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1. Introduction

Throughout this paper Ω will denote a non-empty open subset of the
Euclidean space Rw (n>2). For each point x of R" and each positive number
r, let B(x, r) and S(x, r) denote, respectively, the open ball and the sphere of
centre x and radius r. We shall use v to denote a superharmonic function in Ω.

If the closure B(x, r) of J5(x, r) is contained in £2, then v(x) > *Jί(υ, x, r),
where JV(υ, x, r) is the spherical mean value of v given by

J?{υ, x, r) = (s^"" 1)" 1 \ vds.
JS(x,r)

Here 5 denotes surface area measure on S(x, r) and sn is the surface area of the
unit sphere in R". It is well known that if B(x, Λ)ςβ, then J^{v, x, •) is de-
creasing on (0, R) and Jt(v, x, r)->ι;(x) as r->0 + .

The measure v associated to v is a non-negative (Radon) measure in Ω such
that

\ φdv=-(pnsn)-λ v(x)Aφ(x)d*
JΩ JΩ

for each infinitely differentiable function φ with compact support in Ω. Here
A is the n-dimensional Laplacian operator and pn = max {1, n —2}.

We are concerned here with a comparison of the behaviour of Jί(u, x, r)j
Jt(υ, x, r) and μ(B(x, r))/v(JB(x, r)) as r->0 + , where w is a superharmonic func-
tion in Ω with associated measure μ and x is a point of Ω such that υ(x)= + oo.
As applications, we shall obtain results which restrict the size of the set of points
at which, for example,

lim supr rα^(w, x, r) > 0 (n > 3, 0 < α < n-2)

and we shall improve some recent results of Kuran [6] on superharmonic and
harmonic extensions.

For the latter application, we shall need to work, more generally, with the
case where u is ^-superharmonic in an open subset ω of Ω. Recall that u is said
to be <5-suρerharmonic in ω if there exist superharmonic functions ux and u2 in
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ω such that u(x) — u1(x) — u2{x) whenever xeω and ux{x) and u2(x) are not

both +00. Notice that the equation u = ui—u2 holds q.p. (that is, except on a

polar set) in ω. A fortiori, it holds a.e. (5) on every sphere in ω (see [4; Theorem

7.5]). Hence, if B(x, r)cω, then u is integrable on S(x, r) and Jί(u, x, r) =

Jt(μγ, x, r) — Jί(μ2, x, r). Now let μx and μ2 be the measures associated to uί

and u2. Since μ^ω) and μ2(ω) may both be -f 00, it is not generally the case that

μ1—μ2 defines a signed measure on ω. However, if we write μ(F) = μ1(F) —

μ2(F) for each Borel subset F of ω for which the difference is well-defined, then

the restriction of μ to any compact subset of ω is a finite signed measure.

Throughout the paper u will be a <5-superharmonic (sometimes superharmonic)

function in Ω or in some open subset of Ω, and we shall use μ to denote the set-

function defined above. We call μ the measure associated to u. Clearly, if u

is (5-suρerharmonic in ω, the superharmonic functions wx and u2 such that u =

uί — u2 q.p. in ω will not be unique. However, we have the following easy result.

LEMMA 1. If u is δ-superharmonic in ω, then μ(F) is uniquely defined for

any Borel set F whose closure is compact and is contained in ω.

2. Main results

THEOREM 1. Let u be δ-superharmonic in Ω. If xeΩ and v(x)= + 00, then

μ(B(x, r)) / 1 N

v, x, r) * h m S U P — V(E(x, r)) ' ( 0

By making suitable choices of v in Theorem 1, we obtain the following.

THEOREM 2. Let a be a positive real number and let f be a non-negative,

continuous, increasing (in the wide sense) function on [0, α] such that f is differ-

entiable on (0, α) and

[ ή = +00.
Jo

Put

Kr) = Pn\y~nf(t)dt ( 0 < r < α ) .

If u is δ-superharmonic in Ω and if xeΩ, then

liminfΓ_>0+ {μ(B(x, r))/f(r)} < liminfΓ_0 + {^(u, x, r)jf(r)}

lim s u p ^ 0 + {Jt(u, x, r)lf(r)} < lim sup Γ _ 0 + {μ(B(x,
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COROLLARY. Let u and x be as in Theorem 2. If n>3 and 0<q<n — 2,
then

(n-2)liminf,._0+ r~^μ(B(x9 r)) < (n-g-2)liminf r_0 + rn-^2^£(u9 x, r)

< (n-tf-2)limsup r_0 + rn-«-2Λ(u, x, r) < (n-2)limsupr-.0 + r~^μ(B(x, r)).

Further (corresponding to the case q = n — 2), if n>2,

/?nliminfr_0+ r2~nμ(B(x, r)) < liminf r_0+ {Jί(μ, x, r)/log(l/r)}

, x9 r)/log(l/r)} < j7πlimsupr^o+ r2"nμ(S(x, r)).

We come now to the first application of these results. Applying a technique
of Watson [8] to the above corollary, we obtain the following.

THEOREM 3. Suppose that n>3 and that 0<β<n — 2. If u is superhar-
monic in Ω and

Sβ = {xeΩ: limsupl._>0+ rβ*Jί(u, x, r) = +00}

and

Tβ = {x e Ω: lim sup,._>0+ r$Jί(u, x, r) > 0},

then mn-2-β(ββ) = Q and my(Tβ) = 0 for all y>n — 2 — β, where mγ denotes y-
dimensional Hausdorff measure.

Finally, we come to the results on superharmonic and harmonic extensions.
Some preliminary explanations are necessary. We shall use E to denote a polar
set, closed in the topology of JΩ. If u is superharmonic in Ω\E and B(x, r) cz Ω,
then u is defined a.e. (s) on S(x, r) and is measurable, but not necessarily integrable,
on 5(x, r). If such a function u possesses a (possibly infinite) integral over
S(x, r), we shall continue to denote its mean value over S(x, r) by J((u, x, r).
In forming the quotient of two extended real-valued functions φ and ψ, both
defined at x, we adopt the convention that φ(x)lψ(x) = 0 if φ(x)> — 00 and ψ(x) =
+ 00. With these understandings, we have the following lemma, whose proof
is left to the reader.

LEMMA 2. Suppose that v>0 on E and let u be superharmonic in Ω\E.

IfyeEand

limMx^ytXeΩ\E {u(x)/v(x)} = k> -00

then Λ?(u, y, r) exists for all sufficiently small r and

{u, v, r) ^ .

The main result on superharmonic extensions is as follows. Its proof
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depends on Theorem 1, a result of Kuran [6; Theorem 1] (quoted as Theorem

A in §8), and a measure theoretic result of Watson [9; Theorem 1] (quoted as

Theorem B in § 8).

THEOREM 4. Suppose that v>0 on E and let u be superharmonic in Ω\E.

If

lim mfx^xeΩXE {u(x)/v(x)} > - oo (2)

for each y in E and if

for v-almost all y in E, then u has a superharmonic extension to Ω.

COROLLARY. Suppose that v>0 on E and that u is superharmonic in Ω\E.

If
lim mfx^ytXeΩ\E {u(x)/v(x)}

is greater than -co for each y in E and is non-negative for v-almost all y in E,

then u has a superharmonic extension to Ω.

I am grateful to Professor F-Y. Maeda for pointing out that this corollary is

essentially contained in a recent result of Brelot [2; Theorem 5] and for mentioning

that Brelot's assumption that v(E n ω)>0 for every open set ω such that E Π ω

is non-empty is superfluous.

As an application of Theorem 4, we obtain the following results on harmonic

continuation.

THEOREM 5. Suppose v>0 on E and let h be harmonic in Ω\E. If

limsupx^y>xeΩ\E{\h(x)\lv(x)} < +oo (4)

for each y in E and if

l i m m f-°+ uf(v, y\ r) * 0 £ bin supr+0+ -jfcjtf

for v-almost all y in E, then h has a harmonic continuation to Ω.

COROLLARY. Suppose that v>0 on E and let h be harmonic in Ω\E. If

(4) holds for each y in E and if

l i m ^ ^ β ^ {h(x)/v(x)} = 0

for v-almost all y in E, then h has a harmonic continuation to Ω.

This corollary improves [6; Theorem 2]. For a good account of the main
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applications of extension results, we refer to [6].

3. Proof of Lemma 1

Let u be <5-superharmonic in ω and let uί9 u2, u3, w4 be superharmonic

functions in ω such that u=uι—u2 = u3 — u4 wherever the differences are well-

defined. Then wt + W 4 = M2 + w3 q.p. in ω. Since superharmonic functions which

are equal q.p. are identical, the last written equation holds throughout ω. Hence

if μ. (y = l, 2, 3, 4) is the measure associated to uj9 then μ1+μ4. = μ2+^39 so that

μi(F) — μ2(F) = μ3(F) — μ4.(F) whenever μ3(F) + μ4(F) < + oo and, in particular,

whenever F is a Borel set whose closure is a compact subset of ω.

4. A preliminary result

The following is the key result in our proof of Theorem 1. It is essentially

well-known and leads easily to other known results which we give below as corol-

laries.

LEMMA 3. Let u be δ-superharmonίc in Ω. If 0<r<R and B(x, R)czΩ,

then

, x, r) = Jί(u9 X, R) + pn £ ί ι"*μ(5(x, t))dt. (5)

Clearly it is enough to prove the result in the case where u is superharmonic

in Ω. In this case we have

u(x) = Jt{μ9 x, r) + pn (" t'~nμ{B{x, i))dt
Jo

, x, * ) + pn [R ti-nμ(B(x, t))dt
Jo

(see [3, pp. 126-127]). If w(x)<+oo, (5) follows immediately by subtraction.

If M(X)= + oo, then we replace u in B(x, r) by the Poisson integral of the function
u\s(x,ry The resulting function u\ say, is superharmonic in Ω and u'(x)< 4-oo.

Hence if μ! is the measure associated to u', (5) holds with u replaced by u' and μ

replaced by μ!. The equation (5) itself follows from the facts that u = u' in

Ω\S(x, r) and μ(J3(x, t)) = μ'(B(x9 t)) when r<t<R. Although the latter fact is

well-known, I know of no convenient reference; it can be proved as follows.

Let Gμ and Gμ' denote the Green's potentials in 2?(x, R) of the restrictions of the

measures μ and μ! to 5(x, i). It is easy to see that Gμ = Gμ' in B(x, R)\B(x, t).

Suppose that t<p<R. The balayage in B(x, R) of the characteristic function of

JB(X, p) is equal to 1 in B(x9 p) and is the Green's potential of a measure λ supported
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on S(x, p). Hence

μ(B(x9 0) = ( Gλdμ = { G»dλ
JB(x,t) JS(x,p)

{ Gλdμ' = μ'(B(x, t)).
S(x,p) JB(x,t)

Now define σ on the interval [0, + oo) by σ(0)= + oo and

ί - logr (n = 2, r > 0)
σ(r) =

[ r2'" (n>3, r > 0 ) ,

so that, if I I denotes the Euclidean norm on Rn and if yeRn, the function x->

σ(\x — y\) is the fundamental superharmonic function of Rn with pole y.

COROLLARY 1. Let u be superharmonic in Ω and suppose that xeΩ.

Then μ({x}) = 0 if and only if Jt(u, x, r) = o(σ(r)) as r->0 + . In particular,

ifu(x)<+oo (so that Jί{μ, x, r) = O(l) as r->0 + ), then μ({x}) = 0.

A simple proof of the particular case has been given by Kuran [5].

To prove this corollary, suppose that B(x, R) <=. Ω, so that, by (5),

uf(II, x, r) = pn J* ti-»μ(B(x9 t))dt + 0(1) (r > 0 + ). (6)

Since μ(B(x, t)) is increasing on (0, R], it is easy to see that the integral in (6) is

o(σ(r)) as r-»0+ if and only if μ(B(x9 t))-+0 as t-+0 + . Since μ({x}) = lim,_M) +

μ(B(x, t))9 the result follows.

COROLLARY 2. If u is non-negative and superharmonic in Rn (n>3), then

μ(B(x, r ) )<r"- 2 ^(w, x, r).

From (5), we have

uf (ii, x, r) > (n - 2) £ t^nμ(B{x, t))dt,

for each number R > r. Hence

uf(uf x, r) > μ(B(x9 r))(n-2)

Corollary 2 has been proved by Kuran [5; Theorem 4] who also gives the

analogue for a disc in R2.
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5. Proof of Theorem 1

It is enough to show that the last inequality in Theorem 1 holds, for the first

inequality will then follow by working with — u instead of u.

If the last expression in (1) is 4- oo, the required inequality is trivial. Suppose

now that this expression has the value λ and that λ < A < 4- oo. Let R be a positive

number such that

μ(B(x, r)) < Λv(B(x9 r))

whenever 0 < r < R. By Lemma 3, if 0 < r < R, then

uT(u, x, r) = pn J* t'-nμ(B{x, t))dt + 0(1) (r > 0 + )

Λpn [R fi-» v(5(x, t))dt + 0(1)
Jr

(v, x9 r) + 0(1).

Since

limr_>0+ uf(i>, x, r) = t (x) = + oo,

we obtain

(u, x, r)j

and the theorem follows.

6. Proof of Theorem 2

Consider first the case of Theorem 2 in which /(0) = 0. Let R be such that

B(x, R)czΩ3LndO<R<oc. Put #(()) = 0, g(t) = tι-nf'(t) (0<t<R), g(t) = O (t>R),

and define a measure v on £2 by writing dv(y) = #(|x — y|)c/j. Then, if 0<r<R,

, r)) = ( \χ-y\ι-nΓ(\χ-y\)dy
JB(x,r)

\
Jo

and, by Lemma 3, if v is the Green's potential in Ω associated to v, then

ι?, x, r) = snPn \R ϊ-nf(t)dt + 0(1)
J
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Since

ΓR

υ(x) = l im r^ 0 + at(υ, x, r) = snpn\ tι~nf{t)dt = + oo,
Jo

the result now follows from Theorem 1.

If /(0) 7^0, put v=f(O)δx, where δx is the Dirac measure concentrated at x,

and let v be given by v(y)=f(0)σ(\x — y\). Then v(B(x, r))=/(0) for each positive

r and Λ(v, x, r) = σ(r)f(0)~f(r) as r^>0 + . Hence, the result again follows from

Theorem 1.

To prove the Corollary, take α = l a n d / ( 0 = ^ in Theorem 2. Then

n~2 rg+ 2-B(l + o(l)) ( 0 < ^ f < n - 2 )

pnlog(l/r) (q = n - 2).

7. Proof of Theorem 3

This proof is borrowed from Watson [7].

By the Corollary of Theorem 2, Sβ^S'β, where

5^ = {XEΩ: limsupr^o+ rP+2-nμ(B(x, r)) = +oo}.

Now

limsup r_> 0 + rβ+2~nμ(B(x9 r)) < l imsup r ^ 0 + rP+2~nμ(J(x, r)),

where «/(x, r) is the closed cube of centre x and side 2r with edges parallel to the

coordinate axes. Hence

, r))

, d(J) < ε}],

where 7 is any non-degenerate ^-dimensional interval and d(J) is the diameter of

J. Hence 5^ c Z, where Z is the set of points x in Ω for which the last written limit

is +oo. By a result of Rogers and Taylor [7, Lemma 4], mπ_2_ i ?(Z) = 0, and

therefore mn-2-β(Sβ) = 0-

If, now, 0<γ'<β<n-2, then Tβ^Sy>. Hence mn_2_y<T^) = 0 for all such

γ', so that my(T^) = 0 whenever y>n — 2 — β.

8. Proofs of Theorems 4 and 5

We start by quoting two results which we shall need in the proof of Theorem 4,
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THEOREM A. Suppose that ι?=+oo on E and that u is superharmonic in

Ω\E. if

lim mfx^y}XeΩ^E {u(x)/v(x)} > 0

for all yeE9 then u has a superharmonic extension to Ω.

THEOREM B. Let μ and v be measures on a ball B(z9 R) such that v(B(y, r))>

0 whenever B(y9 r)^B(z, R). If

lim
r . 0 + v ( E ( χ r ) )

is greater than — oo for all xeB(z, R) and is non-negative for v-almost all

xeB(z9 R)9 then μ is a non-negative measure.

Theorem A is due to Kuran [6, Theorem 1]. Notice that the Corollary

of Theorem 4 is an improvement of Theorem A.

Theorem B is due to Watson [9; Theorem 1]. Its proof depends on a result

of Besicovitch [1; Theorem 3].

Suppose now that the hypotheses of Theorem 4 are satisfied. It is enough

to prove that if B(z9 R)aΩ9 then u has a superharmonic extension to B(z, R).

Now there exists a positive superharmonic function v1 in B(z, 2R)9 with associated

measure vx such that ι;1 = +oo on E Π B(z, 2R) and v1(£) = 0. (To construct

such a function vl9 take w to be a positive superharmonic function in B(z, 2R)

such that vv= 4- oo on E n B(z, 2R) and put υ= Σm=i m~2 m m (w> m ) ) I n order

to be able to apply Theorems A and B we put Ω' = B(z9 2R) Π Ω and work with

the function v*9 defined in Ωr by

i;*(x) = v(x) + Όl(x) - M 2 ,

instead of v. The following properties of v* and its associated measure v* are

easily verified: (i) v* is superharmonic in Ω\ (ii) v*(B(y, r))>0 whenever

B(y, r ) ς β ' , (iϋ) v* = v o n f i ' n E, (iv) υ*= +oo on Ω' Π £, (v) condition (2)

is satisfied with υ* replacing v for each y in B(z, R) Π E, (vi) condition (3) is

satisfied with v* replacing v for v-almost all y in S(z, #) Π £. Define a function

Φ on B(z, K) Π £ by

Φ(j ) = lim iΩfx^ytXeΩ XE {u(x)/v*(x)}.

Clearly Φ is lower semi-continuous on E. Also Φ > — oo on £. Hence Φ is

bounded below on the compact set B(z, R) Π E. Let K be a non-positive lower

bound of Φ on B(z, R) Π £. Then

limmfx^tXeΩXE {(u(x) - κv*(x))/v*(x)} > 0 (yeB(z9 R) n E).
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Applying Theorem A to the superharmonic function u — KV* in B(z, R) Π E, we find

that u — KV* has a superharmonic extension to B(z, R). Hence u has a <5-super-

harmonic extension, U say, to B(z, R). Let μ be the measure on B(z, R) associated

to ΰ. By Theorem 1,

, V, r)

for v-almost all y 6 B(z, #) n £. Also, by Lemma 2,

i fi(B(y,r)) -. . Γ

- oo

for each y e B(z, R) Π E. Finally, since μ =μ in B(z, r)\£ and μ is a non-negative

measure, we have

for each j in £(z, i^)\£. Hence μ and v* satisfy the hypotheses of Theorem B

and therefore μ is non-negative. It follows easily that ΰ is superharmonic in

B(z, R), and the proof is complete.

The Corollary is an immediate consequence of the theorem and Lemma 2.

If the hypotheses of Theorem 5 are satisfied then Theorem 4 is applicable to

both h and —ft, so that ft has a superharmonic extension h1 and a subharmonic

extension h2 to Ω; but since E is polar, ftx = ft2 everywhere in Ω, so that they are

harmonic.
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