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1. Introduction

Throughout this paper Q will denote a non-empty open subset of the
Euclidean space R" (n>2). For each point x of R” and each positive number
r, let B(x, r) and S(x, r) denote, respectively, the open ball and the sphere of
centre x and radius ». We shall use v to denote a superharmonic function in Q.

If the closure B(x, r) of B(x, r) is contained in @, then v(x)>.#(v, x, r),
where .#(v, x, r) is the spherical mean value of v given by

M, x, 1) = (s,r" 1)1 S vds.
S(x,r)
Here s denotes surface area measure on S(x, r) and s, is the surface area of the
unit sphere in R". It is well known that if B(x, R)=Q, then .#(v, x, -) is de-
creasing on (0, R) and #(v, x, r)>v(x) as r—»0+.
The measure v associated to v is a non-negative (Radon) measure in Q such
that

[, #dv =@ |_omad(ax
Q Q2

for each infinitely differentiable function ¢ with compact support in Q. Here
4 is the n-dimensional Laplacian operator and p,=max {1, n—2}.

We are concerned here with a comparison of the behaviour of .#(u, x, r)/
A (v, x, r) and u(B(x, ))/v(B(x, r)) as r—>0+, where u is a superharmonic func-
tion in Q with associated measure y and x is a point of Q such that v(x)= + co.
As applications, we shall obtain results which restrict the size of the set of points
at which, for example,

lim sup,.q+ r*#(u, x,r) >0 (n>30<a<n=-2)

and we shall improve some recent results of Kuran [6] on superharmonic and
harmonic extensions.

For the latter application, we shall need to work, more generally, with the
case where u is d-superharmonic in an open subset @ of Q. Recall that u is said
to be d-superharmonic in w if there exist superharmonic functions u; and u, in
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o such that u(x)=u,(x)—u,(x) whenever xew and u,(x) and u,(x) are not
both +00. Notice that the equation u=u,; —u, holds g.p. (that is, except on a
polar set) in w. A fortiori, it holds a.e. (s) on every sphere in w (see [4; Theorem
7.5]). Hence, if B(x, r)cw, then u is integrable on S(x, r) and #(u, x, r)=
MUy, x, r)— MUy, x, r). Now let u, and u, be the measures associated to u,
and u,. Since u;(w) and p,(w) may both be + oo, it is not generally the case that
Uy —u, defines a signed measure on w. However, if we write u(F)=u,(F)—
u,(F) for each Borel subset F of w for which the difference is well-defined, then
the restriction of u to any compact subset of w is a finite signed measure.
Throughout the paper u will be a d-superharmonic (sometimes superharmonic)
function in @ or in some open subset of Q, and we shall use u to denote the set-
function defined above. We call u the measure associated to u. Clearly, if u
is d-superharmonic in , the superharmonic functions u; and u, such that u=
u;—u, q.p. in » will not be unique. However, we have the following easy result.

LeMMA 1. If u is §-superharmonic in w, then u(F) is uniquely defined for
any Borel set F whose closure is compact and is contained in .

2. Main results

THEOREM 1. Let u be §-superharmonicin Q. If xeQ and v(x)= + oo, then

.. u(B(x, r)) .. M(u, x,r)
lim lnf,_.o+ v(E(x, r)) < lim ll’lf,._,o+ m

. A (u, x, , B(x,
<lim sup,_ ¢, ﬁ < lim sup,_ o, % . (1)

By making suitable choices of » in Theorem 1, we obtain the following.

THEOREM 2. Let o be a positive real number and let f be a non-negative,
continuous, increasing (in the wide sense) function on [0, o] such that f is differ-
entiable on (0, o) and

[ =rp e = + o,
Put
J) = p, S torf(ndt (0<r<a).
If u is 5-superharmonic in Q and if x€ Q, then

liminf,.o, {w(B(x, M/f (M} < liminf,.o. {A(u, x, N[f(r)}
< limsup,o+ {A(u, x, r)/f(r)} < limsup,_.q, {W(B(x, )/f(r)}.
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COROLLARY. Let u and x be as in Theorem 2. If n>3 and 0<g<n-—2,
then

(n—2) liminf,_,, r~u(B(x, r)) < (n—q—2) liminf,_q, 1 2.4(u, x, r)
< (n—q-=2)limsup,.q, r" 47 2.4(u, x, r) < (n—2) limsup,_ o, r~2u(B(x, r)).
Further (corresponding to the case q=n—2), if n>2,

poliminf, o, r>7"u(B(x, r)) < liminf,o, {#(u, x, r)/log (1/r)}
S hm Supr—'0+ {'/”(u’ X, r)/IOg (1/7’)} S Dn hm Supr—’0+ rZ—H#(B(x’ r)) .

We come now to the first application of these results. Applying a technique
of Watson [8] to the above corollary, we obtain the following.

THEOREM 3. Suppose that n>3 and that 0<f<n-—2. If u is superhar-
monic in Q and

Sy = {xeQ: limsup,,o, rfM(u, x, r) = + 0}
and

Ty = {x€Q: limsup,_o4 rP.#(u, x, r) > O},

then m,_,_4(Sp)=0 and m(T;)=0 for all y>n—2—p, where m, denotes 7-
dimensional Hausdor[f measure.

Finally, we come to the results on superharmonic and harmonic extensions.
Some preliminary explanations are necessary. We shall use E to denote a polar
set, closed in the topology of Q. If u is superharmonic in Q\E and B(x, r)=Q,
then u is defined a.e. (s) on S(x, r) and is measurable, but not necessarily integrable,
on S(x,r). If such a function u possesses a (possibly infinite) integral over
S(x, r), we shall continue to denote its mean value over S(x, r) by #(u, x, r).
In forming the quotient of two extended real-valued functions ¢ and ¥, both
defined at x, we adopt the convention that ¢(x)/y(x)=0 if ¢(x)> — oo and Y(x)=
+00. With these understandings, we have the following lemma, whose proof
is left to the reader.

LemMMA 2. Suppose that v>0 on E and let u be superharmonic in Q\E.
If yeE and

lim infx—vy,xeﬂ\E {u(X)/U(x)} =k>-
then #(u, y, r) exists for all sufficiently small r and

lim inf, o, ij—g%;’—g > k.

The main result on superharmonic extensions is as follows. Its proof
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depends on Theorem 1, a result of Kuran [6; Theorem 1] (quoted as Theorem
A in §8), and a measure theoretic result of Watson [9; Theorem 1] (quoted as
Theorem B in §8).

THEOREM 4. Suppose that v>0 on E and let u be superharmonic in Q\E.
If

hm infx—*_v,.xe.Q\E {u(x)/v(x)} > —0 (2)
for each y in E and if

. A (u, y,
lim sup, o+ 7%;,;—’3 >0 (3)

for v-almost all y in E, then u has a superharmonic extension to Q.

COROLLARY. Suppose that v>0 on E and that u is superharmonic in Q\E.
If

lim inf, ., ;o\ p {u(x)/0(x)}

is greater than — oo for each y in E and is non-negative for v-almost all y in E,
then u has a superharmonic extension to Q.

I am grateful to Professor F-Y. Maeda for pointing out that this corollary is
essentially contained in a recent result of Brelot [2; Theorem 5] and for mentioning
that Brelot’s assumption that v(E N w)>0 for every open set w such that ENw
is non-empty is superfluous.

As an application of Theorem 4, we obtain the following results on harmonic
continuation.

THEOREM 5. Suppose v>0 on E and let h be harmonic in Q\E. If
lim SUPyoy,xeR\E {lh(X)l/U(x)} < +®© (4)

for each y in E and if

L. M(h, y, r) . M(h, y,r)
lim inf, o, Ay ) < 0 < lim sup, o+ ICRD)
for v-almost all y in E, then h has a harmonic continuation to Q.

COROLLARY. Suppose that v>0 on E and let h be harmonic in Q\E. If
(4) holds for each y in E and if

limx—by,er\E {h(x)/v(x)} =0
for v-almost all y in E, then h has a harmonic continuation to Q.

This corollary improves [6; Theorem 2]. For a good account of the main
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applications of extension results, we refer to [6].

3. Proof of Lemma 1

Let u be J-superharmonic in w and let u,, u,, u;, u, be superharmonic
functions in w such that u=u; —u,=u;—u, wherever the differences are well-
defined. Then u,+u,=u,+u; ¢.p. in w. Since superharmonic functions which

“are equal g.p. are identical, the last written equation holds throughout w. Hence
if u; (j=1, 2, 3, 4) is the measure associated to u, then p, +u, = p, 4 p3, so that
Wi (F)— puy(F)=pus(F)— us(F) whenever us(F)+p (F)<+oc0 and, in particular,
whenever F is a Borel set whose closure is a compact subset of .

4. A preliminary result

The following is the key result in our proof of Theorem 1. It is essentially
well-known and leads easily to other known results which we give below as corol-
laries.

LEMMA 3. Let u be S-superharmonic in Q. If 0<r<R and B(x, R)cQ,
then

M, x, 1) = A(u, X, R) + p, SR t1=nu(B(x, 1)dt. o)

Clearly it is enough to prove the result in the case where u is superharmonic
in Q. In this case we have

u(x) = A, %, 7) + p, go t1-nu(B(x, £))dt
= .#(u, x, R) + p, Sj t1-"u(B(x, t))dt

(see [3, pp. 126-127]). If u(x)< + o0, (5) follows immediately by subtraction.
If u(x)= + oo, then we replace u in B(x, r) by the Poisson integral of the function
U|sr- The resulting function u’, say, is superharmonic in Q and u'(x)< + co.
Hence if ' is the measure associated to u’, (5) holds with u replaéed by u’ and u
replaced by u'. The equation (5) itself follows from the facts that u=u’ in
Q\B(x, r) and u(B(x, t))=p'(B(x, t)) when r<t<R. Although the latter fact is
well-known, I know of no convenient reference; it can be proved as follows.
Let G* and G*' denote the Green’s potentials in B(x, R) of the restrictions of the
measures 4 and g’ to B(x, f). It is easy to see that G*=G*" in B(x, R)\B(x, ?).
Suppose that t<p<R. The balayage in B(x, R) of the characteristic function of
B(x, p)isequal to 1 in B(x, p) and is the Green’s potential of a measure A supported
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on S(x, p). Hence

u(B(x, 1)) = S Grdu = S Godi
B(x,t)

S(x,p)

- S G dj = S GHy' = 1(B(x, 1)).
S(x,p) B(x,t)

Now define ¢ on the interval [0, + o) by ¢(0)= + o0 and
—logr (n=2,r>0)
o(r) =

rz-n (n>3,r>0)),

so that, if |-| denotes the Euclidean norm on R” and if y e R”, the function x—
a(|x—y]) is the fundamental superharmonic function of R” with pole y.

COROLLARY 1. Let u be superharmonic in Q and suppose that xe Q.
Then u({x})=0 if and only if #(u, x, r)=0(c(r)) as r—»0+. In particular,
if u(x)< +oo (so that #(u, x, r)=0(1) as r—->0+), then u({x})=0.

A simple proof of the particular case has been given by Kuran [5].
To prove this corollary, suppose that B(x, R)=£, so that, by (5),

A, %, 7) = p, SR t1=nu(B(x, ))dt + O(1)  (r — 0+). (6)

Since u(B(x, t)) is increasing on (0, R], it is easy to see that the integral in (6) is
o(a(r)) as r—»0+ if and only if u(B(x, t))-0 as t—-0+. Since p({x})=lim,q,
u(B(x, t)), the result follows.

COROLLARY 2. If u is non-negative and superharmonic in R" (n>3), then
w(B(x, ) < r2.4(u, x, r).
From (5), we have
R ~
A, x, ) > (n—Z)S 1=nu(B(x, £))d,
for each number R>r. Hence

M, x, 1) > wBx, 1) (n—2) S“’ fi-ndt
= r2="u(B(x, r)).

Corollary 2 has been proved by Kuran [S; Theorem 4] who also gives the
analogue for a disc in R2.
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5. Proof of Theorem 1

It is enough to show that the last inequality in Theorem 1 holds, for the first
inequality will then follow by working with —u instead of u.

If the last expression in (1) is + oo, the required inequality is trivial. Suppose
now that this expression has the value 4 and that A< A< +o0. Let R be a positive
number such that

W(B(x, r) < Av(B(x, 1))

whenever 0<r<R. By Lemma 3, if 0<r<R, then
R _
MU, X, r) = p,,S ti=ru(B(x, 1))dt + 0O(1) (r—0+)

< Ap, SR 1= w(B(x, 0)dt + O(1)

= AA(v, x, ¥) + 0(1).

Since
lim, o, A (v, x, 1) = v(x) = + 00,
we obtain
. M(u, x, r
lim sup,_o+ W <4,

and the theorem follows.

6. Proof of Theorem 2

Consider first the case of Theorem 2 in which f(0)=0. Let R be such that
B(x, R)cQ and 0<R<a. Put g(0)=0, g(t)=t'""f'(t) (0<t<R), g(t)=0 (t=R),
and define a measure v on Q by writing dv(y)=g(|x—y|)dy. Then, if 0<r<R,

WBGe, M) = Jx=yl (= yi)dy

=5, SO Dt = s,f(F),
and, by Lemma 3, if v is the Green’s potential in Q associated to v, then
R
(0, %, 1) = 5,3, " 171t + o)

=s,,f'(r) + 0(1).
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Since

R
o(x) = lim, g, A, X, ) = $,p, go 1= f(dt = + o0,

the result now follows from Theorem 1.

If f(0)#0, put v=f(0)d,, where J, is the Dirac measure concentrated at x,
and let v be given by v(y)=f(0)a(|x—y|). Then v(B(x, r))=f(0) for each positive
rand #(v, x, r)=a(r)f(0)~ f(r) as r>0+. Hence, the result again follows from
Theorem 1.

To prove the Corollary, take «=1 and f(f)=12 in Theorem 2. Then
n—2 +2—
R —-——zrq "(14o0(1)) O<g<n-2)
joy=1 "4
palog(1/r) (g=n-2).

7. Proof of Theorem 3

This proof is borrowed from Watson [7].
By the Corollary of Theorem 2, S; < Sj, where

Sp = {xeQ: limsup,.o4 r**27"u(B(x, r)) = +0}.
Now
lim sup,..o4 r#*27"u(B(x, r)) < lim sup,o4 r#*27"u(J(x, 1)),

where J(x, r) is the closed cube of centre x and side 2r with edges parallel to the
coordinate axes. Hence

lim sup,o+ r#*2="u(B(x, 1))
< (2n)"P21im, o, [supy {u(J)(d(J)Y*27": xeJ, d(J) < &}],

where J is any non-degenerate n-dimensional interval and d(J) is the diameter of
J. Hence S;=Z, where Z is the set of points x in © for which the last written limit
is +00. By a result of Rogers and Taylor [7, Lemma 4], m,_,_4(Z)=0, and
therefore m, _, _4(S5)=0.

If, now, 0<y'<B<n-2, then T,=S,. Hence m,_,_,(Ty)=0 for all such
y’, so that m,(T;)=0 whenever y>n—-2—p.

8. Proofs of Theorems 4 and 5

We start by quoting two results which we shall need in the proof of Theorem 4,
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THEOREM A. Suppose that v=+ o0 on E and that u is superharmonic in
Q\E. If

hm infx—'y,xeﬂ\E {u(x)/v(x)} = 0
for all ye E, then u has a superharmonic extension to Q.

THEOREM B. Let u and v be measures on a ball B(z, R) such that v(B(y, r))>
0 whenever B(y, r)= B(z, R). If

w(B(x, )
v(B(x, r))

is greater than — oo for all xe€ B(z, R) and is non-negative for v-almost all
x € B(z, R), then u is a non-negative measure.

lim sup,_o+

Theorem A is due to Kuran [6, Theorem 1]. Notice that the Corollary
of Theorem 4 is an improvement of Theorem A.

Theorem B is due to Watson [9; Theorem 1]. Its proof depends on a result
of Besicovitch [1; Theorem 3].

Suppose now that the hypotheses of Theorem 4 are satisfied. It is enough
to prove that if B(z, R)=Q, then u has a superharmonic extension to B(z, R).
Now there exists a positive superharmonic function v, in B(z, 2R), with associated
measure v, such that v;=+o00 on En B(z, 2R) and v,(E)=0. (To construct
such a function v,, take w to be a positive superharmonic function in B(z, 2R)
such that w=+ o0 on E n B(z, 2R) and put v=Y.%_, m~2 min(w, m).) In order
to be able to apply Theorems A and B we put Q' =B(z, 2R) N Q and work with
the function v*, defined in Q' by

v*(x) = v(x) + 0;(x) — |x],

instead of v. The following properties of v* and its associated measure v* are
easily verified: (i) v* is superharmonic in @', (ii)) v*(B(y, r))>0 whenever
B(y, )=, (iii) v¥=von Q' NE, (iv) v*=+0 on Q' NE, (v) condition (2)
is satisfied with v* replacing v for each y in B(z, R)nE, (vi) condition (3) is
satisfied with v* replacing v for v-almost all y in B(z, R)n E. Define a function
@ on B(z, R)n E by

¢(y) = lim infx—vy,er\E {M(X)/U*(X)} .

Clearly @ is lower semi-continuous on E. Also &> —o0 on E. Hence & is
bounded below on the compact set B(z, R)n E. Let x be a non-positive lower
bound of ® on B(z, R)n E. Then

liminf,.,, co\p {(u(x) — k0*(X))/v*(x)} 20  (yeB(z, R) n E).
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Applying Theorem A to the superharmonic function u — kv* in B(z, R) n E, we find
that u — kv* has a superharmonic extension to B(z, R). Hence u has a J-super-
harmonic extension, # say, to B(z, R). Let ji be the measure on B(z, R) associated
to #. By Theorem 1,

. A(B(y,r) _ ;. A (i, y,r)
Him SUPe-0+ Lk By, 1)) = 1R SUPr=o0 %y )
. M(u, y,
= lim sup,-o. Z715%37) >0
for v-almost all ye B(z, R)n E. Also, by Lemma 2,
, By ) g My p,r)
lm Supr-o: Y& (B (y, r)) = M infror w7

lem infx—*_v,xe!)\b‘ {u(X)/U*(X)} > —

for each y e B(z, R)n E. Finally, since i=pu in B(z, r)\E and u is a non-negative
measure, we have

A(B(y, )
v (B(y, ) = °

for each y in B(z, R)\E. Hence i and v* satisfy the hypotheses of Theorem B
and therefore fi is non-negative. It follows easily that # is superharmonic in
B(z, R), and the proof is complete.

lim sup, ¢+

The Corollary is an immediate consequence of the theorem and Lemma 2.

If the hypotheses of Theorem 5 are satisfied then Theorem 4 is applicable to
both h and —h, so that h has a superharmonic extension h, and a subharmonic
extension h, to Q; but since E is polar, h, =h, everywhere in Q, so that they are
harmonic.
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