On the space of orderings and the group H

Daiji Kimma and Mieo Nishi
(Received September 20, 1982)

Let F be a formally real field and P a preordering of F. In his paper [7], M. Marshall introduced an equivalence relation in the space $X(F / P)$ of orderings by making use of fans of index 8 , and the notion of connected components of $X(F / P)$ by an equivalence class of the relation.

The main purpose of this paper is to show that the number of connected components of $X(F / P)$ coincides with the dimension of \boldsymbol{Z}_{2}-vector space $H(P) / P$ for a subgroup $H(P)$, which is defined in $\S 2$. We also show, in $\S 3$, that if $K=$ $F(\sqrt{a})$ is a quadratic extension of F with a an element of Kaplansky's radical, then the number of connected components of $X\left(K / P^{\prime}\right)$ equals twice that of $X(F / P)$, where P^{\prime} is the preordering $\Sigma P \cdot \dot{K}^{2}$ of K. We should note that the groups $H(P)$ and $H\left(P^{\prime}\right)$ are connected by an important relation $N^{-1}(H(P))=F \cdot H\left(P^{\prime}\right)$, where N is the norm map of K to F.

For a subset A in a set B, the cardinality of A will be denoted by $|A|$ and the complementary subset of A in B by $B-A$ or A^{c}.

§ 1. Preorderings and fans

Throughout this paper, a field F always means a formally real field. We denote by \dot{F} the multiplicative group of F. For a multiplicative subgroup P of \dot{F}, P is said to be a preordering of F if P is additively closed and $\dot{F}^{2} \subseteq P$. We denote by $X(F)$ the space of all orderings σ of F and by $X(F / P)$ the subspace of all orderings σ with $P(\sigma) \supseteq P$, where $P(\sigma)$ is the positive cone of σ. For a subset Y of $X(F)$, we denote by Y^{\perp} the preordering $\cap P(\sigma), \sigma \in Y$. Conversely for any preordering P, there exists a subset $Y \subseteq X(F)$ such that $P=Y^{\perp}$. Thus we have $P=X(F / P)^{\perp}$ and in particular $X(F)^{\perp}=D_{F}(\infty)=\Sigma \dot{F}^{2}$. We put $\phi^{\perp}=\dot{F}$ for convenience. The topological structure of $X(F)$ is determined by Harrison sets $H(a)=\{\sigma \in X(F) ; a \in P(\sigma)\}$ as its subbasis, where a ranges over \dot{F}. An arbitrary open set in $X(F)$ is thus a union of sets of the form $H\left(a_{1}, \ldots, a_{r}\right)=H\left(a_{1}\right) \cap \cdots \cap$ $H\left(a_{r}\right)$. For a preordering P of F, we write $H\left(a_{1}, \ldots, a_{n} / P\right)=H\left(a_{1}, \ldots, a_{n}\right) \cap$ $X(F / P)$ where $a_{i} \in \dot{F}$.

For two forms f and g over F, we write $f \sim g(\bmod P)$ if for any $\sigma \in X(F / P)$, $\operatorname{sg} n_{\sigma}(f)=\operatorname{sgn} n_{\sigma}(g)$ where $\operatorname{sgn} n_{\sigma}(f)$ and $\operatorname{sgn} n_{\sigma}(g)$ are the signatures at σ of f and g, respectively. If $f \sim g(\bmod P)$ and $\operatorname{dim} f=\operatorname{dim} g$, we write $f \cong g(\bmod P)$. For
a form $f=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and $b \in F$ ，if there exist $p_{1}, \ldots, p_{n} \in P \cup\{0\}$ such that $a_{1} p_{1}+$ $\cdots+a_{n} p_{n}=b$ and $\left(p_{1}, \ldots, p_{n}\right) \neq(0, \ldots, 0)$ ，then we say that the form f represents b over P ．We put $D(f / P)=\{b \in \dot{F} ; f$ represents b over $P\}$ ．We say that f is P－ isotropic or f is isotropic over P if f represents 0 and P－anisotropic or antisotropic over P otherwise．

Proofs for the following lemmas can be found in［2］．
Lemma 1．1．（［2］，Satz 3，Lemma 4，Satz 7）．Let P be a preordering of a field F and φ, ψ be forms over F ．Then the following statements hold．
（1）φ is P－isotropic if and only if $D(\varphi / P)=\dot{F}$ ．
（2）If $\varphi \cong \psi(\bmod P)$ ，then $D(\varphi / P)=D(\varphi / P)$ ．
Lemma 1．2．（［2］，Satz 15）．Let P be a preordering of a field F and a, b be elements of \dot{F} ．If the form $\langle a, b, a b\rangle$ represents 1 over P ，then there exists $c \in \dot{F}$ such that $《 a, b\rangle \cong 《 1, c\rangle(\bmod P)$ ．

Lemma 1．3．Let P be a preordering of a field F and a, b be elements of \dot{F} ． If $\left.\operatorname{sgn}_{\sigma}(《 a, b\rangle\right)=0$ for any $\sigma \in X(F / P)$ ，then the form $\langle 1, a, b\rangle$ is P－isotropic．

Proof．We have $\langle 1, a, b\rangle \cong\langle 1,-1,-a b\rangle(\bmod P)$ by the assumption． Then the assertion follows from Lemma 1．1．

Q．E．D．
Lemma 1．4．Let P be a preordering of a field F and a_{1}, \ldots, a_{n} be elements of \dot{F} ．Then $\left.D\left(《 a_{1}, \ldots, a_{n}\right\rangle / P\right)=H\left(a_{1}, \ldots, a_{n} / P\right)^{\perp}$ ．

Proof．If $D\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle / P\right) \neq \dot{F}$ ，then $P^{\prime}=D\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle / P\right)$ is a preordering and it is clear that $P^{\prime} \subseteq H\left(a_{1}, \ldots, a_{n} / P\right)^{\perp}$ ．Conversely the fact $X\left(F / P^{\prime}\right) \subseteq H\left(a_{1}\right.$ ， $\left.\ldots, a_{n} / P\right)$ implies $P^{\prime}=X\left(F / P^{\prime}\right)^{\perp} \supseteq H\left(a_{1}, \ldots, a_{n} / P\right)^{\perp} . \quad$ If $\left.D\left(《 a_{1}, \ldots, a_{n}\right\rangle / P\right)=\dot{F}$ ，then the form $\left.《 a_{1}, \ldots, a_{n}\right\rangle$ is P－isotropic and $H\left(a_{1}, \ldots, a_{n} / P\right)=\phi$ ．In this case we have also $\left.D\left(《 a_{1}, \ldots, a_{n}\right\rangle / P\right)=H\left(a_{1}, \ldots, a_{n} / P\right)^{\perp}$ since we put $\phi^{\perp}=\dot{F}$ ．Q．E．D．

If F is not a SAP（Strong Approximation Property）field，then there exist distinct orderings $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\}$ such that $\sigma_{4}=\sigma_{1} \sigma_{2} \sigma_{3}$（a fan of index 8）by［4］， Satz 3．20．

Let P be a preordering of a field F and $\varphi=\langle 1, a, b,-a b\rangle$ be a quadratic form over F which is P－anisotropic．By Zorn＇s Lemma，there exists a maximal preordering $P^{\prime} \supseteq P$ over which φ is anisotropic．In this section，we shall show that P^{\prime} is a fan of index 8 ，namely $X\left(F / P^{\prime}\right)=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\}, \sigma_{4}=\sigma_{1} \sigma_{2} \sigma_{3}$ ．

Lemma 1．5．Let P be a preordering of a field F and a, b be elements of \dot{F} such that the form $\langle 1, a, b,-a b\rangle$ is P－isotropic．Then there exists $c \in \dot{F}$ which satisfies the following conditions（1）and（2）．
（1）$D(《-a,-b\rangle / P)=D(《-c\rangle / P)$ ．
（2）$\quad D(《 a\rangle / P) \cap D(《 b\rangle\rangle / P)=D(\langle c\rangle / P)$ ．

Proof．From the assumption，we can find a non－trivial relation $p_{1}+a p_{2}+$ $b p_{3}-a b p_{4}=0$ with $p_{i} \in P \cup\{0\}, i=1,2,3,4$ ．If $p_{1}=0$ ，then the form $\langle-a,-b$ ， $a b\rangle \cong-\langle a, b,-a b\rangle$ is P－isotropic and $D(\langle-a,-b, a b\rangle \mid P)=\dot{F}$ ．If $p_{1} \neq 0$ ， then we have a relation $1=-a p_{2} p_{1}^{-1}-b p_{3} p_{1}^{-1}+a b p_{4} p_{1}^{-1}$ and this shows that the form $\langle-a,-b, a b\rangle$ represents 1 over P ．Anyway the form $\langle-a,-b, a b\rangle$ ， which is the pure part of the 2 －fold Pfister form $《-a,-b\rangle$ ，represents 1 over P ． By Lemma 1．2，there exists $c \in \dot{F}$ such that $《-a,-b\rangle \cong 《 1,-c\rangle(\bmod P)$ ，and we have $D(《-a,-b\rangle / P)=D(《 1,-c\rangle\rangle / P)=D(《-c\rangle / P)$ ．

As for the condition（2），we have $D(\langle a\rangle / P) \cap D(《 b\rangle\rangle / P)=H(a / P)^{\perp} \cap H(b / P)^{\perp}$ $=(H(a / P) \cup H(b / P))^{\perp}$ and therefore $D(\langle a\rangle / P) \cap D(\langle b\rangle / P)=\left(H(-a,-b / P)^{c}\right)^{\perp}$ ． It now follows from Lemma 1.4 that $H(-a,-b / P)=H(-c / P)$ ．Therefore，again by using Lemma 1．4，we have $\left.\left(H(-a,-b / P)^{c}\right)^{\perp}=\left(H(-c / P)^{c}\right)^{\perp}=D(\| c\rangle / P\right)$ from which the condition（2）follows．

Ifmma 1．6．Let P be a preordering of a field F and $\langle 1, a, b,-a b\rangle$ be a P－an c form．Then the following statements hold．
（1）$H(a, b / P) \neq \phi$ ．
（2）$\widetilde{P}=D(《 a\rangle \mid P) \cap D(《 b\rangle\rangle \mid P)$ is a preordering and the form $\langle 1, a, b,-a b\rangle$ is \widetilde{P}－anisotropic．

Proof．Suppose，on the contrary，that $H(a, b / P)=\phi$ ．Then for any $\left.\sigma \in X(F / P), \operatorname{sgn}_{\sigma}(《 a, b\rangle\right)=0$ ．By Lemma 1．3，the form $\langle 1, a, b\rangle$ is P－isotropic and this contradicts the assumption that the form $\langle 1, a, b,-a b\rangle$ is P－anisotropic． So we have（1）．As for the statement（2），since the form $\langle 1, a, b,-a b\rangle$ is P－ anisotropic，we have $a \notin-P$ and $b \notin-P$ ．Then it is clear that \widetilde{P} is a preordering． Suppose that the form $\langle 1, a, b,-a b\rangle$ is \widetilde{P}－isotropic．Then there is a non－trivial relation $p_{1}+a p_{2}+b p_{3}-a b p_{4}=0$ with $p_{i} \in \widetilde{P} \cup\{0\}, i=1,2,3,4$ ．Here $p_{4} \neq 0$ ；in fact，by considering p_{1} and p_{2} as elements of $\left.D(《 a\rangle / P\right)$ and p_{3} as an element of $D(《 b\rangle / P)$ ，the relation $p_{1}+a p_{2}+b p_{3}=0$ would imply that the form $\langle 1, a, b\rangle$ is P－isotropic．Thus we may assume that $p_{4}=1$ without loss of generality，and this implies that the form $\langle 1, a, b\rangle$ represents $a b$ over P ．This is a contradiction． Q．E．D．

Lemma 1．7．Let $\langle 1, a, b,-a b\rangle$ be a form over F and P be a maximal preordering such that $\langle 1, a, b,-a b\rangle$ is P－anisotropic．Then we have

$$
D(《 a,-b\rangle / P) \cap D(《-a, b\rangle\rangle / P) \cap D(《-a,-b\rangle / P)=P .
$$

Proof．Since $-a b\langle 1, a, b,-a b\rangle \cong\langle 1,-a,-b,-a b\rangle$ is P－anisotropic， Lemma 1.6 says that the form $\langle 1,-a,-b,-a b\rangle$ is anisotropic over $\widetilde{P}=D(《-a\rangle /$ $P) \cap D(《-b\rangle / P)$ ．Thus $\langle 1, a, b,-a b\rangle$ is \widetilde{P}－anisotropic and we have $P=\widetilde{P}$ by the maximality of P ．On the other hand，we have $H(a,-b / P)^{\perp} \cap H(-a,-b / P)^{\perp}$ $=(H(a,-b / P) \cup H(-a,-b / P))^{\perp}=H(-b / P)^{\perp}$ and this implies $D(《 a,-b 》 / P) \cap$
$D(《-a,-b\rangle / P)=D(《-b\rangle / P)$ by Lemma 1．4．Similarly $D(《-a, b\rangle / P) \cap$
$D(《-a,-b\rangle / P)=D(《-a\rangle / P)$ ，and so we have $D(《 a,-b\rangle / P) \cap D(《-a, b\rangle / P)$ $\cap D(《-a,-b\rangle / P)=D(《-b\rangle / P) \cap D(《-a\rangle / P)=P$ ．

Q．E．D．
Theorem 1．8．Let $\langle 1, a, b,-a b\rangle$ be a form over F and P be a maximal preordering such that $\langle 1, a, b,-a b\rangle$ is P－anisotropic．Then P is a fan of index 8.

Proof．By［1］，Corollary 3．4，P is a preordering of finite index．In general， let P be a preordering of finite index of a field F and Y be a subset of $X(F / P)$ such that $Y^{\perp}=P$ ．Then we can find a basis of $X(F / P)$ which is a subset of Y ．Lemma 1.7 shows that $(H(a,-b / P) \cup H(-a, b / P) \cup H(-a,-b / P))^{\perp}=P$ ；thus there exists a basis $B=\left\{\sigma_{2 i}, \sigma_{3 j}, \sigma_{4 k} ; i \in I, j \in J, k \in K\right\}$ of $X(F / P)$ where $\sigma_{2 i} \in$ $H(a,-b / P), \sigma_{3 j} \in H(-a, b / P)$ and $\sigma_{4 k} \in H(-a,-b / P)$ ．There exists an ordering $\sigma_{1} \in H(a, b / P)$ by Lemma 1.6 （1）．Then we can write σ_{1} by using the basis B as

$$
\begin{equation*}
\sigma_{1}=\Pi \sigma_{2 i} \cdot \Pi \sigma_{3 j} \cdot \Pi \sigma_{4 k} \quad\left(i \in I^{\prime}, j \in J^{\prime}, k \in K^{\prime}\right) \tag{A}
\end{equation*}
$$

where $I^{\prime} \subseteq I, J^{\prime} \subseteq J$ and $K^{\prime} \subseteq K$ ．We shall show that each subset I^{\prime}, J^{\prime} or K^{\prime} is not empty．Suppose $I^{\prime}=\phi$ ．Then by calculating the signature of $-a$ at the both sides of $(A),-a$ is negative at σ_{1} and positive at $\Pi \sigma_{2 i} \cdot \Pi \sigma_{3 j} \cdot \Pi \sigma_{4 k}=\Pi \sigma_{3 j}$ ． $\Pi \sigma_{4 k}$ ．This is a contradiction and we have $I^{\prime} \neq \phi$ ．By taking elements $-b$ for J^{\prime} and $-a b$ for K^{\prime} ，we can similarly show that J^{\prime} and K^{\prime} are not empty．We now put $\widetilde{B}=\left\{\sigma_{2 i}, \sigma_{3 j}, \sigma_{4 k}, i \in I^{\prime}, j \in J^{\prime}, k \in K^{\prime}\right\}$ and $\widetilde{P}=\widetilde{B}^{\perp}$ ．Suppose that the form $\langle 1, a, b,-a b\rangle$ is \widetilde{P}－isotropic．Then by Lemma 1.5 ，there exists $c \in F$ which satisfies the following conditions（1）and（2）：

$$
\begin{align*}
& D(《-a,-b\rangle / \mid \widetilde{P})=D(《-c\rangle / \widetilde{P}) \tag{1}\\
& D(《 a 》 \mid \widetilde{P}) \cap D(《 b\rangle / \widetilde{P})=D(《 c\rangle / \widetilde{P}) .
\end{align*}
$$

Then it follows from（1）and（2）that c is negative at $\sigma_{4 k}, k \in K^{\prime}$ and positive at $\sigma_{1}, \sigma_{2 i}, \sigma_{3 j}\left(i \in I^{\prime}, j \in J^{\prime}\right)$ ．So the equation (A) says that $\left|K^{\prime}\right|$ is even．Therefore $-a b$ is negative at σ_{1} and positive at $\Pi \sigma_{2 i} \cdot \Pi \sigma_{3 j} \cdot \Pi \sigma_{4 k}, i \in I^{\prime}, j \in J^{\prime}, k \in K^{\prime}$ ． This contradiction shows that the form $\langle 1, a, b,-a b\rangle$ is \widetilde{P}－anisotropic．By the maximality of P ，we have $P=\widetilde{P}$ ．Since B is a basis of $X(F / P)$ ，the fact $P=\widetilde{P}$ means $I=I^{\prime}, J=J^{\prime}$ and $K=K^{\prime}$ ．This shows that σ_{1} is a unique element of $H(a, b / P)$ ，namely $H(a, b / P)=\left\{\sigma_{1}\right\}$ ．Similarly，by considering the forms $\langle 1, a,-b, a b\rangle \cong a\langle 1, a, b,-a b\rangle,\langle 1,-a, b, a b\rangle \cong b\langle 1, a, b,-a b\rangle$ and $\langle 1$ ， $-a,-b,-a b\rangle \cong-a b\langle 1, a, b,-a b\rangle$ instead of $\langle 1, a, b,-a b\rangle$ ，we have $|H(a,-b / P)|=1,|H(-a, b / P)|=1$ and $|H(-a,-b / P)|=1$ ．Hence $|X(F / P)|=4$ and the equation (A) shows that P is a fan of index 8.

Q．E．D．

§ 2．Connected components and $\boldsymbol{H}(\boldsymbol{P})$

Let P be a preordering over F ．We shall say that two orderings $\sigma, \tau \in X(F / P)$ are connected in $X(F / P)$ if $\sigma=\tau$ or there exists a fan of index 8 which contains σ and τ ，and we denote the relation by $\sigma \sim \tau$ ．Marshall（［7］，Theorem 4．7）showed that the relation \sim is an equivalence relation in $X(F / P)$ ．An equivalence class of this relation is called a connected component of $X(F / P)$ ，and a union of some connected components is called full（cf．［3］）．

Definition 2．1．Let P be a preordering of a field F ．For $x \in \dot{F}$ ，we denote the multiplicative subgroup $D(\langle x\rangle / P) \cdot D(《-x\rangle / P)$ by $J(x / P)$ ，and the set $\{x \in \dot{F} ; J(x / P)=\dot{F}\}$ by $H(P)$ ．

Lemma 2．2．Let P be a preordering of a field F ．Then，for elements x and y of \dot{F} ，the following conditions are equivalent．
（1）$x \in J(y / P)$ ．
（2）$\langle 1, y,-x, x y\rangle$ is P－isotropic．
（3）$\langle 1, x,-y, x y\rangle$ is P－isotropic．
（4）$y \in J(x / P)$ ．
Proof．（1）$\Rightarrow(2)$ ．Since $\quad x \in J(y / P)=D(《 y\rangle / P) \cdot D(《-y\rangle / P), \quad x=\alpha \beta$ for some $\alpha \in D(《 y\rangle\rangle / P)$ and $\beta \in D(《-y\rangle / P)$ ．Thus we have $\alpha \beta^{2}-x \beta=0$ and it fol－ lows from the facts $\left.\left.\alpha \beta^{2} \in D(《 y\rangle\right\rangle \mid P\right)$ and $-x \beta \in D(\langle-x, x y\rangle / P)$ that $\langle 1, y$, $-x, x y>$ is P－isotropic．
（2）\Rightarrow（1）．From the assumption，there exists a non－trivial relation $p_{1}+y p_{2}-$ $x p_{3}+x y p_{4}=0$ with $p_{i} \in P \cup\{0\}, i=1,2,3,4$ ．If $p_{1}+y p_{2}=x\left(p_{3}-y p_{4}\right)=0$ ，then at least one of the forms $《 y 》$ and $《-y 》$ is P－isotropic and we have $J(y / P)=$ $D(《 y\rangle / P) \cdot D(《-y\rangle / P)=\dot{F}$ ．If $p_{1}+y p_{2}=x\left(p_{3}-y p_{4}\right) \neq 0$ ，then $x\left(p_{3}-y p_{4}\right)^{2}=$ $\left.\left(p_{1}+y p_{2}\right)\left(p_{3}-y p_{4}\right) \in D(\langle y\rangle / P) \cdot D(《-y\rangle / P\right)$ ．Therefore in any case we have $x \in J(y / P)$ ．

The equivalence of the conditions（2）and（3）is clear from $x y\langle 1, y,-x, x y\rangle \cong$ $\langle 1, x,-y, x y\rangle$ ．

Q．E．D．
Remark 2．3．（1）．$X(F / P)$ satisfies SAP if and only if $\langle 1, x, y,-x y\rangle$ is P－isotropic for any $x, y \in \dot{F}$ ．By Lemma 2．2，these are equivalent to the condi－ tion that $J(y / P)=\dot{F}$ for every $y \in \dot{F}$ ，namely $H(P)=\dot{F}$ ．
（2）．Since $H(P)=\{x \in \dot{F} ; J(x / P) \ni y$ for any $y \in \dot{F}\}$ ，it follows from Lemma 2.2 that $H(P)=\{x \in \dot{F} ; x \in J(y / P)$ for every $y \in \dot{F}\}=\cap J(y / P), y \in \dot{F}$ ．Thus $H(P)$ is a multiplicative subgroup of \dot{F} which contains P ，and $H(P) / P$ has a Z_{2}－vector space structure and we denote its dimension by $\operatorname{dim} H(P) / P$ ．

Proposition 2．4．Let P be a preordering of F which is of finite index．

Then for a subset $Y \subseteq X(F / P)$ ，the following conditions are equivalent．
（1）Y is full．
（2）$Y=H(a / P)$ for some $a \in H(P)$ ．
Proof．First we assume that Y is full．Then for any fan W of index 8 ， $|W \cap Y|=0$ or 4．So by［8］，Theorem 7．2，we have $Y=H(a / P)$ for some $a \in \dot{F}$ ． Suppose $a \notin H(P)$ ．Then $J(a / P)=D(《 a\rangle / P) \cdot D(《-a\rangle / P) \subsetneq \dot{F}$ and so we can take an element $b \in \dot{F}-J(a / P)$ ．By Lemma 2．2，$\langle 1, a, b,-a b\rangle$ is P－anisotropic and this implies that there exists a preordering $\widetilde{P} \supseteq P$ such that \widetilde{P} is a fan of index 8 and $\langle 1, a, b,-a b\rangle$ is \widetilde{P}－anisotropic by Theorem 1．8．Hence we have $\mid H(a / P) \cap$ $X(F / \widetilde{P})|=|Y \cap X(F / \widetilde{P})|=2$ ，which contradicts the assumption that Y is full．

Conversely suppose that Y is not full．Then there exists a fan $W=\left\{\sigma_{1}, \sigma_{2}\right.$ ， $\left.\tau_{1}, \tau_{2}\right\}$ of index 8 such that $Y \cap W \neq \phi$ and $Y^{c} \cap W \neq \phi$ ．By［8］，Theorem 7.2 $|Y \cap W|=2$ ，so we may assume $\sigma_{1}, \sigma_{2} \in Y$ and $\tau_{1}, \tau_{2} \in Y^{c}$ ．We let $A_{1}=\{b \in \dot{F}$ ； $\left.\operatorname{sgn}_{\sigma_{1}}(b) \cdot \operatorname{sgn}_{\sigma_{2}}(b)=1\right\}$ and $A_{2}=\left\{b \in \dot{F} ; \operatorname{sgn}_{\tau_{1}}(b) \cdot \operatorname{sgn}_{\tau_{2}}(b)=1\right\}$ ．It is clear that A_{1} and A_{2} are multiplicative subgroups of \dot{F} ．Moreover，since $\sigma_{1}, \sigma_{2} \in Y$ ，we have $\left.Y^{\perp}=D(《 a\rangle / P\right) \subseteq A_{1}$ and similarly $\left.\left(Y^{c}\right)^{\perp}=D(《-a\rangle / P\right) \subseteq A_{2}$ ．Now $W=\left\{\sigma_{1}, \sigma_{2}\right.$ ， $\left.\tau_{1}, \tau_{2}\right\}$ is a fan of index 8 and $\sigma_{1} \sigma_{2}=\tau_{1} \tau_{2}$ ，and so $A_{1}=A_{2}$ ．It follows from the as－ sumption $a \in H(P)$ ，namely $D(《 a\rangle / P) \cdot D(《-a\rangle / P)=\dot{F}$ ，that $A_{1}=A_{2}=\dot{F}$ ，which leads to a contradiction $\sigma_{1}=\sigma_{2}, \tau_{1}=\tau_{2}$ ．

Q．E．D．
Theorem 2．5．Let P be a preordering of F which is of finite index．Then the number of connected components of $X(F / P)$ equals $\operatorname{dim} H(P) / P$ ．

Proof．Let S be the set of full sets of $X(F / P)$ and $\varphi: H(P) / P \rightarrow S$ be the map defined by $\varphi(\bar{a})=H(a / P)$ where \bar{a} means the canonical image of $a \in H(P)$ ．If $a b \in P$ ，then $H(a / P)=H(b / P)$ ．From this fact and Proposition 2．4，we can see that φ is well－defined and surjective．We have to show that φ is injective．Sup－ pose $\varphi(\bar{a})=\varphi(\bar{b})$ ，namely $H(a / P)=H(b / P)$ ．Then $a b$ is positive at every $\sigma \in X(F / P)$ ，and so $a b \in X(F / P)^{\perp}=P$ ．This means $\bar{a}=\bar{b}$ and φ is injective．Let n be the number of connected components and m be $\operatorname{dim} H(P) / P$ ．Since $|H(P) / P|=2^{m},|S|=2^{n}$ and φ is bijective，we have $2^{m}=2^{n}$ and $m=n$ ．Q．E．D．

Corollary 2．6．Let P be a preordering of F of index 2^{n} ．Then the number of connected components of $X(F / P)$ is not $n-1$ ．

Proof．It suffices to show that $\operatorname{dim} H(P) / P \neq n-1$ ．To do this，we have to see that if $H(P) \neq \dot{F}$ ，then $\operatorname{dim} H(P) / P \leqq n-2$ by Theorem 2．5．Let $b \in \dot{F}-H(P)$ ． Since $b \in J(b / P)-H(P), J(b / P)$ contains $H(P)$ properly．Moreover the fact $b \notin H(P)$ implies $J(b / P) \neq \dot{F}$ ．Therefore we see that $\operatorname{dim} \dot{F} / H(P) \geqq 2$ and dim $H(P) / P \leqq n-2$ ．

Q．E．D．
Corollary 2．7．Let P be a preordering of F of finite index and Y_{1}, \ldots, Y_{n}
be connected components of $X(F / P)$ ．We write $P_{i}=Y_{i}{ }^{\perp} i=1, \ldots, n$ ．Then the canonical map $f: \dot{F} / P \rightarrow \Pi \dot{F} / P_{i}(i=1, \ldots, n)$ is isomorphic and the map $g: H(P) /$ $P \rightarrow \Pi H\left(P_{i}\right) / P_{i}(i=1, \ldots, n)$ is isomorphic，where g is the restriction of f to $H(P) / P$ ．

Proof．By Proposition 2．4，for any $i=1, \ldots, n$ ，there exists $a_{i} \in H(P)$ such that $Y_{i}=H\left(a_{i} / P\right)$ ．Then we have $\left.P_{i}=D\left(《 a_{i}\right\rangle / P\right)$ and $\left.D\left(《-a_{i}\right\rangle / P\right)=\left(Y_{i}^{c}\right)^{\perp}=$ $\cap P_{j}, j \neq i$ ．Since $\left.\left.D\left(《 a_{i}\right\rangle / P\right) \cdot D\left(《-a_{i}\right\rangle / P\right)=\dot{F}, P_{i} \cdot\left(\cap P_{j}\right)=\dot{F}, j \neq i$ ．Then we can readily see that the canonical injection f is surjective．As for g ，it is clear that $H(P) \subseteq H\left(P_{i}\right)$ for any $i=1, \ldots, n$ ，and therefore g is well－defined．Clearly g is injective and it follows from Theorem 2.5 that $\operatorname{dim} H(P) / P=n$ and $\operatorname{dim} H\left(P_{i}\right) /$ $P_{i}=1$ for any $i=1, \ldots, n$ ．Hence $\operatorname{dim} H(P) / P=\operatorname{dim} \Pi H\left(P_{i}\right) / P_{i}$ and this implies that g is an isomorphism．

Q．E．D．

§3．Quadratic extensions

Let P be a preordering of F and $K=F(\sqrt{a})$ be a quadratic extension of F with $a \in F-\left(-P \cup F^{2}\right)$ ．Since $a \notin-P, H(a / P)$ is not an empty set and every ordering $\sigma \in H(a / P)$ can be extended to an ordering of K ．Let τ be an extension of $\sigma \in H(a / P)$ such that \sqrt{a} is positive at τ ．Then the positive cone $P(\tau)$ of τ is the set of $x+y \sqrt{a} \in \dot{K}$ ，where（ x, y ）satisfies one of the following conditions（1），（2）， （3）：
（1）$x, y \in P(\sigma)$ ．
（2）$x,-y \in P(\sigma)$ and $x^{2}-a y^{2} \in P(\sigma)$ ．
（3）$-x, y \in P(\sigma)$ and $-\left(x^{2}-a y^{2}\right) \in P(\sigma)$ ．
This is easily shown by using $x^{2}-a y^{2}=(x-y \sqrt{a})(x+y \sqrt{a})$ ．This observation implies the uniqueness of τ ．Thus for any $\sigma \in H(a / P)$ ，there exist exactly two ex－ tensions $\sigma_{1}, \sigma_{2} \in X(K)$ of σ such that \sqrt{a} is positive at σ_{1} and \sqrt{a} is negative at σ_{2} ．Put $P^{\prime}=\Sigma P \dot{K}^{2}$ and $X^{\prime}=\{\tau \in X(K)$ ；the restriction of τ to F belongs to $H(a / P)\}$ ．It is clear that P^{\prime} is a preordering of K which is contained in $P(\tau)$ for any $\tau \in X^{\prime}$ ．

Lemma 3．1．The following statements hold．
（1）$P^{\prime}=\left(X^{\prime}\right)^{\perp}$
（2）$\left.P^{\prime} \cap F=D_{F}(《 a\rangle / P\right)$.

Proof．（1）．Since $P^{\prime} \subseteq P(\tau)$ for any $\tau \in X^{\prime}$ ，we have $P^{\prime} \subseteq\left(X^{\prime}\right)^{\perp}$ ．Conversely， $\left.D_{F}(《 a\rangle / P\right) \subseteq P^{\prime}$ by the definition of P^{\prime} ，which implies $X\left(K / P^{\prime}\right) \subseteq X^{\prime}$ ．Thus $P^{\prime}=X\left(K / P^{\prime}\right)^{\perp} \supseteq\left(X^{\prime}\right)^{\perp}$ ．
（2）．In（1），we have shown that $\left.D_{F}(《 a\rangle / P\right) \subseteq P^{\prime}$ ．For the reverse inclusion， we take $b \in \dot{F}-D_{F}(《 a 》 / P)$ ；then there exists $\sigma \in H(a / P)$ such that b is negative at σ ．Let τ be an extension of σ in K ．The fact that b is negative at τ implies $b \notin\left(X^{\prime}\right)^{\perp}=P^{\prime}$ ．This shows $P^{\prime} \cap F \subseteq D_{F}(《 a 》 / P)$ ．

Q．E．D．

Proposition 3.2. Let $N: K \rightarrow F$ be the norm map. Then $N^{-1}(P)=\dot{F} \cdot P^{\prime}$.
Proof. Let S be the set of all Pfister forms $\left\langle p_{1}, \ldots, p_{n}\right\rangle$ where $p_{i} \in P$. By [5], Norm Principle 2.13, $N^{-1}\left(D_{F}(\rho)\right)=\dot{F} \cdot D_{K}\left(\rho_{K}\right)$ for any $\rho \in S$, where $\rho_{K}=\rho \otimes K$. Hence $N^{-1}\left(\cup D_{F}(\rho)\right)=\cup\left(N^{-1}\left(D_{F}(\rho)\right)\right)=\cup\left(\dot{F} \cdot D_{K}\left(\rho_{K}\right)\right), \rho \in S$. Then the facts $P=$ $\cup D_{F}(\rho)$ and $\left.P^{\prime}=\cup D_{K}\left(\rho_{K}\right)\right)$ imply the assertion.
Q.E.D.

Corollary 3.3. Let $\varepsilon: \dot{F} \rightarrow \dot{K}$ be the canonical injection. Then the sequence

$$
1 \longrightarrow \dot{F} / D_{F}(《 a \gg / P) \xrightarrow{\bar{\varepsilon}} \dot{K} / P^{\prime} \xrightarrow{\bar{N}} \dot{F} / P
$$

is exact, where $\bar{\varepsilon}$ and \bar{N} are induced maps of ε and N respectively.
Proof. Lemma 3.1 (2) shows that $\bar{\varepsilon}$ is well-defined and injective. Proposition 3.2 shows that \bar{N} is well-defined and $\operatorname{Ker} \bar{N}=\operatorname{Im} \bar{\varepsilon}$. Q.E.D.

In [6], we called a quadratic extension $K=F(\sqrt{a})$ a radical extension if $a \in R(F)-\dot{F}^{2}$, where $R(F)$ is Kaplansky's radical of F.

Lemma 3.4. Let $K=F(\sqrt{a})$ be a radical extension of F. Let σ and τ be arbitrary orderings of F and $\sigma_{i}, \tau_{i}(i=1,2)$ be the extensions in K of σ, τ respectively. Then $\left\{\sigma_{1}, \sigma_{2}, \tau_{1}, \tau_{2}\right\}$ is not a fan of index 8.

Proof. Put $P=P(\sigma) \cap P(\tau)$. The norm map $N: K \rightarrow F$ is surjective since $a \in R(F)$ and by Corollary 3.3 , we have the exact sequence

$$
1 \longrightarrow \dot{F} / P \xrightarrow{\bar{\epsilon}} K / P^{\prime} \xrightarrow{\bar{N}} \dot{F} / P \longrightarrow 1
$$

where $P^{\prime}=\left\{\sigma_{1}, \sigma_{2}, \tau_{1}, \tau_{2}\right\}$. Since $\operatorname{dim} \dot{F} / P=2$, we have $\operatorname{dim} \dot{K} / P^{\prime}=4$, which implies that $\left\{\sigma_{1}, \sigma_{2}, \tau_{1}, \tau_{2}\right\}$ is linearly independent.
Q.E.D.

Let P be a preordering of a field $F, K=F(\sqrt{a})$ be a quadratic extension of F with $a \in \dot{F}-\left(-P \cup F^{2}\right)$. Let P^{\prime}, X^{\prime} be the preordering of K and the set of orderings defined in Lemma 3.1. We denote by bar the Galois map of K over F and for a subset A of K, we put $\bar{A}=\{\bar{x} ; x \in A\}$. For a ordering τ of K, we denote by $\bar{\tau}$ the ordering of K with the positive cone $P(\tau)^{-}$. For a subset $B \subseteq X^{\prime}$, we also write $\bar{B}=\{\bar{\tau} ; \tau \in B\}$. It is clear that $\bar{P}^{\prime}=P^{\prime}, \bar{X}^{\prime}=X^{\prime}$ and $\bar{\sigma}_{1}=\sigma_{2}$ where σ_{1} and σ_{2} are the extensions of $\sigma \in H(a / P)$.

Corollary 3.5. Let P be a preordering of F and $K=F(\sqrt{a})$ be a radical extension of F. Then for any connected component Y of $X^{\prime}=X\left(K / P^{\prime}\right), Y \cap \bar{Y}=\phi$.

Proof. Suppose $Y \cap \bar{Y} \neq \phi$. Then there exists $\sigma \in X(F / P)$ such that $\sigma_{1} \sim \sigma_{2}$ where σ_{1} and σ_{2} are the extensions of σ. Let $\left\{\sigma_{1}, \sigma_{2}, \tau_{1}, \tau_{2}\right\}$ be a fan of index 8 and $\tau_{1}^{\prime}, \tau_{2}^{\prime}$ be the restriction of τ_{1}, τ_{2} to F respectively. Since $\sigma_{1} \sigma_{2} \tau_{1} \tau_{2}=1$, we
have $\tau_{1}^{\prime}=\tau_{2}^{\prime}$ ，which is a contradiction by Lemma 3．4．
Q．E．D．
Lemma 3．6．Let $K=F(\sqrt{a})$ be a radical extension of F ．Then for any $x \in \dot{F}, N^{-1}\left(J_{F}(x / P)\right)=\dot{F} \cdot J_{K}\left(x / P^{\prime}\right)$ ．

Proof．If $x \in P$ or $x \in-P$ ，then $J_{F}(x / P)=\dot{F}, J_{K}\left(x / P^{\prime}\right)=\dot{K}$ and the assertion follows immediately in this case．We now proceed to the case when $x \notin P$ and $-x \notin P$ ．Then $\left.\left.D_{F}(《 x\rangle\right\rangle \mid P\right)$ is a preordering of F and $N^{-1}\left(D_{F}(《 x\rangle / P\right)=\dot{F} \cdot D_{K}$ $\left.(《 x\rangle\rangle / P^{\prime}\right)$ by Proposition 3．2．Similarly $\left.\left.N^{-1}\left(D_{F}(《-x\rangle\right\rangle(P)=\dot{F} \cdot D_{K}(《-x\rangle\right\rangle / P^{\prime}\right)$ ． Therefore we see that $\left.\left.N^{-1}\left(J_{F}(x / P)\right) \supseteq \dot{F} \cdot D_{K}(《 x\rangle / P\right) \cdot D_{K}(《-x\rangle / P\right)=\dot{F} \cdot J_{K}\left(x / P^{\prime}\right)$ ． We note that $\left.\left.\left.\left.\left.N\left(\dot{F} \cdot D_{K}(《 x\rangle / P^{\prime}\right)\right)=D_{F}(《 x\rangle / P\right), N\left(\dot{F} \cdot D_{K}(《-x\rangle / P^{\prime}\right)\right)=D_{F}(《-x\rangle\right\rangle \mid P\right)$ since $K=F(\sqrt{a})$ is a radical extension of F ．

To show the reverse inclusion，we take $\alpha \beta \in J_{F}(x / P)$ ，where $\alpha \in D_{F}(\langle x\rangle / P)$ and $\left.\beta \in D_{F}(《-x\rangle / P\right)$ ．There exist $\left.f_{1}, f_{2} \in \dot{F}, \quad b_{1} \in D_{K}(《 x\rangle / P^{\prime}\right)$ and $b_{2} \in D_{K}$ $\left.(《-x\rangle / P^{\prime}\right)$ such that $N\left(f_{1} b_{1}\right)=\alpha$ and $N\left(f_{2} b_{2}\right)=\beta$ ．Then for any $z \in N^{-1}(\alpha \beta)$ ， $N\left(f_{1} b_{1} f_{2} b_{2} z\right)=(\alpha \beta)^{2} \in \dot{F}^{2}$ and this implies $f_{1} b_{1} f_{2} b_{2} z \in \dot{F} \cdot \dot{K}^{2}$ by Hilbert Theorem 90．Hence $\left.\left.\left.z \in f_{1} f_{2} b_{1} b_{2} \dot{F} \cdot \dot{K}^{2} \subseteq \dot{F} \cdot D_{K}(《 x\rangle\right\rangle / P^{\prime}\right) \cdot D_{K}(《-x\rangle / P^{\prime}\right)$ and we see that $N^{-1}\left(J_{F}(x / P)\right) \subseteq \dot{F} \cdot J_{K}\left(x / P^{\prime}\right)$ ．

Q．E．D．
Lemma 3．7．Let $K=F(\sqrt{a})$ be a radical extension of F ．Then for any $b \in \dot{F}, J_{K}\left(b / P^{\prime}\right) \cap \dot{F}=J_{F}(b / P)$ ．

Proof．It is clear that $J_{K}\left(b / P^{\prime}\right) \cap \dot{F} \supseteq J_{F}(b / P)$ ．Conversely，we take an element $x \in J_{K}\left(b / P^{\prime}\right) \cap \dot{F}$ ．By Lemma 2．2，the form $\langle 1, b,-x, b x\rangle$ over K is P^{\prime}－isotropic．So by the definition of P^{\prime} ，a form $\left\langle p_{1}, \ldots, p_{n}\right\rangle \otimes\langle 1, b,-x, b x\rangle$ over K is isotropic for some $p_{1}, \ldots, p_{n} \in P$ ．If the form $\left\langle p_{1}, \ldots, p_{n}\right\rangle \otimes\langle 1, b,-x$ ， $b x\rangle$ over F is anisotropic，then there is a subform which is similar to the universal binary form $\langle 1,-a\rangle$ ，a contradiction．Therefore the form $\left\langle p_{1}, \ldots, p_{n}\right\rangle \otimes$ $\langle 1, b,-x, b x\rangle$ over F is isotropic．So the form $\langle 1, b,-x, b x\rangle$ over F is P－ isotropic and $x \in J_{F}(b / P)$ by Lemma 2．2．Thus we have $J_{K}\left(b / P^{\prime}\right) \cap F \subseteq J_{F}(b / P)$ ． Q．E．D．

Proposition 3．8．Let $K=F(\sqrt{a})$ be a radical extention of F ．Then $H_{F}(P)=$ $H_{K}\left(P^{\prime}\right) \cap \dot{F}$ ．

Proof．For any $b \in H_{F}(P)$ ，we have $J_{F}(b / P)=\dot{F}$ and this implies $\dot{K}=$ $N^{-1}(\dot{F})=N^{-1}\left(J_{F}(b / P)\right)=\dot{F} \cdot J_{K}\left(b / P^{\prime}\right)$ by Lemma 3．6．Since $\dot{F} \subseteq J_{K}\left(b / P^{\prime}\right)$ ，we have $\dot{K}=J_{K}\left(b / P^{\prime}\right)$ and so $b \in H_{K}\left(P^{\prime}\right)$ ．Hence $H_{F}(P) \subseteq H_{K}\left(P^{\prime}\right) \cap F$ ．

Conversely we take an element $b \in H_{K}\left(P^{\prime}\right) \cap \dot{F}$ ．Then $J_{K}\left(b / P^{\prime}\right)=\dot{K} \supsetneq \dot{F}$ and we have $b \in H(P)$ since $J_{F}(b / P)=\dot{F}$ by Lemma 3．7．

Q．E．D．
Proposition 3．9．Let $K=F(\sqrt{a})$ be a radical extension of F ．Then $N\left(H_{K}\left(P^{\prime}\right)\right) \subseteq H_{F}(P)$ ．

Proof. It is clear that if $J_{K}\left(x / P^{\prime}\right)=\dot{K}$, then $J_{K}\left(\bar{x} / P^{\prime}\right)=\dot{K}$ by the fact $\bar{P}^{\prime}=P^{\prime}$. So we have $H_{K}\left(P^{\prime}\right)^{-}=H_{K}\left(P^{\prime}\right)$. It follows from Proposition 3.8 that, for $\alpha \in H_{K}\left(P^{\prime}\right)$, $N(\alpha) \in H_{K}\left(P^{\prime}\right) \cap \dot{F}=H_{F}(P)$. Thus we have $N\left(H_{K}\left(P^{\prime}\right)\right) \subseteq H_{F}(P) . \quad$ Q. E. D.

Theorem 3.10. Let P be a preordering of F of finite index, and $K=F(\sqrt{a})$ be a radical extension of F. Then the sequence

$$
1 \longrightarrow \dot{F} / H_{F}(P) \xrightarrow{\bar{\varepsilon}} K / H_{K}(P) \xrightarrow{\bar{N}} \dot{F} / H_{F}(P) \longrightarrow 1
$$

is exact. In particular $N^{-1}\left(H_{F}(P)\right)=\dot{F} \cdot H_{K}\left(P^{\prime}\right)$ and the number of connected components of $X\left(K / P^{\prime}\right)$ is $2 n$, where n is the number of connected components of $X(F / P)$.

Proof. The map $\bar{\varepsilon}$ is well-defined and injective by Proposition 3.8 and \bar{N} is well-defined by Proposition 3.9. Since $K=F(\sqrt{a})$ is a radical extension of F, \bar{N} is surjective and it is clear that $\operatorname{Im} \bar{\varepsilon} \subseteq \operatorname{Ker} \bar{N}$. We need to show that $\operatorname{dim} \dot{K} /$ $H\left(P^{\prime}\right)=2 \operatorname{dim} \dot{F} / H(P)$. Since $\operatorname{dim} \dot{K} / H\left(P^{\prime}\right) \geqq 2 \operatorname{dim} \dot{F} / H(P)$, we have only to show that $\operatorname{dim} \dot{K} / H\left(P^{\prime}\right) \leqq 2 \operatorname{dim} \dot{F} / H(P)$. By Corollary 3.3, the sequence

$$
1 \longrightarrow \dot{F} / P \xrightarrow{\bar{\varepsilon}} \dot{K} / P^{\prime} \xrightarrow{\bar{N}} \dot{F} / P \longrightarrow 1
$$

is exact, and so $\operatorname{dim} \dot{K} / P^{\prime}=2 \operatorname{dim} \dot{F} / P$. Thus it suffices to show that $\operatorname{dim} H\left(P^{\prime}\right) /$ $P^{\prime} \geqq 2 \operatorname{dim} H(P) / P \quad$ by the facts $\operatorname{dim} \dot{K} / P^{\prime}=\operatorname{dim} \dot{K} / H\left(P^{\prime}\right)+\operatorname{dim} H\left(P^{\prime}\right) / P^{\prime}$ and $\operatorname{dim} \dot{F} / P=\operatorname{dim} \dot{F} / H(P)+\operatorname{dim} H(P) / P$.

The number n of connected components of $X(F / P)$ equals $\operatorname{dim} H(P) / P$ by Theorem 2.5. Let X_{1}, \ldots, X_{n} be the connected components of $X(F / P)$. By Proposition 2.4, there exist $a_{i} \in H(P), i=1, \ldots, n$, such that $X_{i}=H\left(a_{i} / P\right)$. Let $Y_{i}=H\left(a_{i} / P^{\prime}\right) \subseteq X^{\prime}, i=1, \ldots, n$; then each Y_{i} is full since $a_{i} \in H_{K}\left(P^{\prime}\right)$ by Proposition 3.8. Since the restriction of Y_{i} to F is X_{i} for every i, the sets $Y_{i}, i=1, \ldots, n$, are disjoint to each other. It is clear that $\bar{Y}_{i}=Y_{i}$ from the definition of Y_{i}. So Corollary 3.5 implies that Y_{i} is not connected for any i. Hence the number of connected components of X^{\prime} is at least $2 n$. Thus, it follows from Theorem 2.5 that $\operatorname{dim} H\left(P^{\prime}\right) / P^{\prime} \geqq 2 n=2 \operatorname{dim} H(P) / P$.
Q. E. D.

References

[1] E. Becker and L. Bröcker, On the description of the reduced Witt ring, J. Algebra 52 (1978), 328-346.
[2] E. Becker and E. Köpping, Reduzierte quadratische Formen und Semiordnungen reeller Körper, Abh. Math. Sem. Univ. Hamburg, 46 (1977), 143-177.
[3] L. Berman, Pythagorean fields and the Kaplansky radical, J. Algebra 61 (1979), 497507.
[4] L. Bröcker, Zur Theorie der quadratischen Formen über formal reellen Körpern, Math. Ann. 210 (1974), 233-256.
[5] R. Elman and T. Y. Lam, Quadratic forms under algebraic extensions, Math. Ann. 219 (1976), 21-42.
[6] D. Kijima and M. Nishi, Kaplansky's radical and Hilbert Theorem 90, Hiroshima Math. J. 11 (1981), 443-456.
[7] M. Marshall, Classification of finite spaces of orderings, Can. J. Math. 31 (1979), 320330.
[8] M. Marshall, The Witt ring of space of orderings, Trans. Amer. Math. Soc. 258 (1980), 505-521.

Department of Mathematics, Faculty of Science, Hiroshima University

