P) = H(a_1, ..., a_n / P)^{\perp}$.

PROOF. If $D(\langle a_1, ..., a_n \rangle / P) \neq \dot{F}$, then $P' = D(\langle a_1, ..., a_n \rangle / P)$ is a preordering and it is clear that $P' \subseteq H(a_1, ..., a_n / P)^{\perp}$. Conversely the fact $X(F/P') \subseteq H(a_1, ..., a_n / P)$ implies $P' = X(F/P')^{\perp} \supseteq H(a_1, ..., a_n / P)^{\perp}$. If $D(\langle a_1, ..., a_n \rangle / P) = \dot{F}$, then the form $\langle a_1, ..., a_n \rangle$ is P-isotropic and $H(a_1, ..., a_n / P) = \phi$. In this case we have also $D(\langle a_1, ..., a_n \rangle / P) = H(a_1, ..., a_n / P)^{\perp}$ since we put $\phi^{\perp} = \dot{F}$. Q. E. D.

If F is not a SAP (Strong Approximation Property) field, then there exist distinct orderings { σ_1 , σ_2 , σ_3 , σ_4 } such that $\sigma_4 = \sigma_1 \sigma_2 \sigma_3$ (a fan of index 8) by [4], Satz 3.20.

Let P be a preordering of a field F and $\varphi = \langle 1, a, b, -ab \rangle$ be a quadratic form over F which is P-anisotropic. By Zorn's Lemma, there exists a maximal preordering $P' \supseteq P$ over which φ is anisotropic. In this section, we shall show that P' is a fan of index 8, namely $X(F/P') = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}, \sigma_4 = \sigma_1 \sigma_2 \sigma_3$.

LEMMA 1.5. Let P be a preordering of a field F and a, b be elements of \dot{F} such that the form $\langle 1, a, b, -ab \rangle$ is P-isotropic. Then there exists $c \in \dot{F}$ which satisfies the following conditions (1) and (2).

- (1) $D(\langle\!\!\langle -a, -b \rangle\!\!\rangle / P) = D(\langle\!\!\langle -c \rangle\!\!\rangle / P).$
- (2) $D(\langle\!\langle a \rangle\!\rangle/P) \cap D(\langle\!\langle b \rangle\!\rangle/P) = D(\langle\!\langle c \rangle\!\rangle/P).$

PROOF. From the assumption, we can find a non-trivial relation $p_1 + ap_2 + bp_3 - abp_4 = 0$ with $p_i \in P \cup \{0\}$, i=1, 2, 3, 4. If $p_1 = 0$, then the form $\langle -a, -b, ab \rangle \cong -\langle a, b, -ab \rangle$ is *P*-isotropic and $D(\langle -a, -b, ab \rangle/P) = \dot{F}$. If $p_1 \neq 0$, then we have a relation $1 = -ap_2p_1^{-1} - bp_3p_1^{-1} + abp_4p_1^{-1}$ and this shows that the form $\langle -a, -b, ab \rangle$ represents 1 over *P*. Anyway the form $\langle -a, -b, ab \rangle$, which is the pure part of the 2-fold Pfister form $\langle -a, -b \rangle$, represents 1 over *P*. By Lemma 1.2, there exists $c \in \dot{F}$ such that $\langle -a, -b \rangle \cong \langle 1, -c \rangle \pmod{P}$, and we have $D(\langle -a, -b \rangle/P) = D(\langle 1, -c \rangle/P) = D(\langle -c \rangle/P)$.

As for the condition (2), we have $D(\langle a \rangle P) \cap D(\langle b \rangle P) = H(a/P)^{\perp} \cap H(b/P)^{\perp}$ = $(H(a/P) \cup H(b/P))^{\perp}$ and therefore $D(\langle a \rangle P) \cap D(\langle b \rangle P) = (H(-a, -b/P)^c)^{\perp}$. It now follows from Lemma 1.4 that H(-a, -b/P) = H(-c/P). Therefore, again by using Lemma 1.4, we have $(H(-a, -b/P)^c)^{\perp} = (H(-c/P)^c)^{\perp} = D(\langle c \rangle P)$ from which the condition (2) follows.

LEMMA 1.6. Let P be a preordering of a field F and $\langle 1, a, b, -ab \rangle$ be a P-an c form. Then the following statements hold.

(1) $H(a, b/P) \neq \phi$.

(2) $\tilde{P} = D(\langle \! \langle a \rangle \! \rangle / P) \cap D(\langle \! \langle b \rangle \! \rangle / P)$ is a preordering and the form $\langle 1, a, b, -ab \rangle$ is \tilde{P} -anisotropic.

PROOF. Suppose, on the contrary, that $H(a, b/P) = \phi$. Then for any $\sigma \in X(F/P)$, $sgn_{\sigma}(\langle \langle a, b \rangle \rangle) = 0$. By Lemma 1.3, the form $\langle 1, a, b \rangle$ is *P*-isotropic and this contradicts the assumption that the form $\langle 1, a, b, -ab \rangle$ is *P*-anisotropic. So we have (1). As for the statement (2), since the form $\langle 1, a, b, -ab \rangle$ is *P*-anisotropic, we have $a \oplus -P$ and $b \oplus -P$. Then it is clear that \tilde{P} is a preordering. Suppose that the form $\langle 1, a, b, -ab \rangle$ is \tilde{P} -isotropic. Then there is a non-trivial relation $p_1 + ap_2 + bp_3 - abp_4 = 0$ with $p_i \in \tilde{P} \cup \{0\}, i=1, 2, 3, 4$. Here $p_4 \oplus 0$; in fact, by considering p_1 and p_2 as elements of $D(\langle \langle a \rangle \rangle/P)$ and p_3 as an element of $D(\langle \langle b \rangle /P)$, the relation $p_1 + ap_2 + bp_3 = 0$ would imply that the form $\langle 1, a, b \rangle$ is *P*-isotropic. Thus we may assume that $p_4 = 1$ without loss of generality, and this implies that the form $\langle 1, a, b \rangle$ represents ab over P. This is a contradiction. Q. E. D.

LEMMA 1.7. Let $\langle 1, a, b, -ab \rangle$ be a form over F and P be a maximal preordering such that $\langle 1, a, b, -ab \rangle$ is P-anisotropic. Then we have

$$D(\langle\!\langle a, -b\rangle\!\rangle/P) \cap D(\langle\!\langle -a, b\rangle\!\rangle/P) \cap D(\langle\!\langle -a, -b\rangle\!\rangle/P) = P.$$

PROOF. Since $-ab\langle 1, a, b, -ab\rangle \cong \langle 1, -a, -b, -ab \rangle$ is *P*-anisotropic, Lemma 1.6 says that the form $\langle 1, -a, -b, -ab \rangle$ is anisotropic over $\tilde{P} = D(\langle a \rangle / P) \cap D(\langle b \rangle / P)$. Thus $\langle 1, a, b, -ab \rangle$ is \tilde{P} -anisotropic and we have $P = \tilde{P}$ by the maximality of *P*. On the other hand, we have $H(a, -b/P)^{\perp} \cap H(-a, -b/P)^{\perp} = (H(a, -b/P) \cup H(-a, -b/P))^{\perp} = H(-b/P)^{\perp}$ and this implies $D(\langle a, -b \rangle / P) \cap H(-a, -b/P)$ $D(\langle\!\langle -a, -b \rangle\!\rangle/P) = D(\langle\!\langle -b \rangle\!\rangle/P) \text{ by Lemma 1.4. Similarly } D(\langle\!\langle -a, b \rangle\!\rangle/P) \cap D(\langle\!\langle -a, -b \rangle\!\rangle/P) = D(\langle\!\langle -a \rangle\!\rangle/P), \text{ and so we have } D(\langle\!\langle a, -b \rangle\!\rangle/P) \cap D(\langle\!\langle -a, b \rangle\!\rangle/P) \cap D(\langle\!\langle -a, b \rangle\!\rangle/P) \cap D(\langle\!\langle -a, b \rangle\!\rangle/P) = P.$

THEOREM 1.8. Let $\langle 1, a, b, -ab \rangle$ be a form over F and P be a maximal preordering such that $\langle 1, a, b, -ab \rangle$ is P-anisotropic. Then P is a fan of index 8.

PROOF. By [1], Corollary 3.4, P is a preordering of finite index. In general, let P be a preordering of finite index of a field F and Y be a subset of X(F/P) such that $Y^{\perp} = P$. Then we can find a basis of X(F/P) which is a subset of Y. Lemma 1.7 shows that $(H(a, -b/P) \cup H(-a, b/P) \cup H(-a, -b/P))^{\perp} = P$; thus there exists a basis $B = \{\sigma_{2i}, \sigma_{3j}, \sigma_{4k}; i \in I, j \in J, k \in K\}$ of X(F/P) where $\sigma_{2i} \in H(a, -b/P), \sigma_{3j} \in H(-a, b/P)$ and $\sigma_{4k} \in H(-a, -b/P)$. There exists an ordering $\sigma_1 \in H(a, b/P)$ by Lemma 1.6 (1). Then we can write σ_1 by using the basis B as

$$\sigma_1 = \Pi \sigma_{2i} \cdot \Pi \sigma_{3i} \cdot \Pi \sigma_{4k} \qquad (i \in I', j \in J', k \in K') \cdots \cdots (A)$$

where $I' \subseteq I$, $J' \subseteq J$ and $K' \subseteq K$. We shall show that each subset I', J' or K' is not empty. Suppose $I' = \phi$. Then by calculating the signature of -a at the both sides of (A), -a is negative at σ_1 and positive at $\Pi \sigma_{2i} \cdot \Pi \sigma_{3j} \cdot \Pi \sigma_{4k} = \Pi \sigma_{3j} \cdot \Pi \sigma_{4k}$. This is a contradiction and we have $I' \neq \phi$. By taking elements -b for J' and -ab for K', we can similarly show that J' and K' are not empty. We now put $\tilde{B} = \{\sigma_{2i}, \sigma_{3j}, \sigma_{4k}, i \in I', j \in J', k \in K'\}$ and $\tilde{P} = \tilde{B}^{\perp}$. Suppose that the form $\langle 1, a, b, -ab \rangle$ is \tilde{P} -isotropic. Then by Lemma 1.5, there exists $c \in F$ which satisfies the following conditions (1) and (2):

- (1) $D(\langle\!\langle -a, -b \rangle\!\rangle/\tilde{P}) = D(\langle\!\langle -c \rangle\!\rangle/\tilde{P})$
- (2) $D(\langle a \rangle / \tilde{P}) \cap D(\langle b \rangle / \tilde{P}) = D(\langle c \rangle / \tilde{P}).$

Then it follows from (1) and (2) that c is negative at σ_{4k} , $k \in K'$ and positive at $\sigma_1, \sigma_{2i}, \sigma_{3j}$ $(i \in I', j \in J')$. So the equation (A) says that |K'| is even. Therefore -ab is negative at σ_1 and positive at $\Pi\sigma_{2i} \cdot \Pi\sigma_{3j} \cdot \Pi\sigma_{4k}$, $i \in I', j \in J'$, $k \in K'$. This contradiction shows that the form $\langle 1, a, b, -ab \rangle$ is \tilde{P} -anisotropic. By the maximality of P, we have $P = \tilde{P}$. Since B is a basis of X(F/P), the fact $P = \tilde{P}$ means I = I', J = J' and K = K'. This shows that σ_1 is a unique element of H(a, b/P), namely $H(a, b/P) = \{\sigma_1\}$. Similarly, by considering the forms $\langle 1, a, -b, ab \rangle \cong a \langle 1, a, b, -ab \rangle$, $\langle 1, -a, b, ab \rangle \cong b \langle 1, a, b, -ab \rangle$ and $\langle 1, -a, -b, -ab \rangle \cong -ab \langle 1, a, b, -ab \rangle$ instead of $\langle 1, a, b, -ab \rangle$, we have |H(a, -b/P)| = 1, |H(-a, b/P)| = 1 and |H(-a, -b/P)| = 1. Hence |X(F/P)| = 4 and the equation (A) shows that P is a fan of index 8.

§ 2. Connected components and H(P)

Let P be a preordering over F. We shall say that two orderings σ , $\tau \in X(F/P)$ are connected in X(F/P) if $\sigma = \tau$ or there exists a fan of index 8 which contains σ and τ , and we denote the relation by $\sigma \sim \tau$. Marshall ([7], Theorem 4.7) showed that the relation \sim is an equivalence relation in X(F/P). An equivalence class of this relation is called a connected component of X(F/P), and a union of some connected components is called full (cf. [3]).

DEFINITION 2.1. Let P be a preordering of a field F. For $x \in \dot{F}$, we denote the multiplicative subgroup $D(\langle\!\langle x \rangle\!\rangle/P) \cdot D(\langle\!\langle -x \rangle\!\rangle/P)$ by J(x/P), and the set $\{x \in \dot{F}; J(x/P) = \dot{F}\}$ by H(P).

LEMMA 2.2. Let P be a preordering of a field F. Then, for elements x and y of \dot{F} , the following conditions are equivalent.

- (1) $x \in J(y|P)$.
- (2) $\langle 1, y, -x, xy \rangle$ is P-isotropic.
- (3) $\langle 1, x, -y, xy \rangle$ is P-isotropic.
- (4) $y \in J(x/P)$.

PROOF. (1)=(2). Since $x \in J(y/P) = D(\langle \langle y \rangle \rangle / P) \cdot D(\langle \langle -y \rangle \rangle / P)$, $x = \alpha\beta$ for some $\alpha \in D(\langle \langle y \rangle \rangle / P)$ and $\beta \in D(\langle \langle -y \rangle \rangle / P)$. Thus we have $\alpha\beta^2 - x\beta = 0$ and it follows from the facts $\alpha\beta^2 \in D(\langle \langle y \rangle \rangle / P)$ and $-x\beta \in D(\langle -x, xy \rangle / P)$ that $\langle 1, y, -x, xy \rangle$ is *P*-isotropic.

(2) \Rightarrow (1). From the assumption, there exists a non-trivial relation $p_1 + yp_2 - xp_3 + xyp_4 = 0$ with $p_i \in P \cup \{0\}$, i = 1, 2, 3, 4. If $p_1 + yp_2 = x(p_3 - yp_4) = 0$, then at least one of the forms $\langle\!\langle y \rangle\!\rangle$ and $\langle\!\langle -y \rangle\!\rangle$ is *P*-isotropic and we have $J(y/P) = D(\langle\!\langle y \rangle\!\rangle/P) \cdot D(\langle\!\langle -y \rangle\!\rangle/P) = \dot{F}$. If $p_1 + yp_2 = x(p_3 - yp_4) \neq 0$, then $x(p_3 - yp_4)^2 = (p_1 + yp_2)(p_3 - yp_4) \in D(\langle\!\langle y \rangle\!\rangle/P) \cdot D(\langle\!\langle -y \rangle\!\rangle/P)$. Therefore in any case we have $x \in J(y/P)$.

The equivalence of the conditions (2) and (3) is clear from $xy\langle 1, y, -x, xy\rangle \cong \langle 1, x, -y, xy \rangle$. Q. E. D.

REMARK 2.3. (1). X(F/P) satisfies SAP if and only if $\langle 1, x, y, -xy \rangle$ is *P*-isotropic for any $x, y \in \vec{F}$. By Lemma 2.2, these are equivalent to the condition that $J(y/P) = \vec{F}$ for every $y \in \vec{F}$, namely $H(P) = \vec{F}$.

(2). Since $H(P) = \{x \in \dot{F}; J(x/P) \ni y \text{ for any } y \in \dot{F}\}$, it follows from Lemma 2.2 that $H(P) = \{x \in \dot{F}; x \in J(y/P) \text{ for every } y \in \dot{F}\} = \cap J(y/P), y \in \dot{F}$. Thus H(P) is a multiplicative subgroup of \dot{F} which contains P, and H(P)/P has a \mathbb{Z}_2 -vector space structure and we denote its dimension by dim H(P)/P.

PROPOSITION 2.4. Let P be a preordering of F which is of finite index.

Then for a subset $Y \subseteq X(F|P)$, the following conditions are equivalent.

- (1) Y is full.
- (2) Y = H(a|P) for some $a \in H(P)$.

PROOF. First we assume that Y is full. Then for any fan W of index 8, $|W \cap Y| = 0$ or 4. So by [8], Theorem 7.2, we have Y = H(a/P) for some $a \in \dot{F}$. Suppose $a \notin H(P)$. Then $J(a/P) = D(\langle a \rangle P) \cdot D(\langle -a \rangle P) \cong \dot{F}$ and so we can take an element $b \in \dot{F} - J(a/P)$. By Lemma 2.2, $\langle 1, a, b, -ab \rangle$ is P-anisotropic and this implies that there exists a preordering $\tilde{P} \supseteq P$ such that \tilde{P} is a fan of index 8 and $\langle 1, a, b, -ab \rangle$ is \tilde{P} -anisotropic by Theorem 1.8. Hence we have $|H(a/P) \cap X(F/\tilde{P})| = |Y \cap X(F/\tilde{P})| = 2$, which contradicts the assumption that Y is full.

Conversely suppose that Y is not full. Then there exists a fan $W = \{\sigma_1, \sigma_2, \tau_1, \tau_2\}$ of index 8 such that $Y \cap W \neq \phi$ and $Y^c \cap W \neq \phi$. By [8], Theorem 7.2 $|Y \cap W| = 2$, so we may assume $\sigma_1, \sigma_2 \in Y$ and $\tau_1, \tau_2 \in Y^c$. We let $A_1 = \{b \in F; \operatorname{sgn}_{\sigma_1}(b) \cdot \operatorname{sgn}_{\sigma_2}(b) = 1\}$ and $A_2 = \{b \in F; \operatorname{sgn}_{\tau_1}(b) \cdot \operatorname{sgn}_{\tau_2}(b) = 1\}$. It is clear that A_1 and A_2 are multiplicative subgroups of F. Moreover, since $\sigma_1, \sigma_2 \in Y$, we have $Y^{\perp} = D(\langle\!\langle a \rangle\!\rangle / P) \subseteq A_1$ and similarly $(Y^c)^{\perp} = D(\langle\!\langle -a \rangle\!\rangle / P) \subseteq A_2$. Now $W = \{\sigma_1, \sigma_2, \tau_1, \tau_2\}$ is a fan of index 8 and $\sigma_1 \sigma_2 = \tau_1 \tau_2$, and so $A_1 = A_2$. It follows from the assumption $a \in H(P)$, namely $D(\langle\!\langle a \rangle\!\rangle / P) \cdot D(\langle\!\langle -a \rangle\!\rangle / P) = F$, that $A_1 = A_2 = F$, which leads to a contradiction $\sigma_1 = \sigma_2, \tau_1 = \tau_2$.

THEOREM 2.5. Let P be a preordering of F which is of finite index. Then the number of connected components of X(F|P) equals dim H(P)/P.

PROOF. Let S be the set of full sets of X(F/P) and $\varphi: H(P)/P \rightarrow S$ be the map defined by $\varphi(\bar{a}) = H(a/P)$ where \bar{a} means the canonical image of $a \in H(P)$. If $ab \in P$, then H(a/P) = H(b/P). From this fact and Proposition 2.4, we can see that φ is well-defined and surjective. We have to show that φ is injective. Suppose $\varphi(\bar{a}) = \varphi(\bar{b})$, namely H(a/P) = H(b/P). Then ab is positive at every $\sigma \in X(F/P)$, and so $ab \in X(F/P)^{\perp} = P$. This means $\bar{a} = \bar{b}$ and φ is injective. Let n be the number of connected components and m be dim H(P)/P. Since $|H(P)/P| = 2^m$, $|S| = 2^n$ and φ is bijective, we have $2^m = 2^n$ and m = n. Q. E. D.

COROLLARY 2.6. Let P be a preordering of F of index 2ⁿ. Then the number of connected components of X(F/P) is not n-1.

PROOF. It suffices to show that dim $H(P)/P \neq n-1$. To do this, we have to see that if $H(P) \neq \dot{F}$, then dim $H(P)/P \leq n-2$ by Theorem 2.5. Let $b \in \dot{F} - H(P)$. Since $b \in J(b/P) - H(P)$, J(b/P) contains H(P) properly. Moreover the fact $b \notin H(P)$ implies $J(b/P) \neq \dot{F}$. Therefore we see that dim $\dot{F}/H(P) \geq 2$ and dim $H(P)/P \leq n-2$. Q.E.D.

COROLLARY 2.7. Let P be a preordering of F of finite index and Y_1, \ldots, Y_n

be connected components of X(F|P). We write $P_i = Y_i^{\perp}$ i = 1,..., n. Then the canonical map $f: \dot{F}/P \rightarrow \Pi \dot{F}/P_i$ (i = 1,..., n) is isomorphic and the map $g: H(P)/P \rightarrow \Pi H(P_i)/P_i$ (i = 1,..., n) is isomorphic, where g is the restriction of f to H(P)/P.

PROOF. By Proposition 2.4, for any i=1,...,n, there exists $a_i \in H(P)$ such that $Y_i = H(a_i/P)$. Then we have $P_i = D(\langle \langle a_i \rangle \rangle / P)$ and $D(\langle \langle -a_i \rangle \rangle / P) = (Y_i^c)^{\perp} = \cap P_j, \ j \neq i$. Since $D(\langle \langle a_i \rangle \rangle / P) \cdot D(\langle \langle -a_i \rangle \rangle / P) = \dot{F}, \ P_i \cdot (\cap P_j) = \dot{F}, \ j \neq i$. Then we can readily see that the canonical injection f is surjective. As for g, it is clear that $H(P) \subseteq H(P_i)$ for any i=1,...,n, and therefore g is well-defined. Clearly g is injective and it follows from Theorem 2.5 that dim H(P)/P = n and dim $H(P_i)/P_i = 1$ for any i=1,...,n. Hence dim $H(P)/P = \dim \Pi H(P_i)/P_i$ and this implies that g is an isomorphism. Q. E. D.

§3. Quadratic extensions

Let P be a preordering of F and $K = F(\sqrt{a})$ be a quadratic extension of F with $a \in F - (-P \cup F^2)$. Since $a \oplus -P$, H(a/P) is not an empty set and every ordering $\sigma \in H(a/P)$ can be extended to an ordering of K. Let τ be an extension of $\sigma \in H(a/P)$ such that \sqrt{a} is positive at τ . Then the positive cone $P(\tau)$ of τ is the set of $x + y\sqrt{a} \in K$, where (x, y) satisfies one of the following conditions (1), (2), (3):

(1)
$$x, y \in P(\sigma)$$

(2) $x, -y \in P(\sigma)$ and $x^2 - ay^2 \in P(\sigma)$.

(3) $-x, y \in P(\sigma)$ and $-(x^2 - ay^2) \in P(\sigma)$.

This is easily shown by using $x^2 - ay^2 = (x - y\sqrt{a})(x + y\sqrt{a})$. This observation implies the uniqueness of τ . Thus for any $\sigma \in H(a/P)$, there exist exactly two extensions $\sigma_1, \sigma_2 \in X(K)$ of σ such that \sqrt{a} is positive at σ_1 and \sqrt{a} is negative at σ_2 . Put $P' = \Sigma P \dot{K}^2$ and $X' = \{\tau \in X(K); \text{ the restriction of } \tau \text{ to } F \text{ belongs to} H(a/P)\}$. It is clear that P' is a preordering of K which is contained in $P(\tau)$ for any $\tau \in X'$.

LEMMA 3.1. The following statements hold. (1) $P' = (X')^{\perp}$ (2) $P' \cap F = D_F(\langle \langle a \rangle \rangle / P)$.

PROOF. (1). Since $P' \subseteq P(\tau)$ for any $\tau \in X'$, we have $P' \subseteq (X')^{\perp}$. Conversely, $D_F(\langle\!\langle a \rangle\!\rangle / P) \subseteq P'$ by the definition of P', which implies $X(K/P') \subseteq X'$. Thus $P' = X(K/P')^{\perp} \supseteq (X')^{\perp}$.

(2). In (1), we have shown that $D_F(\langle\!\langle a \rangle\!\rangle/P) \subseteq P'$. For the reverse inclusion, we take $b \in \dot{F} - D_F(\langle\!\langle a \rangle\!\rangle/P)$; then there exists $\sigma \in H(a/P)$ such that b is negative at σ . Let τ be an extension of σ in K. The fact that b is negative at τ implies $b \notin (X')^{\perp} = P'$. This shows $P' \cap F \subseteq D_F(\langle\!\langle a \rangle\!\rangle/P)$. Q. E. D.

PROPOSITION 3.2. Let $N: K \to F$ be the norm map. Then $N^{-1}(P) = \dot{F} \cdot P'$.

PROOF. Let S be the set of all Pfister forms $\langle\!\langle p_1, ..., p_n \rangle\!\rangle$ where $p_i \in P$. By [5], Norm Principle 2.13, $N^{-1}(D_F(\rho)) = \dot{F} \cdot D_K(\rho_K)$ for any $\rho \in S$, where $\rho_K = \rho \otimes K$. Hence $N^{-1}(\cup D_F(\rho)) = \cup (N^{-1}(D_F(\rho))) = \cup (\dot{F} \cdot D_K(\rho_K)), \rho \in S$. Then the facts $P = \cup D_F(\rho)$ and $P' = \cup D_K(\rho_K)$ imply the assertion. Q. E. D.

COROLLARY 3.3. Let $\varepsilon: \dot{F} \rightarrow \dot{K}$ be the canonical injection. Then the sequence

$$1 \longrightarrow \dot{F}/D_F(\langle\!\langle a \rangle\!\rangle/P) \xrightarrow{\bar{\varepsilon}} \dot{K}/P' \xrightarrow{\overline{N}} \dot{F}/P$$

is exact, where $\overline{\varepsilon}$ and \overline{N} are induced maps of ε and N respectively.

PROOF. Lemma 3.1 (2) shows that $\bar{\varepsilon}$ is well-defined and injective. Proposition 3.2 shows that \bar{N} is well-defined and Ker $\bar{N} = Im \bar{\varepsilon}$. Q. E. D.

In [6], we called a quadratic extension $K = F(\sqrt{a})$ a radical extension if $a \in R(F) - \dot{F}^2$, where R(F) is Kaplansky's radical of F.

LEMMA 3.4. Let $K = F(\sqrt{a})$ be a radical extension of F. Let σ and τ be arbitrary orderings of F and σ_i , τ_i (i=1, 2) be the extensions in K of σ , τ respectively. Then { $\sigma_1, \sigma_2, \tau_1, \tau_2$ } is not a fan of index 8.

PROOF. Put $P = P(\sigma) \cap P(\tau)$. The norm map $N: K \to F$ is surjective since $a \in R(F)$ and by Corollary 3.3, we have the exact sequence

$$1 \longrightarrow \dot{F}/P \xrightarrow{\bar{\varepsilon}} K/P' \xrightarrow{N} \dot{F}/P \longrightarrow 1$$

where $P' = \{\sigma_1, \sigma_2, \tau_1, \tau_2\}$. Since dim $\dot{F}/P = 2$, we have dim $\dot{K}/P' = 4$, which implies that $\{\sigma_1, \sigma_2, \tau_1, \tau_2\}$ is linearly independent. Q. E. D.

Let P be a preordering of a field F, $K = F(\sqrt{a})$ be a quadratic extension of F with $a \in F - (-P \cup F^2)$. Let P', X' be the preordering of K and the set of orderings defined in Lemma 3.1. We denote by bar the Galois map of K over F and for a subset A of K, we put $\overline{A} = \{\overline{x}; x \in A\}$. For a ordering τ of K, we denote by $\overline{\tau}$ the ordering of K with the positive cone $P(\tau)^-$. For a subset $B \subseteq X'$, we also write $\overline{B} = \{\overline{\tau}; \tau \in B\}$. It is clear that $\overline{P}' = P'$, $\overline{X}' = X'$ and $\overline{\sigma}_1 = \sigma_2$ where σ_1 and σ_2 are the extensions of $\sigma \in H(a/P)$.

COROLLARY 3.5. Let P be a preordering of F and $K = F(\sqrt{a})$ be a radical extension of F. Then for any connected component Y of $X' = X(K/P'), Y \cap \overline{Y} = \phi$.

PROOF. Suppose $Y \cap \overline{Y} \neq \phi$. Then there exists $\sigma \in X(F/P)$ such that $\sigma_1 \sim \sigma_2$ where σ_1 and σ_2 are the extensions of σ . Let $\{\sigma_1, \sigma_2, \tau_1, \tau_2\}$ be a fan of index 8 and τ'_1, τ'_2 be the restriction of τ_1, τ_2 to F respectively. Since $\sigma_1 \sigma_2 \tau_1 \tau_2 = 1$, we

have $\tau'_1 = \tau'_2$, which is a contradiction by Lemma 3.4. Q. E. D.

LEMMA 3.6. Let $K = F(\sqrt{a})$ be a radical extension of F. Then for any $x \in \dot{F}$, $N^{-1}(J_F(x/P)) = \dot{F} \cdot J_K(x/P')$.

PROOF. If $x \in P$ or $x \in -P$, then $J_F(x/P) = \dot{F}$, $J_K(x/P') = \dot{K}$ and the assertion follows immediately in this case. We now proceed to the case when $x \notin P$ and $-x \notin P$. Then $D_F(\langle x \rangle P)$ is a preordering of F and $N^{-1}(D_F(\langle x \rangle P) = \dot{F} \cdot D_K$ $(\langle x \rangle P')$ by Proposition 3.2. Similarly $N^{-1}(D_F(\langle -x \rangle P) = \dot{F} \cdot D_K(\langle -x \rangle P'))$. Therefore we see that $N^{-1}(J_F(x/P)) \supseteq \dot{F} \cdot D_K(\langle x \rangle P) \cdot D_K(\langle -x \rangle P) = \dot{F} \cdot J_K(x/P')$. We note that $N(\dot{F} \cdot D_K(\langle x \rangle P')) = D_F(\langle x \rangle P)$, $N(\dot{F} \cdot D_K(\langle -x \rangle P')) = D_F(\langle -x \rangle P)$ since $K = F(\sqrt{a})$ is a radical extension of F.

To show the reverse inclusion, we take $\alpha\beta \in J_F(x|P)$, where $\alpha \in D_F(\langle x \rangle P)$ and $\beta \in D_F(\langle -x \rangle P)$. There exist $f_1, f_2 \in \dot{F}, b_1 \in D_K(\langle x \rangle P')$ and $b_2 \in D_K$ $(\langle -x \rangle P')$ such that $N(f_1b_1) = \alpha$ and $N(f_2b_2) = \beta$. Then for any $z \in N^{-1}(\alpha\beta)$, $N(f_1b_1f_2b_2z) = (\alpha\beta)^2 \in \dot{F}^2$ and this implies $f_1b_1f_2b_2z \in \dot{F} \cdot \dot{K}^2$ by Hilbert Theorem 90. Hence $z \in f_1f_2b_1b_2\dot{F} \cdot \dot{K}^2 \subseteq \dot{F} \cdot D_K(\langle x \rangle P') \cdot D_K(\langle -x \rangle P')$ and we see that $N^{-1}(J_F(x|P)) \subseteq \dot{F} \cdot J_K(x|P')$. Q. E. D.

LEMMA 3.7. Let $K = F(\sqrt{a})$ be a radical extension of F. Then for any $b \in \dot{F}$, $J_K(b/P') \cap \dot{F} = J_F(b/P)$.

PROOF. It is clear that $J_K(b/P') \cap \dot{F} \supseteq J_F(b/P)$. Conversely, we take an element $x \in J_K(b/P') \cap \dot{F}$. By Lemma 2.2, the form $\langle 1, b, -x, bx \rangle$ over K is P'-isotropic. So by the definition of P', a form $\langle p_1, ..., p_n \rangle \otimes \langle 1, b, -x, bx \rangle$ over K is isotropic for some $p_1, ..., p_n \in P$. If the form $\langle p_1, ..., p_n \rangle \otimes \langle 1, b, -x, bx \rangle$ over F is anisotropic, then there is a subform which is similar to the universal binary form $\langle 1, -a \rangle$, a contradiction. Therefore the form $\langle p_1, ..., p_n \rangle \otimes \langle 1, b, -x, bx \rangle \otimes \langle 1, b, -x, bx \rangle$ over F is isotropic. So the form $\langle 1, b, -x, bx \rangle$ over F is P-isotropic and $x \in J_F(b/P)$ by Lemma 2.2. Thus we have $J_K(b/P') \cap F \subseteq J_F(b/P)$. Q.E.D.

PROPOSITION 3.8. Let $K = F(\sqrt{a})$ be a radical extension of F. Then $H_F(P) = H_K(P') \cap \dot{F}$.

PROOF. For any $b \in H_F(P)$, we have $J_F(b/P) = \dot{F}$ and this implies $\dot{K} = N^{-1}(\dot{F}) = N^{-1}(J_F(b/P)) = \dot{F} \cdot J_K(b/P')$ by Lemma 3.6. Since $\dot{F} \subseteq J_K(b/P')$, we have $\dot{K} = J_K(b/P')$ and so $b \in H_K(P')$. Hence $H_F(P) \subseteq H_K(P') \cap F$.

Conversely we take an element $b \in H_K(P') \cap \dot{F}$. Then $J_K(b/P') = \dot{K} \supseteq \dot{F}$ and we have $b \in H(P)$ since $J_F(b/P) = \dot{F}$ by Lemma 3.7. Q.E.D.

PROPOSITION 3.9. Let $K = F(\sqrt{a})$ be a radical extension of F. Then $N(H_K(P')) \subseteq H_F(P)$.

223

PROOF. It is clear that if $J_K(x/P') = \dot{K}$, then $J_K(\bar{x}/P') = \dot{K}$ by the fact $\bar{P}' = P'$. So we have $H_K(P')^- = H_K(P')$. It follows from Proposition 3.8 that, for $\alpha \in H_K(P')$, $N(\alpha) \in H_K(P') \cap \dot{F} = H_F(P)$. Thus we have $N(H_K(P')) \subseteq H_F(P)$. Q. E. D.

THEOREM 3.10. Let P be a preordering of F of finite index, and $K = F(\sqrt{a})$ be a radical extension of F. Then the sequence

$$1 \longrightarrow \dot{F}/H_F(P) \xrightarrow{\bar{\varepsilon}} K/H_K(P) \xrightarrow{N} \dot{F}/H_F(P) \longrightarrow 1$$

is exact. In particular $N^{-1}(H_F(P)) = \dot{F} \cdot H_K(P')$ and the number of connected components of X(K/P') is 2n, where n is the number of connected components of X(F/P).

PROOF. The map $\bar{\varepsilon}$ is well-defined and injective by Proposition 3.8 and \bar{N} is well-defined by Proposition 3.9. Since $K = F(\sqrt{a})$ is a radical extension of F, \bar{N} is surjective and it is clear that $Im \bar{\varepsilon} \subseteq Ker \bar{N}$. We need to show that dim $\dot{K}/H(P') = 2 \dim \dot{F}/H(P)$. Since dim $\dot{K}/H(P') \ge 2 \dim \dot{F}/H(P)$, we have only to show that dim $\dot{K}/H(P') \le 2 \dim \dot{F}/H(P)$. By Corollary 3.3, the sequence

$$1 \longrightarrow \dot{F}/P \stackrel{\bar{\epsilon}}{\longrightarrow} \dot{K}/P' \stackrel{\bar{N}}{\longrightarrow} \dot{F}/P \longrightarrow 1$$

is exact, and so dim $\dot{K}/P' = 2 \dim \dot{F}/P$. Thus it suffices to show that dim $H(P')/P' \ge 2 \dim H(P)/P$ by the facts dim $\dot{K}/P' = \dim \dot{K}/H(P') + \dim H(P')/P'$ and dim $\dot{F}/P = \dim \dot{F}/H(P) + \dim H(P)/P$.

The number *n* of connected components of X(F/P) equals dim H(P)/P by Theorem 2.5. Let $X_1, ..., X_n$ be the connected components of X(F/P). By Proposition 2.4, there exist $a_i \in H(P)$, i=1,..., n, such that $X_i = H(a_i/P)$. Let $Y_i = H(a_i/P') \subseteq X'$, i=1,...,n; then each Y_i is full since $a_i \in H_K(P')$ by Proposition 3.8. Since the restriction of Y_i to F is X_i for every *i*, the sets Y_i , i=1,...,n, are disjoint to each other. It is clear that $\overline{Y_i} = Y_i$ from the definition of Y_i . So Corollary 3.5 implies that Y_i is not connected for any *i*. Hence the number of connected components of X' is at least 2n. Thus, it follows from Theorem 2.5 that dim $H(P')/P' \ge 2n = 2 \dim H(P)/P$. Q. E. D.

References

- [1] E. Becker and L. Bröcker, On the description of the reduced Witt ring, J. Algebra 52 (1978), 328-346.
- [2] E. Becker and E. Köpping, Reduzierte quadratische Formen und Semiordnungen reeller Körper, Abh. Math. Sem. Univ. Hamburg, 46 (1977), 143–177.
- [3] L. Berman, Pythagorean fields and the Kaplansky radical, J. Algebra 61 (1979), 497– 507.
- [4] L. Bröcker, Zur Theorie der quadratischen Formen über formal reellen Körpern, Math. Ann. 210 (1974), 233-256.

- [5] R. Elman and T. Y. Lam, Quadratic forms under algebraic extensions, Math. Ann. 219 (1976), 21-42.
- [6] D. Kijima and M. Nishi, Kaplansky's radical and Hilbert Theorem 90, Hiroshima Math. J. 11 (1981), 443–456.
- [7] M. Marshall, Classification of finite spaces of orderings, Can. J. Math. 31 (1979), 320– 330.
- [8] M. Marshall, The Witt ring of space of orderings, Trans. Amer. Math. Soc. 258 (1980), 505-521.

Department of Mathematics, Faculty of Science, Hiroshima University