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Let F be a formally real field and P a preordering of F. In his paper [7],

M. Marshall introduced an equivalence relation in the space X{FjP) of orderings

by making use of fans of index 8, and the notion of connected components of

X(F/P) by an equivalence class of the relation.

The main purpose of this paper is to show that the number of connected

components of X(F/P) coincides with the dimension of Z2-vector space H{P)jP

for a subgroup H(P), which is defined in §2. We also show, in §3, that if K =

F(yfa) is a quadratic extension of F with a an element of Kaplansky's radical,

then the number of connected components of X(K/P') equals twice that of X(F/P)9

where P' is the preordering ΣP-K2 of K. We should note that the groups

H(P) and H(P') are connected by an important relation N~1(H(P)) = F H(P'),

where N is the norm map of K to F.

For a subset A in a set B, the cardinality of A will be denoted by \A\ and the

complementary subset of A in B by B — A or Ac.

% 1. Preorderings and fans

Throughout this paper, a field F always means a formally real field. We

denote by F the multiplicative group of F. For a multiplicative subgroup P of

F, P is said to be a preordering of F if P is additively closed and F 2 ^ p. We

denote by X(F) the space of all orderings σ of F and by X{FjP) the subspace of

all orderings σ with P(σ) 2 P, where P(σ) is the positive cone of σ. For a subset

Y of X(F), we denote by Y1 the preordering Π P(σ), (TGY. Conversely for any

preordering P, there exists a subset Y^X(F) such that P=Yλ. Thus we have

P^XiF/P)1 and in particular X(F) 1 = DF(oo) = Γ F 2 . We put φL = F for con-

venience. The topological structure of X(F) is determined by Harrison sets

H(a) = {σeX(F); aeP(σ)} as its subbasis, where a ranges over F. An arbitrary

open set in X(F) is thus a union of sets of the form H(aί9..., ar) = H(aί) Π ••• Π

H(ar). For a preordering P of F, we write H(au..., aJP) = H(au...9 an)0

X{FjP) where ^ e F .

For two forms/and 0 over F, we write f~g(modP) if for any σeX(F/P),

sgnσ(f) = sgnσ(g) where sgnσ(f) and sgnσ(g) are the signatures at σ of / and #,

respectively. If/~#(modP) and dim/=dim^, we write f^g(modP). For
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a form/=<α l s . . . , an} and beF, if there exist p l 5 . . . , pneP\J {0} such that aίp1 +

—^anPn — b a n d (Pι>~ 9 Pn)*rΦ>---9 0)> t n e n w e s a v t n a t t n e form / represents b

over P. We put D(//P) = {foe F ; / represents b over P}. We say that / is P-

isotropic or /is isotropic over P if /represents 0 and P-anisotropic or antisotropic

over P otherwise.

Proofs for the following lemmas can be found in [2].

LEMMA 1.1. ([2], Satz 3, Lemma 4, Satz 7). Let P be a preordering of a field

F and φ, ψ be forms over F. Then the following statements hold.

(1) φ is P-isotropic if and only if D(φjP) = F.

(2) Ifφ^ φ(mod P), then D(φ/P) = D(φ/P).

LEMMA 1.2. ([2], Satz 15). Let P be a preordering of a field F and a, b be

elements of F. If the form {a, b, ab} represents 1 over P, then there exists

ceF such that «α, ft»s«1, c»(modP).

LEMMA 1.3. Let P be a preordering of a field F and a, b be elements of F.

If sgnσ(^a, by) = 0 for any σeX(F/P), then the form <1, a, b} is P-isotropic.

PROOF. We have <1, α, fc>£<l, - 1 , -ab} (mod P) by the assumption.

Then the assertion follows from Lemma 1.1. Q. E. D.

LEMMA 1.4. Let P be a preordering of a field F and α l 9..., an be elements

oft. ThenDKau...,an}/P) = H(au...,aJP)\

PROOF. If D(i,al9..., aJ/P)*F, then P' = D(laί9..., aJ/P) is a preordering

and it is clear that P'^H(au..., aJP)1. Conversely the fact X(FjP')^H(au

..., aJP) implies P' = X(F/P')^H(au...9 aJP)\ If D(«Λ l,.. ., αM»/P) = F, then

the form ^ α l 9 . . . , απ> is P-isotropic and H(aί,..., an/P) = φ. In this case we have

also D(«α!,..., any/P) = H(aί,..., aJP)1 since we put φL = F. Q.E.D.

If F is not a SAP (Strong Approximation Property) field, then there exist

distinct orderings {σί9 σ2, σ3, σ4} such that σ4 = σ1σ2σ3 (a fan of index 8) by [4],

Satz 3.20.

Let P be a preordering of a field F and <p = <l, α, b, —ab} be a quadratic

form over F which is P-anisotropic. By Zorn's Lemma, there exists a maximal

preordering P'^P over which φ is anisotropic. In this section, we shall show

that P' is a fan of index 8, namely X(F/P') = {σl9 σ2, σ3, σ4}, σ4 = σ1σ2σ3.

LEMMA 1.5. Let P be a preordering of a field F and a, b be elements of F

such that the form <1, α, b9 —ab} is P-isotropic. Then there exists ce F which

satisfies the following conditions (1) and (2).

(1) D(((-a9 -

(2)
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PROOF. From the assumption, we can find a non-trivial relation Pι+ap2 +
bp3-abp4 = 0 with PIGPU {0}, i = l, 2, 3, 4. If pί=0, then the form <-a, -ft,
ab}^-(a,b,-aby is P-isotropic and D « - α , -ft, αft>/P) = F. If j^φO,
then we have a relation 1= - ap2p\ι— bp3p\x-fabp^pj1 and this shows that the
form < — a, — b, aby represents 1 over P. Anyway the form < —α, — ft, αft>,
which is the pure part of the 2-fold Pfister form i^ — a, — ft>, represents 1 over P.
By Lemma 1.2, there exists ceF such that <̂  — a, — ft>^^l, — c>(modP), and
we have D « - α , -ft»/P) = ί)(«l, -c»/P) = Z)(«-c»/P).

As for the condition (2), we have Di^a^/P) n D(«fe»/P) = /ί(α/P)1 Π f^ft/P)1

= (H(alP)[}H(blP))± and therefore D(«α»/P) n D(«fc»/P) = (/ί(-α, -ft/P)')1-
It now follows from Lemma 1.4 that H( — a, — bjP) = H( — c/P). Therefore, again
by using Lemma 1.4, we have (H(-a, -fc/P)c)1 = (iί(-c/P)c)-L = D(«c»/P) from
which the condition (2) follows.

LFMMA 1.6. Let P be a preordering of a field F and <1, <z, b, —αb> be α

P-αn cform. Then the following statements hold.
(1) H(a,b/P)*φ.
(2) P = D«α»/P) Π D(«b»/P) is a preordering and the form <1, α, ft, -αft>

is P-anisotropic.

PROOF. Suppose, on the contrary, that H(a, bjP) = φ. Then for any
σeZ(F/P), sgnσ(<ζa, ft») = 0. By Lemma 1.3, the form <1, a, ft> is P-isotropic
and this contradicts the assumption that the form <1, a, b, —ab} is P-anisotropic.
So we have (1). As for the statement (2), since the form <1, a, ft, — αft> is P-
anisotropic, we have a^—P and ft ̂  — P. Then it is clear that P is a preordering.
Suppose that the form <1, a, ft, — αft> is P-isotropic. Then there is a non-trivial
relation pί + ap2 + bp3 — abp4. = 0 with ^ e P u {0}, i = l, 2, 3, 4. Here p 4 ^ 0 ; in
fact, by considering p± and p 2

 a s elements of D(<ζay/P) and p 3 as an element of
D(< f̂o>/P), the relation pί + ap2 + bp3=0 would imply that the form <1, a, by is
P-isotropic. Thus we may assume that p4 = 1 without loss of generality, and this
implies that the form <1, α, ft> represents ab over P. This is a contradiction.

Q.E.D.

LEMMA 1.7. Let <1, <z, ft, —aby be a form over F and P be a maximal

preordering such that <1, a, ft, —aby is P-anisotropic. Then we have

-ft»/P) Π D(«-α, ft»/P) Π £ ( « - α , -ft»/P) = P.

PROOF. Since — αft<l, α, ft, — αft>^<l, —a, —ft, — αft> is P-anisotropic,
Lemma 1.6 says that the form <1, — a, —ft, —αfo> is anisotropic over P = D(<ζ— α>/
P) n D«-ft»/P). Thus <1, α, ft, -αft> is P-anisotropic and we have P = P by
the maximality of P. On the other hand, we have H(a, - ft/P)1 n i/(-α, - 6/P)1

= {H{a, -ft/P)Uiί(-α, - ft/P))1 = # ( - ft/P)1 and this implies D(«a, -ft»/P)Π
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- α , -fc»/P)=.D(«-6»/P) by Lemma 1.4. Similarly Z>(«-α, f>>/P) n

ΰ ( « - α , -b»/P)=ί)(«-α»/P), and so we have D(«α, -b»/P) n Z>(«-α, fc»/P)

Π D(« - a, - b»/P) = D(« - b»/P) Π 2>(« - ay IP) = P. Q. E. D.

THEOREM 1.8. Let <1, α, fo, — aby be a form over F and P be a maximal

preordering such that <1, α, b, —aby is P-anίsotropic. Then P is a fan of index

8.

PROOF. By [1], Corollary 3.4, P is a preordering of finite index. In general,

let P be a preordering of finite index of a field F and Y be a subset of X(F/P) such

that y 1 = P. Then we can find a basis of X(FjP) which is a subset of Y. Lemma

1.7 shows that (H(a, -b/P)[) H(-a, b/P)l) H(-a, -b/P))1 = P; thus there

exists a basis B = {σ2i, σ3j, σAk, iel, jeJ,keK] of X(F/P) where σ 2 ie

#(α, — b/P), σ3j- eH( — a9 bjP) and σ4 k e i ί( — α, — fo/P). There exists an ordering

σx eH(a, b/P) by Lemma 1.6 (1). Then we can write σx by using the basis B as

σ± = Πσ2i Πσ3J - Πσ4k (ί eΓJeJ'9keK') (A)

where / ' c y ' c j and X' c X. We shall show that each subset /', J' or X' is not

empty. Suppose Γ = φ. Then by calculating the signature of — a at the both

sides of (A), —a is negative at σt and positive at Πσ2i'Πσ3j-Πσ4rk = Πσ3j'

Πσ4k. This is a contradiction and we have Γ^φ. By taking elements — b for

J' and — ab for K', we can similarly show that J' and X' are not empty. We now

put B = {σ2i, σ3p σ4fe, ieΓ, jeJ\ keK'} and P = 5-L. Suppose that the form

<1, a, b, —aby is P-isotropic. Then by Lemma 1.5, there exists ceF which

satisfies the following conditions (1) and (2):

(l) D ( « - a, - by IP) = £«< - cyy/P)

(2) D(«α»/P) n

Then it follows from (1) and (2) that c is negative at σ4fe, keK' and positive at

o"i, σ2ί, σ3j (ieΓ, jeJ'). So the equation (̂ 4) says that |X'| is even. Therefore

— ab is negative at σί and positive at Πσ2i Πσ3j ΠσAk, ieΓ, jeJ', keK'.

This contradiction shows that the form <1, a, b, —aby is P-anisotropic. By the

maximality of P, we have P = P. Since B is a basis of X(FjP), the fact P = P

means / = /', J = Jr and K = K'. This shows that σγ is a unique element of

H{a, bjP), namely H(a, b/P) = {σί}. Similarly, by considering the forms

<1, a, -b, aby^a(l, a, b, -aby, <1, -a, b, aby^b(l, a, b, -aby and <1,

— a, —b, —aby=—ab(l, a, b, —aby instead of <1, a, b, —aby, we have

\H(a, -b/P)\ = l, \H(-a, b/P)\ = l and \H(-a, -b/P)\ = l. Hence |Z(F/P)|=4

and the equation (̂ 4) shows that P is a fan of index 8. Q. E. D.
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§2. Connected components and H(P)

Let P be a preordering over F. We shall say that two orderings σ, τe

are connected in X(F/P) if σ = τ or there exists a fan of index 8 which contains σ

and τ, and we denote the relation by σ~τ. Marshall ([7], Theorem 4.7) showed

that the relation ~ is an equivalence relation in X(F/P). An equivalence class

of this relation is called a connected component of X(F/P), and a union of some

connected components is called full (cf. [3]).

DEFINITION 2.1. Let P be a preordering of a field F. For x e F, we denote

the multiplicative subgroup D(«x»/P) D « - x » / P ) by /(x/P), and the set

{ x e F ; J(x/P) = F} by H(P).

LEMMA 2.2. Let P be a preordering of a field F. Then, for elements x and

y of F, the following conditions are equivalent.

(1) xeJ(y/P).

(2) <1, y, —x, xy} is P-isotropic.

(3) <1, x, — y, xy} is P-ίsotropic.

(4) yeJ(x/P).

PROOF. (1)^(2). Since xeJ(ylP) = D«y>IP) lK<-y>m * = «/» for

some αe£>(O»/P) and β e £(«->;»/P). Thus we have oιβ2-xβ = O and it fol-

lows from the facts ocβ2 eD(<ζyy/P) and - x β e D « - x , xj>/P) that <1, y,

— x, xy> is P-isotropic.

(2)=>(1). From the assumption, there exists a non-trivial relation pt -\-yp2 —

xp3 + X J Φ 4 = 0 with Pi E P U {0}, i = 1,2, 3,4. If p x + yp 2 = xQ?3 - yp4) = 0, then at

least one of the forms <Ĉ > and <̂  — j > is P-isotropic and we have J(yjP) =

D(€yyiP)'D(i-yyiP) = F. If p 1 + j φ 2 = x(p3-W>4)*0, then x(p3-ypd2 =

(Pi +yPi)(Pz-yPA)e^(«y»/P) ^(«-y»/P). Therefore in any case we have

xeJ(ylP).

The equivalence of the conditions (2) and (3) is clear from x^<l, y, — x, xy} =

<1, x, ->>, xy>. Q.E.D.

REMARK 2.3. (1). *(F/P) satisfies SAP if and only if <1, x, y, -xy} is

P-isotropic for any x, yet. By Lemma 2.2, these are equivalent to the condi-

tion that J(y/P) = F for every y e F, namely H(P) = F.

(2). Since #(P) = {x e F; J(x/P) 9 y for any )> e F}, it follows from Lemma

2.2 that H(P) = {xe F; x e J(j;/P) for every y e F} = n /(y/P), y e F . Thus H(P)

is a multiplicative subgroup of F which contains P, and H(P)/P has a Z2-vector

space structure and we denote its dimension by dim H(P)IP.

PROPOSITION 2.4. Let P be a preordering of F which is of finite index.
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Then for a subset Y<ΞΞ:X(F/P), the following conditions are equivalent.

(1) Y is full

(2) Y= H(a/P) for some a e H(P).

PROOF. First we assume that Y is full. Then for any fan W of index 8,

\W Π Y\ = 0 or 4. So by [8], Theorem 7.2, we have Y=H(a/P) for some aeF.

Suppose a<£H(P). Then /(α/P) = D(«Λ»/P) /)(«-β»/P)^Fand so wecantake

an element be F—J(a/P). By Lemma 2.2, <1, a, b, —ab} is P-anisotropic and

this implies that there exists a preordering P^P such that P is a fan of index 8

and <1, a, b, —ab} is P-anisotropic by Theorem 1.8. Hence we have \H(a/P) D

X(F/P)\ = IY n X{FjP)\ =2, which contradicts the assumption that Y is full.

Conversely suppose that Yis not full. Then there exists a fan W={al9 σ2,

τί9 τ2} of index 8 such that Yn W*φ and Yc Π W*φ. By [8], Theorem 7.2

\γ π W\=2, so we may assume σl9 σ2 e Yand τ l 5 τ 2 e Yc. We let A1 = {be F;

sgn<T1(b) sgnσ2(fe) = l} and A2 = {beF; sgnTl(b) sgnτ2(fo) = l}. It is clear that

Λt and A2 are multiplicative subgroups of F. Moreover, since σί9 σ2e Y, we have

Y1 = D(«α»/P)c^[1 and similarly (Yc)λ = D ( « - α » / P ) c ^ 2 . Now Wr={σ1, σ2,

τ l 5 τ2} is a fan of index 8 and σ1σ2 = τ1τ2, and so ^4t =A2. It follows from the as-

sumption aeH(P), namely D«α>/P) D«-ί?>/P) = F, that A 1 =^[ 2 = F, which

leads to a contradiction σt =σ 2 , τ t = τ 2 . Q. E. D.

THEOREM 2.5. Let P be a preordering of F which is of finite index. Then

the number of connected components of X(F/P) equals dim H(P)/P.

PROOF. Let S be the set of full sets of X(F/P) and φ: H(P)/P->S be the map

defined by φ(a) = H{ajP) where a means the canonical image of a e H(P). If

abeP, then H(alP) = H(b/P). From this fact and Proposition 2.4, we can see

that φ is well-defined and surjective. We have to show that φ is injective. Sup-

pose φ(a) = φ(B), namely H{ajP) — H{bjP). Then ab is positive at every

σeX(F/P), and so abeX(F/P)L = P. This means a — b and φ is injective. Let

n be the number of connected components and m be dim H(P)/P. Since

|//(P)/P|=2m, |S |=2 Π and φ is bijective, we have 2m = 2w and m = n. Q.E.D.

COROLLARY 2.6. Let P be a preordering of F of index 2". Then the number

of connected components of X(F/P) is not n — 1.

PROOF. It suffices to show that dim H{P)lP^n — 1. To do this, we have to

see that if H(P) ̂  F, then dim H(P)[Pg n - 2 by Theorem 2.5. Let b e F- H(P).

Since beJ(bjP)-H{P), J(b/P) contains H(P) properly. Moreover the fact

b&H(P) implies J(b/P)*F. Therefore we see that dim F/H(P)^2 and dim

2. Q.E.D.

COROLLARY 2.7. Let P be a preordering ofF of finite index and Y1?..., Yn
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be connected components of X(F/P). We write P^Y^ ΐ = l,..., n. Then the

canonical map f: F/P-^ΠF/Pi (i = l,..., ή) is isomorphic and the map g: H{P)j

i (ί = l,..., ή) is isomorphic, where g is the restriction of f to H(P)/P.

PROOF. By Proposition 2.4, for any ΐ = l,..., rc, there exists aieH(P) such

that Y^HiaJP). Then we have Pf = /)(«>;»/P) and D(«-α i»/P) = (yf) 1 =

0Pj,j*i. Since D(< f l | >/P) .D(<-£i ί >/P)=ΛP Γ (nP i ) = / , y > ί . Then we

can readily see that the canonical injection/is surjective. As for g, it is clear that

H(P)^H(Pi) for any ί = l,..., n, and therefore g is well-defined. Clearly g is

injective and it follows from Theorem 2.5 that dim H(P)/P — n and dim H(P;)/

Pt = l for any ί = l,..., n. Hence dim iί(P)/P = dim ϋ ^ P ^ / P , and this implies

that # is an isomorphism. Q. E. D.

§ 3. Quadratic extensions

Let P be a preordering of F and K = F(yJa) be a quadratic extension of F

with aeF — ( — Pu F 2). Since α φ — P, H(a/P) is not an empty set and every

ordering σ e H(a/P) can be extended to an ordering of K. Let τ be an extension

of σ e H(a/P) such that y/a is positive at τ. Then the positive cone P(τ) of τ is the

set of x-f ysja~e K, where (x, j;) satisfies one of the following conditions (1), (2),

(3):
(1) x9yeP(σ).

(2) x, -yeP(σ) and x2 - ay2 e P(σ).

(3) -x9yeP(σ) and - (x2 - ay2) e P(σ).

This is easily shown by using x2 — ay2 = (x — yyja)(x + y^/a). This observation

implies the uniqueness of τ. Thus for any σ e H(a/P), there exist exactly two ex-

tensions σu σ2 E X(K) of σ such that ^/α is positive at σί and -yja is negative at

σ2. Put P' = ΣPK2 and Γ = {τeI(X); the restriction of τ to F belongs to

H(a/P)}. It is clear that P' is a preordering of K which is contained in P(τ) for

any τeX'.

LEMMA 3.1. The following statements hold.

(1) P' = (X'Y (2) F Π F = DM

PROOF. (1). Since P' c P(τ) for any τ e Z', we have Pr c (Z') 1 . Conversely,

)^Pf by the definition of P', which implies JφC/POίΞX'. Thus

(2). In (1), we have shown that DF(^ay/P) ^ Pr. For the reverse inclusion,

we take be F — DF(^ay/P); then there exists σeH(ajP) such that b is negative

at σ. Let τ be an extension of σ in K. The fact that b is negative at τ implies

= P/. This shows F n FcD F (« α »/p) . Q. E. D.
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PROPOSITION 3.2. Let N: K-+F be the norm map. Then iV-1(P) = F P /.

PROOF. Let S be the set of all Pfister forms <ζpί9..., /?„> where pteP. By

[5], Norm Principle2.13, N-1(DF(ρ)) = F-Dκ(ρκ) for any peS, where pκ = ρ®K.

Hence N'\ U DF(p)) = U (N~1(DF(p)))= U (F-Dκ(pκ)), peS. Then the facts P =

U £>FO) and P' = U Dκ{pκ)) imply the assertion. Q. E. D.

COROLLARY 3.3. Let ε: F-+K be the canonical injection. Then the

sequence

1 — - FIDMayiP) - ί - K/P' JL P/P

is exact, where έ and N are induced maps of ε and N respectively.

PROOF. Lemma 3.1 (2) shows that έ is well-defined and injective. Pro-

position 3.2 shows that N is well-defined and Ker N = Im έ. Q. E. D.

In [6], we called a quadratic extension K = F(yJa) a radical extension if

a e R(F)-F2, where R(F) is Kaplansky's radical of F.

LEMMA 3.4. Let K = F(^Ja) be a radical extension of F. Let σ and τ be

arbitrary orderings of F and σh τt (i = l, 2) be the extensions in K of σ, τ re-

spectively. Then {σu σ2, τί9 τ2} is not a fan of index 8.

PROOF. Put P = P(σ)nP(τ). The norm map N.K^F is surjective since

a e R(F) and by Corollary 3.3, we have the exact sequence

1 > F/P -ί-> KjP' JL F/P > 1

where P / = {σ1, σ2, τ l 5 τ2}. Since dimF/P = 2, we have dimX/P'=4, which

implies that {σ1? σ2, τl9 τ2} is linearly independent. Q.E.D.

Let P be a preordering of a field F, K = F(^/a) be a quadratic extension of F

with ae F-(-Pϋ F2). Let P\ X' be the preordering of K and the set of

orderings defined in Lemma 3.1. We denote by bar the Galois map of K over F

and for a subset A of K, we put A = {x x e A}. For a ordering τ of X, we denote

by τ the ordering of X with the positive cone P(τ)~. For a subset β ς ^ we also

write B = {τ; τeB}. It is clear that P' = P', X' = X' and σί=σ2 where CΓJ and

σ2 are the extensions of σ e H(a/P).

COROLLARY 3.5. Let P be a preordering of F and K = F(^/a) be a radical

extension of F. Then for any connected component Y of X' = X(K/P')9 Y Π Y=φ.

PROOF. Suppose Y n F ^ φ. Then there exists σ e X(F/P) such that σt ~σ2

where σt and σ2 are the extensions of σ. Let {σl9 σ2, τί9 τ2} be a fan of index 8

and τi, τ 2 be the restriction of τu τ 2 to F respectively. Since σ 1 σ 2 τ 1 τ 2 = l, we
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have τ\ = τ'2, which is a contradiction by Lemma 3.4. Q. E. D.

LEMMA 3.6. Let K=F(^Ja) be a radical extension of F. Then for any
x e F, N-\JF(x/P)) = F. Jκ(x/P').

PROOF. If x e P or x e - P, then JF(x/P) = F, Jκ(
xlp') = £ and the assertion

follows immediately in this case. We now proceed to the case when
and - x φ P . Then DF(«x»/P) is a preordering of F and N~ί(DF(ixyiP) =
«<x»/P') by Proposition 3.2. Similarly N-1(DF(<ζ-xyiP) = F Dκ(<ζ
Therefore we see that N-ί(JF^/P))^f'Dκ(ixyiP) Dκ(i-xyiP) = F'
We note that JV(F £*(«*»/P')) = DF(€xy/P)9 N(t Dκ« - JC>/P')) = DF(« - x»/P)
since K = F(yJ^) is a radical extension of F.

To show the reverse inclusion, we take αβe JF{xjP), where αeD F

and jSeDF(«-x»/P). There exist fi9 f2e fi, bx eDκ(«x»/P') and
«<-Λ;»/P') such that N{f1b1) = a and N(f2b2) = β. Then for any zeN~\(xβ\
N(fxbj2b2z) = (aβ)2 e F2 and this implies fιbj2b2z e F- K2 by Hubert Theorem
90. Hence z ef^b^F X 2 ^ F D X « Λ > / P ' ) D x(«-x>/P') and we see that
N-\JF(xlP)) £ /• Jx(x/P'). Q. E. D.

LEMMA 3.7. Lei K = F(^fa) be a radical extension of F. Then for any
beF,Jκ(blP')nF=JF(b/P).

PROOF. It is clear that Jκ(blP')(] FΏ.JF{bjP). Conversely, we take an
element xsJκ{bjP'){]F. By Lemma 2.2, the form <1, b, — x, bx} over K is
P'-isotropic. So by the definition of P\ a form <p l 5 . . . , pπ>®<l, b, —x, bx}
over l£ is isotropic for some pί9..., p M eP. If the form <Pi,..., JPM>®<1, b, —x,
bx> over F is anisotropic, then there is a subform which is similar to the universal
binary form <1, — α>, a contradiction. Therefore the form <Pi,...,pM>®
<1, b, —x, fcx> over F is isotropic. So the form <1, b, — x, bx} over F is P-
isotropic and xeJF(b/P) by Lemma 2.2. Thus we have Jκ(b/P') Π F^JF{bjP).

Q.E.D.

PROPOSITION 3.8. Lei X = F(y]~a) be a radical extention ofF. Then HF(P) =
HK{F) n F.

PROOF. For any beHF(P), we have JF(b/P) = F and this implies X =
N-1(F) = N-1(JF(b/P)) = F Jκ(b/P') by Lemma 3.6. Since F^Jκ(b/Pf)9 we
have X = J^Cb/P') and so b e HK(P'). Hence HF(P) c HX(P;) n F.

Conversely we take an element beHκ(Pr) n F. Then Jκ(fe/P/) = K ^ F and
we have fc e #(P) since JF(bjP) = F by Lemma 3.7. Q. E. D.

PROPOSITION 3.9. Lei K = F(y/a) be a radical extension of F. Then
N(HK(P'))^HF(P).
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PROOF. It is clear that if Jκ(x/P') = K, then Jκ(x/P') = Kby the fact P' = P'.
So we have HK(P')~ = HK{P'). It follows from Proposition 3.8 that, for α e HK(P'\
N(a) e HK{P') (]F = HF(P). Thus we have N(HK(P')) c HF(P). Q. E. D.

THEOREM 3.10. Let P be a preordering of F of finite index, and K = F(yJa)
be a radical extension of F. Then the sequence

1 —> F/HF(P) -L* K/HK(P) X F/HF(P) —+ 1

is exact. In particular N~1(HF(P)) = F Hκ(Pf) and the number of connected
components of X(KjP') is 2n, where n is the number of connected components of
X(F/P).

PROOF. The map έ is well-defined and injective by Proposition 3.8 and N
is well-defined by Proposition 3.9. Since K = F(yJa) is a radical extension of F,
N is surjective and it is clear that Imέ^Ker N. We need to show that dim X/
H(P') = 2 dim F/H(P). Since dim iC///(P') ̂  2 dim F/H(P), we have only to show
that dim K/H(P')^ 2 dim F/H(P). By Corollary 3.3, the sequence

1 > F/P -ί-> KjPf JU F/P > 1

is exact, and so dim K\P' = 2 dim F/P. Thus it suffices to show that dim H{P')j
P ' ^ 2 dim H(P)/P by the facts dim K/P' = dim K/H(Pf) + dim H{P')jPr and
dim FjP = dim F/H(P) 4- dim H(P)/P.

The number n of connected components of X{FjP) equals dim H(P)/P by
Theorem 2.5. Let Xl9...,Xn be the connected components of X{FjP). By
Proposition 2.4, there exist α^e/fίP), i = l,..., n, such that X^HiaJP). Let
Y^HiaJP^^X', ΐ = l,..., n; then each 7f is full since a^Hj^P') by Proposition
3.8. Since the restriction of 7f to F is Xt for every z, the sets Yh z = l,..., n, are
disjoint to each other. It is clear that Yi=Yt from the definition of Yt. So
Corollary 3.5 implies that Yt is not connected for any i. Hence the number of
connected components of X' is at least 2n. Thus, it follows from Theorem 2.5
that dim H(P')/Pf ̂  2n = 2 dim H(P)/P. Q. E. D.
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