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1. Introduction

Let X be a Banach space over the real field R. Let Ω be a subset of [α, b) x
X(a<b^co) and A a continuous function from Ω into X. In this paper we study
the initial-value problem for a nonautonomous differential equation in X
(1.1) u' = A(t, II), ιι(τ) = z,
where (τ, z) is given in Ω.

This problem has been studied by many authors and the present paper is
related to the works of Crandall [1], Deimling [2], Kato [3], [4], Kenmochi
and Takahashi [5], Lakshmikantham, Mitchell and Mitchell [7], Lovelady and
Martin [8], Martin [9], [10], and Pavel and Vrabie [11]. In the works [1], [7]
and [9] the problem is treated in cace of cylindrical domain Ω (i.e., Ω is of the
form [α, b)xD); and in [5], [4], Kenmochi and Takahashi, and then Kato,
generalized the results as obtained in the works [7] and [9] to allow the Ω to be
genuinely noncylindrical.

Our purpose of this paper is to establish an existence and uniqueness theorem
for solutions of (1.1) under three general conditions (called herein (Ω2), (Ω3) and
(Ω4)) in addition to the condition (Ωl) that A is continuous. Although precise
statements of these conditions are given in Section 2, we here make some mention
of them in order to illustrate features of this paper. Condition (Ω2) imposes on
the domain Ω a closedness condition in a certain sense. For instance, if Ω =
[α, b)xD and D is a closed subset of X then condition (Ω2) is satisfied. Con-
dition (Ω3) is the so-called subtangential condition (cf. [5]) which is utilized to
construct approximate solutions for (1.1). Condition (Ω4) is a relaxation of
dissipativity conditions as employed in the papers cited above and guarantees the
unicity of solutions to (1.1). Accordingly, condition (Ω4) generalizes most of
conditions which are usually treated in the theory of ordinary differential equations.
Under these conditions, we first investigate the local existence of solutions to (1.1).
We then give a global existence theorem via the local existence result as well as the
continuous dependence of solutions on initial data. Our result on the global
existence is obtained under general conditions as mentioned above. Hence it
extends most of the known results concerning the global existence of solutions of
nonautonomous equations of the form (1.1).
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In Section 2 some basic notation and terminologies are introduced and the
uniqueness of solutions to (1.1) is discussed. Section 3 is devoted to construct
approximate solutions for (1.1). The approximate solutions are constructed in
a way similar to, but more refined than, that of [5]. In Section 4 it is verified
that the approximate solutions converge to solutions to (1.1). This section
contains a local existence theorem for solutions of (1.1). Finally, in Section 5,
the global existence of solutions is discussed. This section contains the main
result of this paper (Theorem 2).

2. The initial-value problem

Let X be a Banach space over R = (-co, +oo) with norm || ||. Given a
subset β o f i ? x l w e denote by Q(t) the section of Q at t e R, i.e., Q(t) = {x eX;
(t, x)eQ}. In what follows, let [α, b) be a fixed subinterval of R and Ω a fixed
subset of [a, b) xX such that Ω(t)Φφ for all te [a, b). By A we mean a given
function from Ω into X.

Given (τ, z) e Ω, we consider the initial-value problem

f ιι'(0 = A(t, tι(0), τ ^ t < b,
(IVP; τ, z)

1 u(τ) = z.

Let J be a subinterval of [α, b) written in the from [τ, c] or [τ, c) and w a continu-
ous function from J into X. We say that u is a solution to (IVP; τ, z) if u(τ) =
z, (ί, M(ί))eΩ for all teJ, u is diίferentiable on/, and u satisfies M/(ί) = ^ ( ί

J

 w(0)
for all ίe J. (If t is an endpoint of J, w'(ί) is understood to be the associated
one-sided derivative of u at t.)

For each x j e l w e define

(2.1) lx, yl_ =\imhtoh

Note that \\x\\^\\x-hy\\+h[x9 y]- for all h>0. For each (t,x)eRxX and
r>0 we define

Sr(t, x) = {(5, j ) e Λ x X; \s-t\ < r, \\y-x\\ < r}.

Moreover, if xeX and D is a subset of X we define the distance between {x} and
Dby

d(x,D) = mf{\\x-y\\;yeD}.

Let # be a function from [α, b)x R into 2? satisfying the following conditions:
(gl) g(t, w) is continuous in w for each fixed t and Lebesgue measurable in

t for each fixed w; and for each r>0, there is a locally integrable function Mr(t)
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defined on [α, b) such that \g(t, w)\^Mr(t) for te[a, b) and for w with |w|:gr.
(g2) g(t, 0) = 0; and w(ί) = 0 is the maximal solution to the initial value

problem for the ordinary differential equation:

ί w'(ί) = g(t, w(0), α ύ t < b,

I w(α) = 0.

Given (τ, δ) e [α, fc) x R, we denote by m(ί; τ, <5) the maximal solution of the
initial-value problem

w ' ( 0 = g(t, <t)) τ£t,

w(τ) = (5.

REMARK 1. Condition (gl) is often called the Caratheodory's condition.
Condition (g2) states that for all τ e [α, b), a maximal solution m(ί τ, 0) exists on
[τ, fe)and m(t; τ, 0) = 0.

In the following, we impose four conditions below on the function A: Ω^X.
(Ωl) A is continuous from Ω into X.
(Ω2) If (tn, xn) eΩ, ίn t te [α, b) in R and xn->x in I as n->oo, then (ί, x) e Ω.
(Ω3) liminfΛi0 Λ"1d(x + Λi4(ί, x), Ω(ί + /i)) = 0 for all (ί, x)eΩ,
(04) [ x - Λ i4(ί, x)-A(t, yy]-£g(t, \\x-y\\) for all (ί, x), (ί, j )eΩ.

We first cite the following well-known results (for the proofs, see e.g. Lakshmi-
kantham and Leela [6]).

LEMMA 1. Let τe[α, b) and let [τ, c] be a compact subinterval of [τ, b).
Then there is a number δo>0 such that for each <5e(0, δ0), a maximal solution
m(t; τ, <5) exists on [τ, c] and

limd i 0 m(t; τ, δ) = 0 uniformly on [τ, c].

LEMMA 2. Lei [τ, c] fee α subinterval of [α, f>) ίmd α an absolutely con-
tinuous function from [τ, c] into R. Suppose that α satisfies

/or τ ^ ί 1 < ί 2 ^ c . If m(t; τ, 5) exzsίs on [τ, c], ί/zen α(τ)g<5 implies

α(ί) ^ m(ί; τ, δ) for all te [τ, c] .

Using the above lemmas we now show the uniqueness of solutions.

PROPOSITION 1. Suppose that condition (Ω4) is satisfied. Let [τ, c) be a
subinterval of [a, b) and (τ, z f)eΩ, i = l, 2. Let uf be solutions to (IVP; τ, z?)
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on [τ, c), respectively. If m(t; τ, δ) is defied on [τ, c), then \\zι—z2\\ ^<5 implies

ll«i(0-«2(0ll ^ m{t; τ, δ) for all ίe[τ,c).

In particular, (IVP; τ, z) has at most one solution on [τ, c) for all (τ, z)eΩ.

PROOF. Let oc(t)=\\uί(t) — u2(t)\\ for each te[τ,c). Then α is absolutely

continuous on each compact subinterval of [τ, c) and left-differentiable on (τ, c).

It follows from (2.1) and (Ω4) that

(d/dt)-a(t) = \u,(t)-u2(t\ Mί(0-"2

= [«i(0-"2(0, Λ(*. W l(0)-^(ί, u2(0)]-

^ ^(ί, α(0)

for all ί e (τ, c). Hence we have

for τ^t1<t2<c (cf. [10]). The first assertion then follows from Lemma 2.

The second assertion follows from the first assertion and the fact that m(t; τ, 0) = 0

on [τ, c). The proof is complete.

3. Approximate solutions

This section is devoted to construct an approximating family for the solution

of the initial-value problem (IVP; τ, z).

PROPOSITION 2. Suppose that conditions (Ω1)-(Ω3) are satisfied. Let

(τ, z)eΩ. Let R>0 and M>0 be such that τ + R<b and \\A(t9 x)\\^M for

(ί, x)eΩnSR(τ, z). Then for each Γe(0, £/(M + l)] and for each εe(0, 1),

there exists an X-valued function u on the interval [τ, τ + T] and a partition

°fίτ> τ + T] with the properties listed below:

( i ) t i + ί - t i ^ ε for O ^ ί ^ J V - 1 ,

(ii) u(τ) = z and ||M(0-W(S)|| S |ί-s|(M + ε) for t, se[τ, τ + T],

(iii) (ti9 u(td)eΩ Π SR(τ9 z) for 0 ^ i S N,

(iv) u is linear on [ίί? ί/+i] and

for se[ί£, ί l + 1 ] , O g i ^ N - l ,

(v) if (si, 3Ί), (S2, J 2 )e ί2 Π Srι(th u^)), wΛere r, = (ti+ι-tt)(M + ί),
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then \\A(sl9 y±) - A(s2, y2)\\ ^ ε for . 0 £ i £ N - I.

In this case, u has the following additional property:

(vi) for each δ > 0 such that δ < ti+1 - tt for 0 ^ i g N - 1,

exists an X-valued, strongly measurable function v on [τ, τ + T]

such that

(a) i fa) = u(ti) for O^i^ N and (s, φ ) ) e Ω Π SR(τ, z),

(b) | | ι / ( s ) - φ ) | | g 3 ε 2 /or s e [

(c) \ \\v(s) — v(s — δ) — δA(s, v(s))\\ds ̂  14Tδε.
Jτ+δ

The family of functions u obtained through the above proposition provides

the aimed family approximating the solution of (IVP; τ, z). In the following we

call the function u given for a positive number ε an ε-approximate solution for

(IVP; τ, z).

In what follows, we assume that conditions (Ω1)-(Ω3) are satisfied. We

begin by preparing a few lemmas. The first lemma is due to Kenmochi and

Takahashi [5, Lemma 1].

LEMMA 3. Let (t, x)eΩ and ε>0. Let r>0 be such that \\A(s, y)-A(t, x)||

^εfor (s, y) e Ω Π Sr(t, x). Also let M > 0 be such that \\A(s, y)\\ ^ M for (s, y) e

ΩΓ\Sr(t,x) and set ho = min {r, rjM, b — t}. Then for each he(0,ho) there

exists an element yeΩ(t + h) such that (t + h, y)eΩ Π Sr(t, x) and \\y — x —

hA(t,x)\\^hε.

REMARK 2. The above lemma seems to be a refinement of Lemma 1 of [5]

since the latter lemma only asserts that d(x + hA(t, x), Ω(t + h)) ̂  hε for h e (0, h0).

But the proof involves the verification of the last half of the above lemms.

LEMMA 4. Let (t,x)eΩ and εe(0, 1). Let r>0 satisfy t + r<b and

\\Λ(su yί)-A(s2, y2)\\^ε for (su y±), (s2, y2)eΩ n Sr(t, x). Also, let M > 0 be

such that \\A(s, y)\\ ^ M for (s, y)<ΞΩΓ\ Sr(t, x). Let h e [0, r/(M+1)), y e

Ω(t + h), and | | .y-x| |^h(M + l). Then for each h e(h, r/(M+l)] there exists

an element $eΩ(t + ίϊ) such that (t + h, f) e Ω Π Sr(t, x) and

\\$-y-(ίι-h)A(t + h, y)\\ ^ (ίι-h)ε.

PROOF. Let fi e (h, r/(M +1)]. Set Ϋ = (h - h) (M +1). Then S?(t + h,y)c

Sr(t,x). Hence \\A(s', y')-A(t + h, y)\\^ε and \\A(s\ y')\\^M for all (s', y')e

Ω[)St(t + h, y). Hence, by Lemma 3, there exists an element peΩ(t + ίi) such

that 0 + ϋ, p)eΩf)St(t + h, y)aΩ Π Sr(t, x) and \\y-y-(fι-h)A(t + h, y)\\ g
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(h - h)ε. This completes the proof.

LEMMA 5. Let (t, x)eΩ9 εe(0, 1) and let r be a positive number such that

t + r<b and \\A(sl9 yt)-A(s29 y2)\\£ε for all (s l 5 yj, (s2, y2)eΩ Π Sr(t, x).

Also, let M>0 be such that \\A(s, y)\\ <?M for all (s, y)eΩf] Sr(t, x). Let i and

δ be such that <5>0 and ί + (5<ί^ί + r/(M + l). Then there exists an X-valued,

strongly measurable function v on [ί, i) with the following properties:

(i)

(ii) (s,φ))6flnSXί,x) for se[ί,i),

(iii) \\v(s)-x-(s-t)A(t,x)\\S2(s-t)ε for s e [ f f ί ) ,

(iv) || v(s) - v(s -δ)- δA(s, v(s)) \\ ^7δε for se[t + δ, t).

PROOF. For each nonnegative integer n, let N(ή) be an integer satisfying

t + N(n)δ/2n<ί^t + (N(n) +1)5/2". Set t\ = t + fc<5/2" for n^0, 0^k^iV(n) and

/π = {ίj?;O^fc^iV(n)} for n^O. Note that /Mc=/ n + 1 and ^ + I e / π for fc even.

Now, for each n^O, we define a step function yπ on [ί, ί) with values in /„ by

f t\ for selq,tn

k + ί ) 9 0 ̂  fc ̂  JV(n) - 1,
y»W =

I ίR(Λ) for s6[ίR ( n ), ?).

It is easy to see that the sequence {yn}π^0 satisfies the following:

(3.1) yn(s) = s for selm n^O;

(3.2) γjyjis)) = γn(ym(s)) = ym(s) for 0 ̂  m ̂  n, se[ί , ί);
(3.3) γn(s -δ) = yn(s) -δ for n ̂  0, 5 e [t + 5, ί) and

(3.4) the sequence {7Π(5)}Π^O is monotone increasing for each se[ί, ί) and

γn(s) ΐ sas n->oo.

We then aim to construct a sequence {vπ}π^0 °f ^-valued step functions on

[ί, ϊ) which satisfies the following:

(3.5) vn(t) = x and (γn(s), vn(s))efln Sr(ί, x) for n ̂  0, se [ί, ί);

(3.6) bo(5)-t;o(5-5)-^(yo(5-(5),ι;o(5-5))| | ^ δε for 5e[ί + 5,ί);

(3.7) IkW-xll^ίy^-OίM + l) for n^0,se[U);

(3.8) ||i;π(5)-x-(yπ(5)-ίM(ί, x)|| ̂  2(7,(5)-ί)β for n ̂  0, 56[*, ί);

(3.9) l l ^ s ) - ^ - ^ ) - ^ ^ ) - ^ - ^ ) ) ^ , , . ^ ) , vH^s))\\

^ (yn(5)~y«-i(s))β for n ̂  1, 5 6 [ί, ί) and

(3.10)
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ύ 2(yn(s)-γ0(s))e for n ^ 1, s e [ί, ί).

To this end, we begin by choosing a sequence {vo(φ}o^k^NiO) of elements in X

such that

(3.11) (ί°, t;0(ί2))eΩ n Sr(ί, x) for O^fe

(3.12) llt o ί Φ - ^ ί t f - O - ^ O J U , i>0(tf-i))ll £ & for 1 ^ fc

(3.13) | |t,o(ίg)-x| |^(rg-0(M+l) for O^/c<iJV(O),

(3.14) ||ι;0(ί2)-x-(ίg-ίM(ί,x)|| g2(ίg-ί)ε for l ^ f c £

This is accomplished induction on k. Set t;0(ίg) = x. Let j be an integer such

that O^jgiV(O) —1 and assume that a sequence {^o(i2)}o^k ĵ has been chosen so

that (3.11)-(3.14) may hold for O^/c^j. Applying Lemma 3 with h = ή-t and

f one can choose an element t;0(ί5 + 1 )eX such that (ίj + u

9 υo(ή))\\ g 5e.

We have | |t;0(ί5+ 1)-x| | ^ ||t;o(ί?+i) -vo(ή)-δA(t% vo(ή))\\

+ \\*o(ή)-x\\ + δ\\A(ή9υ0(ή))\\

+ δM

and | | t ; 0 ( ί Q + 1 ) - x - ( ί ? + 1 M

i) " vo(ή) - δA(t%

φ - A(t, x)\\

ε + δε

= 2(ή+1-t)ε.

This means that the desired sequence {vo(tk)}o^k^NiO) can be constructed such

that (3.11M3.14) hold. Set υo(s) = vo(yo(s)) for se[f, ί). Then it follows from

(3.11H3.14) that υ0 satisfies (3.5) through (3.8) (and (3.9), (3.10) in a trivial sense)

for w = 0 and s e [ί, ?). This completes the first stage of our construction. Next

we define a sequence {u j^ i in the following way. Let j be a positive integer and

assume that a sequence {vn}Oύn^j has been defined in such a way that (3.5)—(3.10)

hold for O ^ n ^ j and s e [ί, ί). To construct the (; + l)th function vj+ί on [ί, ί),

we first specify the values of vj+ί on the set of mesh points Ij + 1. Let selj+ί.

If se//, we set vJ+i(s) = Vj(s). If selj+ί-lp then by use of Lemma 3 with
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h = γj(s) — t9 y = Vj(s) and ίι=s — t, one finds an element, say vj+ί(s)y such that
(s,t; i+1(s))€βnSP(ί,x)an(l

\\vj+i(s)-Vj(s)-(s-yj(s))A(yj(s), Vj(s))\\ ^ (s-γj(s))ε.

We now set vj+ 1(s) = vJ+ 1{yj+ ^s)) for se[ί, t). Then we infer from the defi-
nition of υj+! that (γj+ j(s), vJ+ ^s)) e Ω n Sr(A x) and

Moreover we have

\\VJ+M-X\\

^ \\vJ+l(s)-Vj(s)-(yJ+i(s)-7j(s))A(yj(s), »

and

||D7 + !(s)- vo(s)-(yj + 1(s)-yo(s))A(γo(s), vo(s))\\

ί \\vj+i(s)-vJ(s)-(γJ+i(s)-γJ(s))A(yJ(s), »/

+ \Hs)-vo(s)-(γj(s)-γo(s))A(γo(s), vo(s)

+ (7j+1(s)-γj(s))\\A(yj(s), Vj(s))-A(y0(s),

This means that vj + 1 satisfies (3.5) through(3.10) with n=j+\. Thus a sequence
{f Jnέo of functions satisfying (3.5)-(3.10) is constructed.

We now find an X-valued function v on [ί, ί) possessing the properties
(i)-(iv) as listed in the statement of the lemma. Since (3.9) implies

for n^ί and se [ί, i)and limπ_>0Oy,,(s) = s, the sequence {i)n(s)}ngoisaCauchy sequ^
ence for each s e [ί, ί). Hence one can define a function v on [ί, ?) by ι>(s) =
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lim^oo υn(s). v is clearly strongly measurable. Since (yn(s), vn(s)) e Ω9 γn(s) t s in

R and vn(s)->v(s) in X, it follows from (Ω2) that (5, v(s)) e Ω. By (3.7) we have

\\v(s)-x\\^(s-t)(M+\)<r for se[ί, t),

and hence (s, v(s)) e Ω Π Sr(ί, x). Moreover, by use of (3.8) and (3.9), we obtain

II φ ) - x - (s - t)A(t, x) II ^ 2(s - t)ε for s e [ί, ί),

and

IIφ) - υo(s) - (s-γo(s))A(γo(s)9 vo(s))\\ ̂  2(s-γo(s))ε

for 5 e [ί, ί).

Hence it follows that

o(5), vo(s))\\

- vo(s-δ) - δA(yo(s-δ)9 vo(s-δ))\\

+ (s-γo(s))\\A(yo(s)9 υo(s)) - A(yo(s-δ\ vo(s-δ))\\

+ δ\\A(γo(s-δ), υo(s-δ)) - A(s, φ)) | |

^ 2(s-7o(s))ε + 2(s-yo(s))ε + δε + (s—yo(s))ε + 5ε

^ 7^ε

for all 5 e [ί, ί). This completes the proof of Lemma 5.

PROOF of Proposition 2. The existence of ε-approximate solutions u for

(IVP; τ, z) satisfying (i)-(v) of Proposition 2 was already verified in Kenmochi

and Takahashi [5; Proposition 2]. So it suffices to show that the ε-approximate

solution u has the last property (vi) of Proposition 2.

Let O ^ i g i V - 1 . We first observe that if (5, y)eΩ, | s - i , | < ( i i + 1 - i f ) x

(M + l) and ||.y-u(r f)|| < ( ί i + 1 - f f )(M + l), then (s, y) e Ω Π SΛ(τ, z) and hence

\\A(s, y)\\ ̂  M. Using this fact together with the property (v) and applying Lemma

5 with t = t{ and i = ti+ί9 we see that there exists an X-valued measurable function

Vi on [th ti+ι) satisfying:

(3.15) vi(ti) = u(ti),

(3.16) (5, Viis))eΩΠ SR(τ, z) for s e \ti9 ti+ x),

(3.17) Ms) - u(U) - (s-tt)A(ti9 11(^)11 ^ 2(8-^)8 for se[ti9 ti+1)9

(3.18) I I φ ) - vfa-δ) - δA(s, φ ) ) | | g 75ε for se [ίj + 5, ί ί + 1 ) .
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For each 5 e [τ, τ + T], we set

= Vi(s) if s e [th

Then it is clear that the function v has the property (a). Let se[f ί ( Zi+i). It

follows from (iv) and (3.17) that

flu(s) - φ ) | | ^ \\u(s) - M(ί,.) - (s-

which is nothing but (b). To see that v has the property (c), we estimate the

norms | |φ)—φ—δ)-δA(s, v(s))||, se [τ+δ, τ + T]. If ί , - + ^ ^ s < ί i + 1 for some

i with O^ί^iV-1, then (3.18) yields

| |φ) - φ-δ) - δA(s, φ))\\ g 7<5ε.

lΐti^s<ti+δ for some i with 1 ^ i g N - 1 , then (iv), (v) and (3.17) together imply

\\φ)-φ-δ)-δA(s,φ))\\

^\lφ)-u(ti)-(s-ti)A(ti,u(tι))\\

+ \\u(tt) -«(*,_!> - (ίf - ί - iMίί i- i , U(ί, _!))!!

+ \\φ-δ) - uiu-j - (s-δ-u-

+ (t,+δ-s)W(t,, u(td) -

+ δ\\A(s, φ)) - A(tu M(

g 2(s-ίi)ε + (ίj-ίi-Os + 2(s-<5-ί i_ 1)ε + {ti-
ίrδ-s)ε + δε

Hence we have

( t + T - φ-δ) - δA{s, φ))\\ds
τ+δ

= Σί ί=-i 1\""IIΦ)-
ti + δ

IIφ) — v(s — δ) — δΛ(s, v(s))\\ds
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^ 14Γ(5ε,

which completes the proof.

4. Local existence

In this section we establish a result on the local existence of solutions to

(IVP; τ, z).

THEOREM 1. Suppose that conditions (Ω1)-(Ω4) are satisfied. Let (τ, z)e

Ω. Let R>0 and M>0 satisfy τ + R<b and \\A(t, x)\\ <>M for (t, x)eΩn

SR(τ,z). If Te(0, i*/(M + l)], then (IVP;τ,z) has a unique solution u on

[τ, τ + T] such that \\u(t)-u(s)\\ ^M\t-s\for all t, se[τ, τ + T].

PROOF. Let Te(0, #/(M + l)] and {εn}n^ί & null-sequence in (0, 1). Then,

by Proposition 2, there is an εM-approximate solution un for (IVP; τ, z) on

[τ, τ + T] for each n ^ l . We denote by {ί"}o^N(n> the partition of [τ, τ + T ]

associated with un. Let m and n be positive integers. Let δ>0 be such that

δ<tψ+ί-tψ for 0gigiV(m)-l and δ < ί j + 1 - ί 5 for 0 ^ ; ^ N ( / i ) - l . Then

Proposition 2 implies that to um and uπ, there correspond Z-valued strongly

measurable functions vm and vn having the properties (a)-(c) as mentioned in

(vi) of Proposition 2, respectively. By (Ω4), we have

(4.1) ||i,m(s) - 1^

ύ \\vm(s) - vJts) - δ(Λ(s, υm(s)) - Λ(s9 vn(s)))\\

+ δg(s, \\vm(s) - 17,(5)11)

^IK(5-<5)-i;π(S-<5)| |

+ WvJίs)-υJis-δ)-δA(s9υJts))\\

+ \\vn(s)-vn(s-δ)-δA(s,vn(s))\\

+ δg(s, \\υm(s) - 17

for se [τ + <5, τ + T]. Let ίx and t2 be such that τ ^ ί 1 < ί 1 + 5 < ί 2 ^ τ + T. In-

tegrating both sides of (4.1) from ίx +δ to ί2»
 w ^ obtain

(4.2) \ |K(s ) - vπ(s)\\ds - \)t \\vm(s) - ϋBι

+ a g(s, \\vm(s) - vn(s)\\)ds

2 \\vm(s) - vm(s-δ) - δA(s, υm(s))\\ds
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'2 ||υn(s) - vn(s-δ)- δA(s, υn(s))\\ds
tl + δ

2 g(s, \\υm(s) - vn(s)\\)ds + l4Tδ(εm +
+ ό

Set Um,n(s)=\\um(s)-un(s)\\ and Vm,n(s)=\\vm(s)-vn(s)\\ for s e [ τ , τ + T]. Then
(4.2) is written as

(4.3) f'2 Vm,n(s)ds - \'ί+iVm,π(s)ds

^δ\'2 g{s, Vm<n(s))ds + UTδ(εm + εn).
Jί l + δ

Since \Um,n(s)-VmM
UmiM^\\um(t)-um(s
obtain

and \UmJ[t)-
\\un(t)-un(s)\\^2\t-s\(M+l) for ί , s e [ τ , τ + Γ ] , we

t2-δ

t2-δ

Um,n(t2)ds

and

- 2<52(M + 1).

Hence

(4.4) δ{Um>n(t2) - Umtn(tx)} g Γ2 Vm,n(s)ds - [tί+δ Vm,n(s)ds

Combining (4.3) with (4.4) yields

(4.5) Um,n(t2) - Umyn(tl) Z \'2 g(s, Vm,n(s))ds + C(εm + εn)
Jtt + δ

for some constant C>0 which depends only on R and M. Since \Untjn(t)~

l/ m t l l (s) |^2 | ί-s |(M+l) and |t/w,π(s) |^2( 5-τ)(M + l) for t, se [τ, τ + T], the

family of functions {^w,π}m^i,n^i is equicontinuous and uniformly bounded.

We now claim that

limm_0, „->() Umtn(s) = 0 for all 5 e [τ, τ + T ] .

If this were not true, there would be an s0 e [τ, τ + T] and subsequences
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l 5 {n(k)}k^ι such that m(/c)-»oo, n(k)->oo as /c->oo, and lim^oo
so) ̂  0. Since {l/m(fc),n(fe)}fĉ i is also equicontinuous and uniformly

bounded, we can assume with the aid of Ascoli-Arzela's theorem that

(4.6) lim^oo Umk)Mk)(s) = U(s)

for some continuous function U on [τ, τ + T ] , U(so)φ0, where the convergence

is uniform on [τ, τ + T ] . On the other hand, |[/m)n(s)-FmjM(s)|^3(ε;* +εj), and

so we see that

(4.7) lim^αo Km(k)ill(k)(s) = l/(s)

holds uniformly on [τ, τ + T]. It, thus, follows from (4.5), (4.6), (4.7) and the

Lebesgue convergence theorem that

U(t
Γt2

,) - U(tx) ^ \ #(s, l/(s))ί/s whenever τ <; ^ < t2 ^ τ + T.
Jti

However, we must have U(s) = 0 by Lemma 2, which is a contradiction. Thus

liπiw_>oo,ŵ oo ^m,n(5) = 0 holds for s e [ τ , T + Γ ] . Since {C/^},,,^!,,,^! is equicon-

tinuous, the convergence is uniform on [τ, τ + Γ ] . This means that {un}n^Λ is

uniformly Cauchy on [τ, τ + T].

We then define u(t) = \imn_+o0 un{t) for each te [τ, τ + Γ] . Then u(τ) = z and

| | t ι ( ί )- i ι ( s ) | | ^M| ί-s | for ί , s e [ τ , τ + T]. Since (ίj, wM(ί?))eί2, it follows from

(Ω2) that (ί, w(0)eί2 for all ί e [ τ , τ + T]. Also, we infer from (Ωl) and the

property (iv) as mentioned in Proposition 2 that

lim^αo u'n(t) = A(t, iι(0) for a.e. t e [τ, τ + T] .

Therefore, the application of the Lebesgue convergence theorem yields

u(t) = lim^oo un(t) = lim^oo {z + \ «;(s)Js} = z + \ A(s, u(s))ds

for all t e [τ, τ + T]. This shows that w is a solution to (IVP; τ, z) on [τ, τ + T ] .

Since the uniqueness follows from Proposition 1, the proof of the theorem is now

complete.

COROLLARY 1. Suppose that conditions (Ω1)-(Ω4) are satisfied. Let

(τ, Z)GΩ. Then there is a number c with the following properties:

(i) τ<c<b and (IVP; τ, z) has a unique solution u on [τ, c].

(ii) Let ε>0, then there is a number r > 0 such that τ + r < c and for every

(ί, x)eί2ίlSΓ(τ, z), (IVP; t, x) has a unique solution v on [ί, c] with

\\v(c)-u(c)\\^ε.

PROOF. Let R>0 and M>0 be such that τ + R<b and \\A(t, x)||S£M for
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(t, x)eΩaSR(τ, z). We shall show that any number c in the interval (τ, τ +
JR/(M + 1)) is the desired one. The first property follows from Theorem 1. To
show that c has the second property, let ε>0. By Lemma 1 <5>0 can be found
such that the maximal solution m(s; τ, δ) exists on [τ, c] and m(c; τ, <5)gε. Let
r>0 be such that τ + r<c, τ-r + (R-r)/(M + l)^c and r(M +l)^info^σ^Γ m(τ +
σ; τ, δ). Take any f ί, x) e Ω Π Sr(τ, z) and set ϊ = R-r. Since M(s, }>)||^M
for all (5, y)eΩf] S,(t, x), (IVP; t, x) has a unique solution v on [ί, ί+ ̂ /(M +1)]
by Theorem 1. Since ί + ?/(M+l)>τ-r + (£-r)/(M + l)^c, we infer that v
is defined on [τ, c]. If ί^τ, then

\\v(τ) - iι(τ)|| ^ ||ι<τ) - x|| + ||x - z\\

< M(τ-t) + r

^ m(τ; τ, (5).

Hence || υ(c) — u(c) || ^ m(c τ, δ) ̂  ε by Proposition 1. If t > τ, then we have

- ιι(0|| ύ \\x - z|| + ||ιι(0 - z\\

< r + M(ί-τ)

Hence \\v(c) — u(c)\\^m(c; τ, <5)gε by Proposition 1. Thus the proof is complete.

A concluding REMARK. AS is easily seen from the above arguments, the
conclusion of Theorem 1 remains valid even if (Ω2) is replaced by the following
condition (which is a localized form of (Ω2)):

(ί22)ίoc For each (τ, z)eΩ, there is a number R>0 such that whenever
(ίM, xn)eΩn SR(τ, z), tn t te[a, b) and xn->x as H-+OO, we have
(t, x) e Ω.

Hence in particular, if Ω is locally closed and (Ωl), (Ω3) and (Ω4) are satisfied, the
conclusion of Theorem 1 is valid.

5. Existence in the large

In this section we examine the maximal interval of existence of solutions to
(IVP; τ, z) and give our main result on the global existence.

Suppose that conditions (ΩΪ)-(Ω4) are satisfied. Let (τ, z) e Ω and let u be a
solution to (IVP; τ, z) that is noncontinuable to the right. We denote its final
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time by T(τ, z); hence τ<T(τ, z)<b and u is a solution to (IVP; τ, z) on
[τ, T(τ, z)). Since (IVP; τ, z) has a unique solution, T(τ, z) is well-defined for
every (τ, z) e Ω. We consider T as a function from the metric space Ω into the
extended real line R U {00} endowed with the usual topology.

We first show that T is continuous.

LEMMA 6. Suppose that conditions (Ω1)-(Ω4) are satisfied. Let (τ, z)eΩ.
Let de(τ9 b) be any number such that (IVP; τ, z) has a solution u on [τ, d].
Then there eίxsts a number r>0 with τ + r<d such that for any (ί, x)eΩίΊ
Sr(τ9 z), (IVP; t, x) has a solution on [ί, d].

PROOF. Since the set {(s, u(s)); se[τ, d~\} is compact in Ω, (Ωl) ensures
that there are numbers R>0 and M>0 such that \\A(t, x)\\^M for (t9 x)eΩn
Wse[τ>d] SR(s, M(S)). Let c be any number with the properties (i) and (ii) as men-
tioned in Corollary 1 we may assume that c < d. Let ε be a positive number
such that the maximal solution m(s; c, ε) exists on [c, d] and m(s; c9 έ)<R on
[c, d], r a positive number satisfying (ii) as mentioned in Corollary 1 for the ε,
(t, x) £ Ω Π SR(τ, z), and let υ be a noncontinuable solution to (IVP; t, x). Clearly
T(t, x)>c. We then demonstrate that T(t,x)>d. Assume that T(t, x)^d.
Then, by Proposition 1, ||v(s) -u(s)\\ ^ m(s; c9 ε) < R on [c, Γ(ί, x)). This
implies that ||,4(s, φ)) | | gM for se[c,T(t,x)) and hence | | φ i ) - φ 2 ) l l ^
M\sί—s2\ for s1? 52e[c, T(ί, x)). Therefore, ι;0 = l im s t τ ( ί J c ) v(s) exists in X
and (T(ί, x), D0)eΩ by (Ω2). But, in view of Theorem 1, this contradicts the
fact that v is noncontinuable to the right of T(t, x) and the proof is complte.

LEMMA 7. Suppose that conditions (Ω1)-(Ω4) are satisfied. Let {(tn, xn)}n^ x
be a sequence in Ω converging to (τ, z)eΩ and let de(τ, b). Assume that
(IVP; tn, xn) has a solution un on [tn, d~\ for each n ^ l . Then (IVP; τ, z) has
also a solution u on [τ, d~\.

PROOF. Let u be a noncontinuable solution to (IVP; τ, z). We aim to show
that u is defined on [τ, d~\. To this end, let c be a number with the properties (i)
and (ii) as mentioned in Corollary 1; we may assume that tn<c<d for all n ^ l .
Let ε be a positive number for which the maximal solution m(t; c, 2ε) exists on
[c, d], (The existence of such ε is guaranteed by Lemma 1.) Let r be a number
satisfying (ii) (mentioned in Corollary 1) for the ε. Let (ίm, xm), (tn9 xn)eΩ 0
Sr(τ9 z). Then

\\um(c) - un(c)\\ ^ \\um(c) - u(c)\\ + \\un(c) - u(c)\\ ^ 2ε,

and hence

\\um(t) - 11,(011 S m(t; c9 2ε) on [c, d\.

In view of Lemma 1, this means that the sequence {un}n^1 of functions is uniformly
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Cauchy on [c, d\. Set \x{t) = \imn^^ un{t) for all te[c, d\. Since un(t) =

un(c) + \ A(s, un(s))ds for all t e [c, d~] and ϋ(c) = limπ_oo ww(c) = w(c), we have

ΰ(0 = u(c) + Γ ^(s, ϋ(s))ds for all t e [c, J ]

by the Lebesgue convergence theorem; hence ΰ is a solution to (IVP; c, u{c)).

Since (IVP; τ, z) has a unique solution w, ύ must coincide on [c, d] with w.

This means that Γ(τ, z)>d; and the proof is complete.

PROPOSITION 3. Suppose that conditions (Ω1)-(Ω4) are satisfied. Given a

(τ, z)eΩ, let T(τ, z) be a final time of a noncontinualbe solution to (IVP; τ, z).

Then T is a continuous function from Ω into R U {oo}.

PROOF. Let {(tn, xn)}n^ι be a sequence in Ω converging to (τ, z)eΩ. We

wish to show that limM^oo T(tn9 xn)=T(τ, z). To this end, let de[τ, T(τ, z)).

By Lemma 6, d<T(tn,xn) for sufficiently large n. Hence d fΠiminf ^ α ,

T(tn9 xn). Since d was arbitrarily chosen, we have

(5.1) T(τ, z) S lim inf^^ T(ίπ, xn).

Let d e (τ, lim sup M^ooT(ίn, xn)). Then there is a subsequence {(ίM(fc), xn(k))}k^ i of

{(ί«, ^»)}»^i such that tn(k)<d<T(tn(k)9 xn(k)) for all fc^l and (ίΛ(fc), xn(fc))->(τ, z)

as /c->oo. By Lemma 7, (/KP; τ, z) has a solution on [τ, d~] and hence d<

T(τ, z). Since d was arbitrarily chosen, we conclude that

(5.2) lim sup^αo T(tn, xn) ^ T(τ, z).

Combining (5.1) and (5.2) we obtain lim^oo T(tn, xn) = T(τ, z) and the proof

is complete.

We are now in a position to state our main result of this paper.

THEOREM 2. Suppose that conditions (Ω1)-(Ω4) are satisfied. Let C be

a connected component of Ω and set d = sup {t e [α, b); C(t)Φφ). Then for each

(τ, z)eC, (IVP; τ, z) has a unique solution on [τ, d) and the interval [τ, d) is

the maximal interval of existence of solution. In particular, if Ω is connected,

then for each (τ, z)eΩ (IVP; τ, z) has a unique solution on [τ, b).

PROOF. We show that T takes the constant value d on C. Let c, c' e T(C).

We may assume that c^c'. Set Cί = {(t, x)eC; T(t, x)^c} and C2 = {(ί, x)e
C; T(t, x)>c}. Since Tis a continuous function by Proposition 3, C2 is an open

subset of C. Let {(tn9 xn)}n^ x be a sequence in C 2 converging to (t, x) e C. Then

T(t, x) = lim^oo T(tn, xn)tc. Assume that T(t, x) = c>t. Then tn<c<T(tn, xn)

for n sufficiently large and (IVP; tn9 xn) has a solution on [tn9 c] for n sufficiently
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large. Therefore, it follows from Lemma 7 that (IVP; t, x) has a solution on

[ί, c]. However, in view of Theorem 1, this contradicts the assumption. There-

fore T(t, x) > c, which means that C2 is a closed subset of C. Since C is connected,

C = C1\J C2 (disjoint union) and Cγφφ, we conclude that C2 = φ. Thus c'^c;

and hence c = c'. It turns out that T(C) is a singleton set {c}. Since ί < T(t, x) = c

for all (ί, x)e C, we have d = suρ {ί; C(ί) ̂  </>} ̂  c On the other hand, it is clear

that c = T(t, x)<*d for (t, x) e C. Consequently, we have T(C) = {d} and the proof

is complete.

Finally, we consider the case where Ω is a cylindrical domain. In this case

it is natural to assume b — 4- oo. Then d= + oo and Theorem 2 may be restated

in the following form.

COROLLARY 2. Let D be a closed subset of X and suppose that conditions

(βl), (Ω3) and (Ω4) are satisfied with Ω = [09 + o o ) x D . Then for each zeD,

(IVP; 0, z) has a unique solution on [0, +oo).
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