Kaplansky's radical and Hilbert Theorem 90 II

Daiji Kijima and Mieo Nishi
(Received May 19, 1982)

Let F be a pre-Hilbert field, $K=F(\sqrt{a})$ be a non-radical extension of F (i.e. $a \notin R(F)$ where $R(F)$ is Kaplansky's radical of F) and $N: K \rightarrow F$ be the norm map. In [2], we introduced topologies on the groups \dot{F} / \dot{F}^{2} and \dot{K} / \dot{K}^{2} so that the norm map N is continuous and $R(F)$ is closed. We showed there that $N^{-1}(R(F))=$ $(\dot{F} \cdot R(K))^{-}$, where the bar means the topological closure of $\dot{F} \cdot R(K)$.

In this paper we discuss the case where $K=F(\sqrt{a})$ is a radical extension of a quasi-pythagorean field F. A field F is called quasi-pythagorean if $R(F)=$ $D_{F}\langle 1,1\rangle=\{x \in \dot{F}$; the form $\langle 1,1\rangle$ represents $x\}$. The main purpose of this paper is to give some properties of a quasi-pythagorean field F and show that $N^{-1}(R(F))=$ $\dot{F} \cdot R(K)$. In the last section of this paper, we shall give an example of a quasipythagorean field F with $\operatorname{dim} R(F) / \dot{F}^{2}=n$ for any natural number n and $\operatorname{dim} \dot{F} /$ $R(F)=\infty$.

§ 1. Preliminaries

In this section, we state some basic facts on Scharlau's method of transfer. By a field F, we shall always mean a field of characteristic different from two. Let \dot{F} denote the multiplicative group of F. For a quadratic form φ_{F} over F, we define $D_{F}(\varphi)=\left\{a \in \dot{F} ; \varphi_{F}\right.$ represents $\left.a\right\}$ and $G_{F}(\varphi)=\{a \in F ; a \varphi \simeq \varphi\}$. Let K be an extension field of F, and φ_{F} be a form over F. We denote $\varphi_{F} \otimes K$ by φ_{K} for simplicity.

Let $K=F(\sqrt{a})$ be a quadratic extension of F and $x=b+c \sqrt{a}(b, c \in F)$ be an element of K. We write $\operatorname{Im}(x)=c$ and $\bar{x}=b-c \sqrt{a}$. For any element $y \in \dot{K}$, we define the map $s_{y}: K \rightarrow F$ with $s_{y}(x)=\operatorname{Im}(y \bar{x})$. It is clear that s_{y} is a non-zero F-linear functional, and for any non-zero functional $s: K \rightarrow F$, there exists a unique element $y \in \dot{K}$ such that $s=s_{y}$. For a form q_{K} over K, we denote the transfer of q_{K} with respect to s_{y} by $s_{y}^{*}\left(q_{K}\right)$.

Lemma 1.1. Let $K=F(\sqrt{a})$ be a quadratic extension of F. For $y \in \dot{K}$ and a form q_{K} over K, the following statements are equivalent:
(1) $s_{y}^{*}\left(q_{K}\right)$ is isotropic.
(2) $D_{K}\left(q_{K}\right) \cap y \dot{F} \neq \phi$.

Proof. We first assume that $s_{y}^{*}\left(q_{K}\right)$ is isotopic. Then there exists $x \in D_{K}\left(q_{K}\right)$
such that $s_{y}(x)=0$. This implies that $x \in \operatorname{Ker}\left(s_{y}\right)=y F$ and we have $D_{K}\left(q_{K}\right) \cap y \dot{F} \neq \phi$.
Conversely let x be an element of $D_{K}\left(q_{K}\right) \cap y \dot{F}$. Then $s_{y}(x)=0$ and $s_{y}^{*}\left(q_{K}\right)$ is isotropic.
Q.E.D.

Lemma 1.2. Let $K=F(\sqrt{a})$ be a quadratic extension of F. For $y, z \in \dot{K}$ and a form q_{K} over K, we have

$$
s_{y}^{*}\left(z \cdot q_{K}\right) \cong s_{y \bar{z}}^{*}\left(q_{K}\right)
$$

Proof. Let V be the underlying quadratic space of q_{K}. Then for any element $x \in V$, we have $s_{y}^{*}\left(z \cdot q_{K}\right)(x)=s_{y}\left(z \cdot q_{K}(x)\right)=\operatorname{Im}\left(y \cdot \bar{z} \cdot \overline{q_{K}(x)}\right)$ and $s_{y \bar{z}}^{*}\left(q_{K}\right)(x)=$ $s_{y \bar{z}}\left(q_{K}(x)\right)=\operatorname{Im}\left(y \cdot \bar{z} \cdot \frac{q_{K}(x)}{}\right)$. It follows from these relations that $s_{y}^{*}\left(z \cdot q_{K}\right) \cong$ $s_{y \bar{z}}^{*}\left(q_{K}\right)$.
Q.E.D.

Proposition 1.3. Let $K=F(\sqrt{a})$ be a quadratic extension of F. The for $x, y \in \dot{K}$, the following statements hold.
(1) If $y \in x \dot{F}(i . e . \operatorname{Im}(y \bar{x})=0)$, then $s_{y}^{*}(\langle x\rangle) \cong H=\langle 1,-1\rangle$.
(2) If $y \notin x \dot{F}\left(i . e . \operatorname{Im}(y \bar{x} \neq 0)\right.$, then $s_{y}^{*}(\langle x\rangle) \cong \operatorname{Im}(y \bar{x})\langle 1,-N(x y)\rangle$.

Proof. Case 1. We first consider the case $x=1$. The underlying quadratic space of $s_{y}^{*}(\langle 1\rangle)$ is K. If $y \notin x \dot{F}=\dot{F}$, then the 2×2 symmetric matrix of the quadratic form $s_{y}^{*}(\langle 1\rangle)$, relative to the F-basis $\{1, y\}$ on K, is of the form

$$
\left(\begin{array}{cc}
\operatorname{Im}(y) & 0 \\
0 & -\operatorname{Im}(y) N(y)
\end{array}\right)
$$

Hence we have

$$
s_{y}^{*}(\langle 1\rangle) \cong\langle\operatorname{Im}(y),-\operatorname{Im}(y) N(y)\rangle \cong \operatorname{Im}(y)\langle 1,-N(y)\rangle
$$

If $y \in x \dot{F}=\dot{F}$, then $D_{K}(\langle 1\rangle) \cap y \dot{F} \neq \phi$; therefore it follows from Lemma 1.1 that $s_{y}^{*}(\langle 1\rangle)$ is isotropic and $s_{y}^{*}(\langle 1\rangle) \cong H$.

Case 2. Next we consider the case $x \neq 1$. By Lemma 1.2, we obtain $s_{y}^{*}(\langle x\rangle)$ $s_{y \bar{x}}^{*}(\langle 1\rangle)$. The result of Case 1 shows that if $y \bar{x} \in \dot{F}($ i.e. $y \in x \dot{F})$, then $s_{y}^{*}(\langle x\rangle) \cong H$ and if $y \bar{x} \notin \dot{F}$ (i.e. $y \notin x \dot{F}$), then we have

$$
s_{y}^{*}(\langle x\rangle) \cong s_{y \bar{x}}^{*}(\langle 1\rangle) \cong \operatorname{Im}(y \bar{x})\langle 1,-N(y \bar{x})\rangle .
$$

Since $N(x y)=N(y \bar{x}), s_{y}^{*}(\langle x\rangle)$ is isometric to $\operatorname{Im}(y \bar{x})\langle 1,-N(x y)\rangle$.
Q.E.D.

§ 2. Radical extensions of quasi-pythagorean fields

A field F is called pythagorean if the sum of two squares in F is always a square. We shall now define the term in the title of this section.

Definition 2.1. A field F is called quasi-pythagorean if $R(F)=D_{F}\langle 1,1\rangle$, where $R(F)$ is Kaplansky's radical of F.

It is clear that pythagorean fields are quasi-pythagorean fields. An important example of quasi-pythagorean fields is a formally real pre-Hilbert field. In fact, let F be a formally real pre-Hilbert field. Then $-1 \notin R(F)$ and it implies that $\dot{F} \supsetneq D_{F}\langle 1,1\rangle \supseteq R(F)$. We have $D_{F}\langle 1,1\rangle=R(F)$ by the fact $|\dot{F} / R(F)|=2$. So F is quasi-pythagorean.

Lemma 2.2. Let F be a quasi-pythagorean field. Then $R(F)=D_{F}(\infty)$.
Proof. Let $x=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$ be any element of $D_{F}(3)=D_{F}\langle 1,1,1\rangle$. Since $x_{1}^{2}+x_{2}^{2}$ is an element of $R(F), x$ belongs to the group $D_{F}\left\langle x_{1}^{2}+x_{2}^{2}, 1\right\rangle=D_{F}\langle 1,1\rangle$ by [2], Proposition 2.1. It is easy to show that $D_{F}(n)=D_{F}(n+1)$ for any $n \geqq 2$ and we have $D_{F}(2)=D_{F}(\infty)$.
Q.E.D.

For a field F, we write $W_{t}(F)$ to denote the torsion subgroup of the Witt group $W(F)$.

Proposition 2.3. For a field F, the following statements are equaivalent:
(1) F is a quasi-pythagorean field.
(2) $W_{t}(F)=\{\langle 1,-a\rangle \in W(F) ; a \in R(F)\}$.

Moreover if F is a quasi-pythagorean field, then $W_{t}(F) \cong R(F) / \dot{F}^{2}$.
Proof. (1) $\Rightarrow(2)$: If $a \in R(F)=D_{F}(2)$, then $\langle a, a\rangle \cong a\langle 1,1\rangle \cong\langle 1,1\rangle$ and we have $2\langle 1,-a\rangle=0 \in W(F)$. On the other hand, let q_{F} be any torsion element of $W(F)$. We may assume that q_{F} is anisotropic. By [4], Satz 22, we can find $b_{i} \in \dot{F}$ and $a_{i} \in D_{F}(\infty)(i=1, \ldots, n)$ such that $q \sim \sum_{i=1, \ldots, n} b_{i}\left\langle 1,-a_{i}\right\rangle$. Lemma 2.2 shows that $a_{i} \in R(F)$ and $\left\langle 1,-a_{i}\right\rangle$ is universal. So $b_{i}\left\langle 1,-a_{i}\right\rangle \cong\left\langle 1,-a_{i}\right\rangle$ and, since q is anisotropic, $n=1$; therefore $q \cong\langle 1,-a\rangle$ for some $a \in R(F)$.
(2) $\Rightarrow(1)$: Let b be an element of $D_{F}(2)$. Then $2\langle 1,-b\rangle=0 \in W(F)$ and $\langle 1,-b\rangle$ is a torsion element in $W(F)$. Hence it follows from the assumption that there exists $a \in R(F)$ such that $\langle 1,-b\rangle \cong\langle 1,-a\rangle$ and we have $b=a \in R(F)$. This shows $R(F)=D_{F}(2)$ and F is quasi-pythagorean.

Finally we assume that F is a quasi-pythagorean field. We define the map $f: R(F) / \dot{F}^{2} \rightarrow W_{t}(F)$ by $f(a)=\langle 1,-a\rangle, a \in R(F)$. For any $a, b \in R(F)$, we have $\langle 1,-a\rangle \perp\langle 1,-b\rangle \cong\langle 1,-a b\rangle \perp H$ and this shows that the map f is a group homomorphism. We can readily see that f is injective and moreover f is surjective by the statement (2). This settles our assertion.
Q.E.D.

Remark 2.4. It is well-known that if F is a pythagorean field, then $W(F)$ is torsion free. If F is quasi-pythagorean, then $I^{2} F$ is torsion free by Proposition 2.3.

According to the definition in [2], we say that a quadratic extension $K=$
$F(\sqrt{a})$ is a radical extension of F ，if $a \in R(F)$ ．For $x \in \dot{F}$ ，we write $D_{F}\langle 1,-x\rangle=$ $I_{F}(x)$ and for a subset $B \subset \dot{F}$ ，we write $\cap_{x \in B} D_{F}\langle 1,-x\rangle=I_{F}(B)$ ．

Proposition 2．5．Let $K=(\sqrt{a})$ be a radical extension of F ．Then for any n－fold Pfister form $\rho_{F}(n \geqq 1)$ ，we have $D_{K}\left(\rho_{K}\right) \cap \dot{F}=D_{F}\left(\rho_{F}\right)$ ．

Proof．It is clear that $D_{K}\left(\rho_{K}\right) \cap \dot{F} \supseteq D_{F}\left(\rho_{F}\right)$ ．Conversely we take an element $x \in D_{K}\left(\rho_{K}\right) \cap \dot{F}$ ．It is sufficient to show that the $(n+1)$－fold Pfister form $\rho_{F} \otimes 《-x 》$ is isotropic．Suppose $\left.\rho_{F} \otimes 《-x\right\rangle$ is anisotropic．Since $\left.\left(\rho_{F} \otimes 《-x\right\rangle\right) \otimes K \cong$ $\left.\rho_{K} \otimes 《-x\right\rangle$ is isotropic，［3］，p．200，Lemma 3.1 implies that $\left.\rho_{F} \otimes 《-x\right\rangle$ contains a subform $b\langle 1,-a\rangle$ for some $b \in \dot{F}$ ．Since $a \in R(F), b\langle 1,-a\rangle \cong\langle 1,-a\rangle$ is universal and the fact $\left.\operatorname{dim}\left(\rho_{F} \otimes 《-x\right\rangle\right) \geqq 4$ implies that $\left.\rho_{F} \otimes 《-x\right\rangle$ is isotropic． This is a contradiction．

Q．E．D．
Proposition 2．6．Let F be a quasi－pythagorean field and $K=F(\sqrt{a})$ be a radical extension of F ．The for $b, c \in \dot{F}$ ，the following statements are equivalent：
（1）$I_{F}(b) \subseteq I_{F}(c)$ ．
（2）$I_{K}(b) \subseteq I_{K}(c)$ ．
Proof．（2）$\Rightarrow(1)$ ：For any $x \in \dot{F}$ ，it follows from Proposition 2.5 that $I_{K}(x) \cap \dot{F}=I_{F}(x)$ ，and the assertion follows immediately．
$(1) \Rightarrow(2)$ ：Let x be an element of $I_{K}(b)$ ．We must show that $x \in I_{K}(c)$ ． Norm principle（［1］，Proposition 2．13）shows that $\dot{F} \cdot I_{K}(b) \subseteq \dot{F} \cdot I_{K}(c)$ ，and so there exists $f \in \dot{F}$ such that $f x \in I_{K}(c)$ ．Thus，$f \in x I_{K}(c) \cap \dot{F} \subseteq I_{K}(b) \cdot I_{K}(c) \cap \dot{F} \subseteq$ $\left.D_{K}(《-b,-c\rangle\right) \cap \dot{F}$ ，and by Proposition 2.5 ，we have $\left.f \in D_{F}(《-b,-c\rangle\right)$ ．The fact $I_{F}(b) \subseteq I_{F}(c)$ implies $-b \in D_{F}\langle 1,-c\rangle=G_{F}\langle 1,-c\rangle$ and so

$$
\begin{aligned}
《-b,-c\rangle & \cong\langle 1,-c\rangle \perp(-b)\langle 1,-c\rangle \\
& \cong\langle 1,-c\rangle \perp\langle 1,-c\rangle \cong\langle 1,1\rangle \perp(-c)\langle 1,1\rangle
\end{aligned}
$$

Since F is quasi－pythagorean，it follows from［2］，Proposition 2.1 that $D_{F} 《-b$ ， $-c\rangle\rangle=D_{F}\langle 1,-c\rangle$ ．Hence $f \in D_{F}\langle 1,-c\rangle=I_{F}(c) \subseteq I_{K}(c)$ and we have $x \in I_{K}(c)$ ．

Q．E．D．
Corollary 2．7．Let F be a quasi－pythagorean field and $K=F(\sqrt{a})$ be a radical extension of F ．Then，$D_{K}\langle 1,1\rangle \subseteq I_{K}(\dot{F})$ ．

Proof．For any $x \in \dot{F}$ ，we have $R(F)=D_{F}\langle 1,1\rangle=I_{F}(-1) \subseteq I_{F}(x)$ ．It follows from Proposition 2.6 that $D_{K}\langle 1,1\rangle=I_{K}(-1) \subseteq I_{K}(x)$ ．So，$D_{K}\langle 1,1\rangle \subseteq \cap_{x \in \mathscr{F}} I_{K}(x)$ $=I_{K}(\dot{F})$ ．

Q．E．D．
Definition 2．8．Let $K=F(\sqrt{a})$ be a quadratic extension of F ．We denote by $\bar{R}(K)$ the set $\left\{x \in \dot{K} ; \dot{F} \cdot D_{K}\langle 1,-x\rangle=\dot{K}\right\}$ ．

It is clear that $R(K) \subseteq \bar{R}(K)$ ．In general $\bar{R}(K)$ is not a subgroup of \dot{K}.

Lemma 2.9. Let $K=F(\sqrt{a})$ be a quadratic extension of F. Then $\bar{R}(K) \cap$ $I_{K}(\dot{F})=R(K)$.

Proof. It is clear that $\bar{R}(K) \cap I_{K}(\dot{F}) \supseteq R(K)$. Conversely, suppose $x \in \bar{R}(K)$ $\cap I_{K}(\dot{F})$. Since $x \in I_{K}(\dot{F})$, we have $x \in I_{K}(b)$ for any $b \in \dot{F}$ and this implies $b \in I_{K}(x)$ for any $b \in \dot{F}$ by [2], Lemma 4.1; therefore we have $\dot{F} \subseteq I_{K}(x)$. On the other hand, since $x \in \bar{R}(K), \dot{F} \cdot I_{K}(x)=\dot{K}$ and the assertion follows.
Q.E.D.

Proposition 2.10. Let $K=F(\sqrt{a})$ be a quadratic extension of F. Then for $x \in \dot{K}$, the following statements are equivalent:
(1) $x \in \bar{R}(K)$.
(2) For any $y \in \dot{K}-(\dot{F} \cup x \dot{F})$, the form over F,

$$
\langle 1,-N(y)\rangle-\operatorname{Im}(y \bar{x}) / \operatorname{Im}(y)\langle 1,-N(x y)\rangle
$$

is isotropic.
Proof. First we note that if $y \in \dot{K}-(\dot{F} \cup x \dot{F})$, then $\operatorname{Im}(y) \neq 0$ and $\operatorname{Im}(y \bar{x}) \neq 0$. (1) \Rightarrow (2): The fact $\dot{F} \cdot D_{K}\langle 1,-x\rangle=\dot{K}$ implies $D_{K}\langle 1,-x\rangle \cap y \dot{F} \neq \phi$ for any $y \in \dot{K}$. Hence $s_{y}^{*}(\langle 1,-x\rangle)$ is isotropic for any $y \in \dot{K}$ by Lemma 1.1. If $y \in \dot{K}-$ $(\dot{F} \cup x \dot{F})$, then $\operatorname{Im}(y) \neq 0$ and $\operatorname{Im}(y \bar{x}) \neq 0$; therefore it follows from Proposition 1.3 that

$$
\begin{aligned}
s_{y}^{*}(\langle 1,-x\rangle) & \cong s_{y}^{*}(\langle 1\rangle)-s_{y}^{*}(\langle x\rangle) \\
& \cong \operatorname{Im}(y)\langle 1,-N(y)\rangle-\operatorname{Im}(y \bar{x})\langle 1,-N(x y)\rangle
\end{aligned}
$$

Thus $\operatorname{Im}(y)\langle 1,-N(y)\rangle-\operatorname{Im}(y \bar{x})\langle 1,-N(x y)\rangle$ is isotropic and we obtain the assertion (2).
(2) $\Rightarrow(1)$: By Lemma 1.1, it is sufficient to show that for any $y \in \dot{K}, s_{y}^{*}(\langle 1$, $-x\rangle)$ is isotropic. If $y \in \dot{F} \cup x \dot{F}$, then $s_{y}^{*}(\langle 1\rangle)$ or $s_{y}^{*}(\langle x\rangle)$ is hyperbolic by Proposition 1.3; thus $s_{y}^{*}(\langle 1,-x\rangle)$ is isotropic in this case. If $y \in \dot{K}-(\dot{F} \cup x \dot{F})$, then we have $\operatorname{Im}(y)\langle 1,-N(y)\rangle-\operatorname{Im}(y \bar{x})\langle 1,-N(x y)\rangle \cong s_{y}^{*}(\langle 1,-x\rangle)$ and the assumption (2) implies $s_{y}^{*}(\langle 1,-x\rangle)$ is isotropic. Q.E.D.

Let $K=F(\sqrt{a})$ be a quadratic extension of F. Let y be an element of $\dot{K}-\dot{F}$; then by using the F-basis $\{1, y\}$ of K, any element $x \in K$ can be written as $x=$ $b+c y(b, c \in F)$. Here the element b is uniquely determined and so we put $b=f_{y}(x)$. By a straightfoward computation, we have the following

Lemma 2.11. In the above situation, we have $f_{y}(x)=\operatorname{Im}(y \bar{x}) / \operatorname{Im}(y)$.
Lemma 2.12. Let $K=F(\sqrt{a})$ be a quadratic extension of F and x be an element of \dot{K}. If $\left.f_{y}(x) \in D_{F}<1,-N(y)\right\rangle$ for any $y \in \dot{K}-(\dot{F} \cup x \dot{F})$, then $x \in \bar{R}(K)$.

Proof. Since $\operatorname{Im}(y \bar{x}) / \operatorname{Im}(y)=f_{y}(x) \in D_{F}\langle 1,-N(y)\rangle$, the form $\langle 1,-N(y)\rangle-$ $\operatorname{Im}(y \bar{x}) / \operatorname{Im}(y)\langle 1,-N(x y)\rangle$, which is isometric to $\langle 1,-N(y)\rangle-f_{y}(x)\langle 1,-N(x y)\rangle$, is isotropic. By Proposition 2.9, we have $x \in \bar{R}(K)$. Q.E.D.

THEOREM 2.13. Let F be a quasi-pythagorean field, and $K=F(\sqrt{a})$ be a radical extension of F. Then we have $N^{-1}(R(F)=\dot{F} \cdot R(K)$, where $N: K \rightarrow F$ is the norm map.

Proof. Norm principle ([1], Proposition 2.13) says that $N^{-1}(R(F))=$ $N^{-1}\left(D_{F}\langle 1,1\rangle\right)=\dot{F} \cdot D_{K}\langle 1,1\rangle$. So it is sufficient to show that $R(K)=D_{K}\langle 1,1\rangle$. By Corollary 2.7 and Lemma 2.9 , we have only to show that $D_{K}\langle 1,1\rangle \subseteq \bar{R}(K)$. We take an element $x \in D_{K}\langle 1,1\rangle$. Then for any $y \in \dot{K}-(\dot{F} \cup x \dot{F})$, we can write $\quad x=\left(b_{1}+c_{1} y\right)^{2}+\left(b_{2}+c_{2} y\right)^{2}\left(b_{i}, c_{i} \in F\right)$. Then $\quad x=\left(b_{1}^{2}+b_{2}^{2}\right)+\left(c_{1}^{2}+c_{2}^{2}\right) y^{2}+$ $2\left(b_{1} c_{1}+b_{2} c_{2}\right) y$. By Lemma 2.11, we have $f_{y}\left(y^{2}\right)=\operatorname{Im}\left(y \cdot \bar{y}^{2}\right) / \operatorname{Im}(y)=N(y) \operatorname{Im}(\bar{y}) /$ $\operatorname{Im}(y)=-N(y)$, and this implies that there exists $\alpha \in F$ such that $y^{2}=-N(y)+\alpha y$, and hence there exists $\beta \in F$ such that $x=\left(b_{1}^{2}+b_{2}^{2}\right)+\left(c_{1}^{2}+c_{2}^{2}\right)(-N(y))+\beta y$. Namely $\left.f_{y}(x)=\left(b_{1}^{2}+b_{2}^{2}\right)+\left(c_{1}^{2}+c_{2}^{2}\right)(-N(y)) \in D_{F}(《 1,-N(y)\rangle\right)$. Since F is quasipythagorean, we have $\left.D_{F}(《 1,-N(y)\rangle\right)=D_{F}(\langle 1,-N(y)\rangle)$ and $x \in \bar{R}(K)$ by Lemma 2.12.
Q.E.D.

In the proof of Theorem 2.13, we have shown that $D_{K}\langle 1,1\rangle=R(K)$. Thus any raidcal extension of a quasi-pythagorean field is also quasi-pythagorean.

§3. Application

Throughout this section, we assume that F is a quasi-pythagorean field with a non-trivial radical (i.e. $\left.\dot{F}^{2} \varsubsetneqq R(F) \varsubsetneqq \dot{F}\right)$, unless otherwise stated. Let $K=F(\sqrt{a})$ be a radical extension of F. By [2], Proposition 4.7, we have $R(K) \cap \dot{F}=R(F)$, and this implies $K \supsetneqq R(K)$. On the other hand, Theorem 2.13 says that $N^{-1}(R(F))$ $=\dot{F} \cdot R(K)$, and the norm map is surjective since $K=F(\sqrt{a})$ is a radical extension. It follows from the fact $N^{-1}\left(\dot{F}^{2}\right)=\dot{F} \cdot \dot{K}^{2}$ that $\dot{F} \cdot R(K) \neq \dot{F} \cdot \dot{K}^{2}$, which implies $R(K) \neq \dot{K}^{2}$. Namely $K=F(\sqrt{a})$ is a quasi-pythagorean field with a non-trivial radical. Let L be a field and S be a multiplicative subgroup of \dot{L} which contains \dot{L}^{2}. Then S / \dot{L}^{2} has the structure of Z_{2}-vector space, and we denote its dimension by $\operatorname{dim} S / \dot{L}^{2}$. In case when $\operatorname{dim} \dot{F} / \dot{F}^{2}<\infty$, we have the following

Lemma 3.1. Let $K=F(\sqrt{a})$ be a radical extension of F. If $\operatorname{dim} \dot{F} / \dot{F}^{2}$ is finite, then $\operatorname{dim} \dot{K} / \dot{K}^{2}=2 n-1$ and $\operatorname{dim} R(K) / \dot{K}^{2}=2 m-1$ where $n=\operatorname{dim} \dot{F} / \dot{F}^{2}$ and $m=\operatorname{dim} R(F) / \dot{F}^{2}$.

Proof. Hilbert Theorem 90 (or [3], p. 202, Theorem 3.4) says that the sequence

$$
1 \longrightarrow \dot{F} /\left\langle\dot{F}^{2}, a\right\rangle \xrightarrow{\varepsilon} \dot{K} / \dot{K}^{2} \xrightarrow{N} \dot{F} / \dot{F}^{2} \longrightarrow 1
$$

is exact. This exactness implies $\operatorname{dim} \dot{K} / \dot{K}^{2}=2 n-1$. As for $\operatorname{dim} R(K) / \dot{K}^{2}$, we have the exact sequence

$$
1 \longrightarrow \dot{F} / R(F) \xrightarrow{\bar{\varepsilon}} \dot{K} / R(K) \xrightarrow{\bar{N}} \dot{F} / R(F) \longrightarrow 1
$$

by Theorem 2.13 and [2], Proposition 5.3. Hence we have $\operatorname{dim} \dot{K} / R(K)=2(n-m)$ and $\operatorname{dim} R(K) / \dot{K}^{2}=(2 n-1)-2(n-m)=2 m-1$.
Q.E.D.

Starting from the quasi-pythagorean field F, we define a sequence of fields $\left\{K_{i}\right\}_{i=0,1,2, \ldots .}$ inductively as follows: $K_{0}=F$ and K_{i+1} is a radical extension of K_{i}. Note that each K_{i} is a quasi-pythagorean field with a non-trivial radical. We let $K=\operatorname{ind} \lim K_{i}=\cup K_{i}$.

In the remainder of this paper, we use these notations unless otherwise stated. It is clear that if $i<j$, then $R\left(K_{j}\right) \cap K_{i}=R\left(K_{i}\right)$.

Proposition 3.2. K is a quasi-pythagorean field, and $R(K) \cap K_{i}=R\left(K_{i}\right)$ for any i.

Proof. Step 1. First we show that $R(K) \cap K_{i} \supseteq R\left(K_{i}\right)$. It is sufficient to show that $y \in D_{K}\langle 1,-x\rangle$ for any $x \in R\left(K_{i}\right)$ and any $y \in \dot{K}$. There exists $j(j \geqq i)$ such that $y \in K_{j}$. Since $x \in R\left(K_{i}\right) \subseteq R\left(K_{j}\right)$, we have $y \in D_{K_{j}}\langle 1,-x\rangle \subseteq D_{K}\langle 1,-x\rangle$.

Step 2. Next we show that K is a quasi-pythagorean field. Let y be an element of $D_{K}\langle 1,1\rangle$. There exist $y_{1}, y_{2} \in K$ such that $y=y_{1}^{2}+y_{2}^{2}$. We may assume that $y_{1}, y_{2} \in K_{j}$ for some j. Then the fact $y \in D_{K_{j}}\langle 1,1\rangle=R\left(K_{j}\right)$ implies $y \in R(K)$ by Step 1 .

Step 3. Finally we show $R(K) \cap K_{i}=R\left(K_{i}\right)$. Let x be an element of $R(K) \cap$ $K_{i}=D_{K}\langle 1,1\rangle \cap K_{i}$. We may assume that $x=x_{1}^{2}+x_{2}^{2},\left(x_{1}, x_{2} \in K_{j}\right)$ for some $j \geqq i$. Then $x \in D_{K_{j}}\langle 1,1\rangle=R\left(K_{j}\right)$ and the fact $R\left(K_{j}\right) \cap K_{i}=R\left(K_{i}\right)$ implies $x \in$ $R\left(K_{i}\right)$. Thus we have $R(K) \cap K_{i} \subseteq R\left(K_{i}\right)$.
Q.E.D.

Remark 3.3. Proposition 3.2 shows that K is a quasi-pythagorean field and $\dot{K} \supsetneq R(K)$. More strictly, we have $\operatorname{dim} \dot{K} / R(K)=\infty$. In fact, $R(K) \cap K_{i}=R\left(K_{i}\right)$ implies that the canonical homomorphism $\dot{K}_{i} / R\left(K_{i}\right) \rightarrow \dot{K} / R(K)$ is injective for any i. Hence if $\operatorname{dim} \dot{F} / R(F)=\operatorname{dim} \dot{K}_{0} / R\left(K_{0}\right)=\infty$, then it is clear that $\operatorname{dim} \dot{K} / R(K)=$ ∞. If $\operatorname{dim} \dot{F} / R(F)=t<\infty$, then we have $\operatorname{dim} \dot{K}_{i} / R\left(K_{i}\right)=2^{i} t$ by Lemma 3.1; hence $\operatorname{dim} \dot{K} / R(K) \geqq 2^{i} t$ for any i and we obtain $\operatorname{dim} \dot{K} / R(K)=\infty$.

Proposition 3.4. If $\operatorname{dim} R(F) / \dot{F}^{2}=1$, then $R(K)=\dot{K}^{2}$.
Proof. We write $K_{i+1}=K_{i}\left(\sqrt{a_{i}}\right), a_{i} \in R\left(K_{i}\right)-\dot{K}_{i}^{2}$. Then $\dot{K}_{i+1}^{2} \cap K_{i}=\left\langle\dot{K}_{i}^{2}\right.$, $\left.a_{i}\right\rangle$ for any i and $\operatorname{dim} R\left(K_{i}\right) / \dot{K}_{i}^{2}=1$ by Lemma 3.1. Hence we have $R\left(K_{i}\right)=$ $\left\langle\dot{K}_{i}^{2}, a_{i}\right\rangle \subseteq \dot{K}_{i+1}^{2}$, and this implies $R(K)=\cup R\left(K_{i}\right)=\cup \dot{K}_{i}^{2}=\dot{K}^{2} . \quad$ Q.E.D.

For any natural number n, K. Szymiczek ([5], p. 207) gave an example of a formally real pre-Hilbert (hence quasi-pythagorean) field F such that $\operatorname{dim} R(F) / \dot{F}^{2}=n$. In the following proposition, we shall give an example of a quasi-pythagorean field K such that $\operatorname{dim} \dot{K} / R(K)=\infty$ and $\operatorname{dim} R(K) / \dot{K}^{2}=n$ for any positive integer n. First we need a lemma.

Lemma 3.5. Let $L=k(\sqrt{x})$ be a quadratic extension of k. If $\left\{y_{1}, \ldots, y_{n}, x\right\}$ $\subset k$ is lenearly independent in k / k^{2} (as a \boldsymbol{Z}_{2}-vector space), then $\left\{y_{1}, \ldots, y_{n}\right\}$ is linearly independent in \dot{L} / \dot{L}^{2}.

Proof. Since the canonical injection $\varepsilon: k /\left\langle\dot{k}^{2}, x\right\rangle \rightarrow \dot{L} / \dot{L}^{2}$ is \boldsymbol{Z}_{2}-linear, we have $\operatorname{dim}\left(\left\langle y_{1}, \ldots, y_{n}, L^{2}\right\rangle / \dot{L}^{2}\right)=\operatorname{dim}\left(\left\langle y_{1}, \ldots, y_{n}, x, \dot{k}^{2}\right\rangle \mid\left\langle x, \dot{k}^{2}\right\rangle\right)=n$. This fact implies that $\left\{y_{1}, \ldots, y_{n}\right\}$ is linearly independent in \dot{L} / \dot{L}^{2}. Q.E.D.

Proposition 3.6. If $\operatorname{dim} R(F) / \dot{F}^{2} \geqq 2$, then for any natural number n, we can construct a suitable sequence of radical extensions $\left\{K_{i}\right\}_{i=1,2,3 \ldots}$ such that $\operatorname{dim} R(K) / \dot{K}^{2}=n$.

Proof. Since $\operatorname{dim} R(F) / \dot{F}^{2} \geqq 2$, Lemma 3.1 shows that there exists $i(1)$ such that $\operatorname{dim} R\left(K_{i(1)}\right) / \dot{K}_{i(1)}>n$. Let $\left\{b_{1}, \ldots, b_{n}, a_{i(1)+1}, a_{i(1)+2}, \ldots, a_{i(2)}\right\}$ be a basis of $R\left(K_{i(1)}\right) / \dot{K}_{i(1)}^{2}$, where $\operatorname{dim} R\left(K_{i(1)}\right) / \dot{K}_{i(1)}^{2}=n+i(2)-i(1)$. We fix the field K_{i} and the set of elements $\left\{b_{1}, \ldots, b_{n}\right\}$, and we put $K_{i(1)+1}=K_{i(1)}\left(\sqrt{a_{i(1)+1}}\right), K_{i(1)+2}=$ $K_{i(1)+1}\left(\sqrt{a_{i(1)+2}}\right), \ldots, K_{i(2)}=K_{i(2)-1}\left(\sqrt{a_{i(2)}}\right)$. Then we have $a_{j} \in \dot{K}_{i(2)}^{2}$ for any $j=i(1)+1, i(1)+2, \ldots, i(2)$ and its implies that $\left\langle b_{1}, \ldots, b_{n}, \dot{K}_{i(2)}^{2}\right\rangle=\left\langle R\left(K_{i(1)}\right)\right.$, $\left.\dot{K}_{i(2)}^{2}\right\rangle$. Lemma 3.1 shows that $\operatorname{dim} R\left(K_{i(2)}\right) / \dot{K}_{i(2)}^{2}>n$, and Lemma 3.5 shows that $\left\{b_{1}, \ldots, b_{n}\right\}$ is linearly independent in $R\left(K_{i(2)}\right) / \dot{K}_{i(2)}^{2}$. Let $\left\{b_{1}, \ldots, b_{n}, a_{i(2)+1}\right.$, $\left.a_{i(2)+2}, \ldots, a_{i(3)}\right\}$ be a basis of $R\left(K_{i(2)}\right) / \dot{K}_{i(2)}^{2}$, where $\operatorname{dim} R\left(K_{i(2)}\right) / \dot{K}_{i(2)}^{2}=$ $n+i(3)-i(2)$. We put $K_{i(2)+1}=K_{i(2)}\left(\sqrt{a_{i(2)+1}}\right), K_{i(2)+2}=K_{i(2)+1}\left(\sqrt{a_{i(2)+2}}\right), \ldots$, $K_{i(3)}=K_{i(3)-1}\left(\sqrt{a_{i(3)}}\right)$. The sequence of fields $K_{i(3)+1}, K_{i(3)+2}, \ldots, K_{i(4)}, \ldots$ is defined similarly.

We shall now show that $K=\operatorname{ind} \lim K_{i}$ has the required property. First we show that $\left\{b_{1}, \ldots, b_{n}\right\}$ is linearly independent in $R(K) / \dot{K}^{2}$. Suppose $\left\{b_{1}, \ldots, b_{n}\right\}$ is linearly dependent in $R(K) / \dot{K}^{2}$. Then there exists a partial product b of $\left\{b_{1}, \ldots, b_{n}\right\}$ such that $b \in \dot{K}^{2}$. Since $\dot{K}^{2}=\cup \dot{K}_{j}^{2}$, there exists j such that $b \in \dot{K}_{j}^{2}$, and this means that $\left\{b_{1}, \ldots, b_{n}\right\}$ is linearly dependent in $R\left(K_{j}\right) / \dot{K}_{j}^{2}$. This is a contradiction, and hence $\left\{b_{1}, \ldots, b_{n}\right\}$ is linearly independent in $R(K) / \dot{K}^{2}$.

Next we show that $R(K) / \dot{K}^{2}$ is generated as $a Z_{2}$-vector space by $\left\{b_{1}, \ldots, b_{n}\right\}$. Let x be an element of $R(K)$. There exists j such that $x \in K_{j}$. Since $R(K) \cap K_{j}=$ $R\left(K_{j}\right)$, we have $x \in R\left(K_{j}\right)$. Let $i(s)$ be a number which is larger than j. Then we have $x \in\left\langle R\left(K_{i(s)}\right), \dot{K}_{i(s+1)}^{2}\right\rangle=\left\langle b_{1}, \ldots, b_{n}, \dot{K}_{i(s+1)}^{2}\right\rangle \subseteq\left\langle b_{1}, \ldots, b_{n}, \dot{K}^{2}\right\rangle$, and this shows that $\left\{b_{1}, \ldots, b_{n}\right\}$ generates $R(K) / \dot{K}^{2}$. Thus we see that K is a quasipythagorean field with $\operatorname{dim} \dot{K} / R(K)=\infty$ and $\operatorname{dim} R(K) / \dot{K}^{2}=n . \quad$ Q.E.D.

References

[1] R. Elman and T. Y. Lam, Quadratic forms under algebraic extensions, Math. Ann. 219 (1976), 21-42.
[2] D. Kijima and M. Nishi, Kaplansky's radical and Hilbert Theorem 90, Hiroshima Math. J. 11 (1981), 443-456.
[3] T. Y. Lam, The algebraic theory of quadratic forms, W. A. Benjamin, Reading, Mass., 1973.
[4] A. Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), 116-132.
[5] K. Szymiczek, Quadratic forms over fields with finite square class number, Acta. Arith. 28 (1975), 195-221.

Department of Mathematics, Faculty of Science, Hiroshima University

