The Bergman kernel function for symmetric Siegel domains of type III

Dedicated to Professor K. Murata for his 60th birthday

Toru Inoue
(Received December 14, 1982)

It is known (Wolf-Korányi [7]) that every hermitian symmetric space of noncompact type has a standard realization as a Siegel domain of type III. In this note we give an explicit formula for the Bergman kernel function of such a symmetric Siegel domain.

The general definition of Siegel domain of type III was given by PyatetskiiShapiro [4] as follows. Let U, V and W be complex vector spaces. Let $U_{\boldsymbol{R}}$ be a real form of U, Ω an open convex cone in $U_{\boldsymbol{R}}$, and B a bounded domain in W. Given any $w \in B$, let Φ_{w} be a semi-hermitian form of $V \times V$ to U, i.e., $\Phi_{w}=\Phi_{w}^{h}+$ Φ_{w}^{b} where Φ_{w}^{h} is hermitian relative to the complex conjugation of U over $U_{\boldsymbol{R}}$ and Φ_{w}^{b} is symmetric \boldsymbol{C}-bilinear. Then the domain

$$
\left\{(u, v, w) \in U \oplus V \oplus W ; \operatorname{Im} u-\operatorname{Re} \Phi_{w}(v, v) \in \Omega, w \in B\right\}
$$

is called a Siegel domain of type III. Siegel domains of type II are degenerate special case $W=0$, i.e., $B=(0), \Phi_{0}^{b}=0$ and Φ_{0}^{h} is positive definite relative to Ω.

For Siegel domains of type II (not necessarily symmetric nor homogeneous), an explicit formula for the Bergman kernel was given by Gindikin [1, Theorem 5.4] in terms of a certain integral over the dual cone of Ω (see also Korányi [3, Proposition 5.3]).

Every hermitian symmetric space of noncompact type can be written as G / K, where G is a connected semi-simple linear Lie group and K is a maximal compact subgroup of G. Let \mathfrak{g}, \mathfrak{f} be the Lie algebras of G, K and $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ be the corresponding Cartan decomposition. We denote the complexifications of \mathfrak{g}, $\mathfrak{f}, \mathfrak{p}$ by $\mathfrak{g}_{\boldsymbol{c}}, \mathfrak{f}_{\boldsymbol{c}}, \mathfrak{p}_{\boldsymbol{c}}$, respectively. Then $\mathfrak{p}_{\boldsymbol{c}}$ is decomposed into the direct sum of two complex subalgebras \mathfrak{p}^{+}and \mathfrak{p}^{-}, which are ($\pm i$)-eigenspaces of the complex structure of \mathfrak{p}, respectively, and are abelian subalegbras of $\mathfrak{g}_{\boldsymbol{c}}$ normalized by \mathfrak{f}_{c}.

Let $G_{\boldsymbol{C}}$ be the complexification of G and let $P^{ \pm}, K_{\boldsymbol{C}}$ be the connected subgroups of $G_{\boldsymbol{C}}$ corresponding to $\mathfrak{p}^{ \pm},{ }_{\boldsymbol{f}}^{\boldsymbol{C}}$, respectively. It is known that the map $\mathfrak{p}^{+} \times K_{\boldsymbol{C}} \times \mathfrak{p}^{-} \rightarrow G_{\boldsymbol{C}}$, given by $\left(X^{+}, k, X^{-}\right) \rightarrow \exp X^{+} \cdot k \cdot \exp X^{-}$, is a holomorphic diffeomorphism onto a dense open subset $P^{+} K_{\boldsymbol{C}} P^{-}$of $G_{\boldsymbol{c}}$, which contains G. Therefore, every element $g \in P^{+} K_{\boldsymbol{C}} P^{-} \subset G_{\boldsymbol{C}}$ can be written in a unique way as

$$
\begin{equation*}
g=\pi_{+}(g) \cdot \pi_{0}(g) \cdot \pi_{-}(g), \quad \pi_{0}(g) \in K_{\boldsymbol{C}}, \pi_{ \pm}(g) \in P^{ \pm} \tag{1}
\end{equation*}
$$

Furthermore, the map $\zeta: P^{+} K_{\boldsymbol{C}} P^{-} \rightarrow \mathfrak{p}^{+}$, given by

$$
\begin{equation*}
\zeta(g)=\log \pi_{+}(g), \tag{2}
\end{equation*}
$$

induces a holomorphic diffeomorphism of G / K onto $\zeta(G)=D$, and D is a bounded domain in \mathfrak{p}^{+}.

Let t be a maximal abelian subalgebra of \mathfrak{f}. Then $t_{\boldsymbol{c}}$, the complexification of t, is a Cartan subalgebra of $g_{\boldsymbol{c}}$. For each root α of $g_{\boldsymbol{c}}$ relative to $t_{\boldsymbol{c}}$, let g^{α} be the corresponding root space, and let $H_{\alpha} \in$ it $\cap\left[\mathfrak{g}^{\alpha}, \mathfrak{g}^{-\alpha}\right]$ be the unique element such that $\alpha\left(H_{\alpha}\right)=2$. We choose a linear order in the dual of the real vector space it such that \mathfrak{p}^{+}is spanned by root spaces for noncompact positive roots. For each noncompact root α, we choose a root vector $E_{\alpha} \in \mathfrak{g}^{\alpha}$ such that $\left[E_{\alpha}, E_{-\alpha}\right]=$ H_{α} and $\bar{E}_{\alpha}=E_{-\alpha}$ where the bar denotes the complex conjugation of $\mathfrak{g}_{\boldsymbol{c}}$ with respect to g .

Let Ψ be a maximal set of strongly orthogonal noncompact positive roots. Following Wolf-Korányi [7], we define, for every subset $\Gamma \subset \Psi$, the partial Cayley transform by

$$
c_{\Gamma}=\prod_{\alpha \in \Gamma} \exp \frac{\pi}{4} i\left(E_{\alpha}+E_{-\alpha}\right) .
$$

Then $c_{\Gamma} G \subset P^{+} K_{c} P^{-}$and we can define

$$
\begin{equation*}
S_{\Gamma}=\zeta\left(c_{\Gamma} G\right) \subset \mathfrak{p}^{+} \tag{3}
\end{equation*}
$$

where ζ is as in (2). In [7] it is shown that S_{Γ} is a Siegel domain of type III and in the special case $\Gamma=\Psi, S_{\Psi}$ is a Siegel domain of type II. For our purpose, however, the precise description of S_{Γ} as a Siegel domain of type III is not needed.

For $(g, z) \in G_{\boldsymbol{C}} \times \mathfrak{p}^{+}$, such that $g \exp z \in P^{+} K_{\boldsymbol{C}} P^{-}$, we define $g \cdot z \in \mathfrak{p}^{+}$by

$$
g \cdot z=\log \left(\pi_{+}(g \exp z)\right)
$$

where π_{+}is as in (1). Then the map $z \rightarrow g \cdot z$ is holomorphic and S_{Γ} is the partial Cayley transform of the bounded symmetric domain D, i.e.,

$$
S_{\Gamma}=c_{\Gamma} \cdot D
$$

Let $\mathscr{K}_{\Gamma}(z, w)$ be the Bergman kernel function of S_{Γ} and let $\chi: K_{\boldsymbol{C}} \rightarrow \boldsymbol{C}^{\times}$be the holomorphic character of $K_{\boldsymbol{C}}$ defined by

$$
\chi(k)=\operatorname{det}\left(\left.\operatorname{Ad}(k)\right|_{p^{+}}\right), \quad k \in K_{\boldsymbol{c}} .
$$

Then we have
Proposition. The Bergman kernel function of S_{r} is given by

$$
\mathscr{K}_{\Gamma}(z, w)=\operatorname{vol}(D)^{-1} \chi\left(\pi_{0}\left(\exp (-\bar{w}) c_{\Gamma}^{-2} \exp z\right)\right)
$$

where $\operatorname{vol}(D)$ is the Euclidean volume of the bounded symmetric domain D, π_{0} is as in (1), and $w \rightarrow \bar{w}$ denotes the complex conjugation of $\mathfrak{g}_{\boldsymbol{c}}$ with respect to g.

Proof. Let $\mathscr{K}_{D}(z, w)$ be the Bergman kernel of the bounded symmetric domain D. Then it is known ([2], [5]) that

$$
\begin{equation*}
\mathscr{K}_{D}(z, w)=\operatorname{vol}(D)^{-1} \chi\left(\pi_{0}(\exp (-\bar{w}) \exp z)\right) . \tag{4}
\end{equation*}
$$

For $z \in S_{\Gamma}$, let $j\left(c_{\Gamma}^{-1}, z\right)$ denote the complex Jacobian (determinant) of the holomorphic map $z \rightarrow c_{\Gamma}^{-1} \cdot z$ at the point z. Then by [5, Lemma 5.3, p. 65],

$$
j\left(c_{\Gamma}^{-1}, z\right)=\chi\left(\pi_{0}\left(c_{\Gamma}^{-1} \exp z\right)\right)
$$

On the other hand, since $D=c_{\Gamma}^{-1} \cdot S_{\Gamma}$, the general theory of the Bergman kernel implies that, for $z, w \in S_{\Gamma}$,

$$
\begin{equation*}
\mathscr{K}_{\Gamma}(z, w)=j\left(c_{\Gamma}^{-1}, z\right) \mathscr{K}_{D}\left(c_{\Gamma}^{-1} \cdot z, c_{\Gamma}^{-1} \cdot w\right) \overline{j\left(c_{\Gamma}^{-1}, w\right)} \tag{5}
\end{equation*}
$$

In what follows we write c instead of c_{Γ}. We also write e^{z} for $\exp z$. Let σ denote the complex conjugation of $G_{\boldsymbol{C}}$ with respect to G, and let c denote the anti-automorphism of $G_{\boldsymbol{c}}$ defined by $c(g)=g^{-1}$. Then

$$
\begin{aligned}
\exp \left(\overline{-c^{-1} \cdot w}\right) & =\iota \sigma \pi_{+}\left(c^{-1} e^{w}\right) \\
& =\iota \sigma\left[c^{-1} e^{w} \cdot \iota \pi_{-}\left(c^{-1} e^{w}\right) \cdot \iota \pi_{0}\left(c^{-1} e^{w}\right)\right] \\
& =\sigma \pi_{0}\left(c^{-1} e^{w}\right) \cdot \sigma \pi_{-}\left(c^{-1} e^{w}\right) \cdot \iota \sigma\left(c^{-1} e^{w}\right), \\
\exp \left(c^{-1} \cdot z\right)= & \pi_{+}\left(c^{-1} e^{z}\right) \\
& =c^{-1} e^{z} \cdot \iota \pi_{-}\left(c^{-1} e^{z}\right) \cdot \iota \pi_{0}\left(c^{-1} e^{z}\right) .
\end{aligned}
$$

Since K_{c} normalizes $P^{ \pm}$, and since $\sigma \pi_{-}\left(c^{-1} e^{w}\right) \in P^{+}, \sigma \pi_{0}\left(c^{-1} e^{w}\right), \iota \pi_{0}\left(c^{-1} e^{z}\right) \in K_{c}$, $c \pi_{-}\left(c^{-1} e^{z}\right) \in P^{-}$, it follows from (4) that

$$
\begin{aligned}
& \mathscr{K}_{D}\left(c^{-1} \cdot z, c^{-1} \cdot w\right) \\
& \quad=\operatorname{vol}(D)^{-1} \chi\left(\pi_{0}\left(\exp \left(\overline{-c^{-1} \cdot w}\right) \exp \left(c^{-1} \cdot z\right)\right)\right) \\
& \quad=\operatorname{vol}(D)^{-1} \chi\left(\sigma \pi_{0}\left(c^{-1} e^{w}\right)\right) \chi\left(\pi_{0}\left(c \sigma\left(c^{-1} e^{w}\right) \cdot c^{-1} e^{z}\right)\right) \chi\left(c \pi_{0}\left(c^{-1} e^{z}\right)\right)
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
& j\left(c^{-1}, z\right)=\chi\left(\pi_{0}\left(c^{-1} e^{z}\right)\right), \\
& \overline{j\left(c^{-1}, w\right)}=\overline{\chi\left(\pi_{0}\left(c^{-1} e^{w}\right)\right)}=\chi\left(\iota \sigma \pi_{0}\left(c^{-1} e^{w}\right)\right) .
\end{aligned}
$$

Hence (5) implies that

$$
\mathscr{K}_{\Gamma}(z, w)=\operatorname{vol}(D)^{-1} \chi\left(\pi_{0}\left(\iota \sigma\left(c^{-1} e^{w}\right) \cdot c^{-1} e^{z}\right)\right)
$$

Here $\iota \sigma\left(c^{-1} e^{w}\right)=\exp (-\bar{w}) \cdot \iota \sigma\left(c^{-1}\right)=\exp (-\bar{w}) \cdot c^{-1}$, since $\sigma(c)=c^{-1}$, and the proposition follows.

We illustrate our result by the following example.
Example. Let $G / K=S U(p, q) / S(U(p) \times U(q))(p \geq q \geq 1)$. We have $G_{\boldsymbol{C}}=$ $S L(p+q, C)$ and

$$
K_{\boldsymbol{C}}=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) ; a \in G L(p, \boldsymbol{C}), d \in G L(q, \boldsymbol{C}), \operatorname{det}(a) \operatorname{det}(d)=1\right\} .
$$

If we write $(p+q) \times(p+q)$ complex matrices in block form

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(a \text { is } p \times p, b \text { is } p \times q, c \text { is } q \times p, d \text { is } q \times q) \text {, }
$$

then

$$
\mathfrak{f}_{\boldsymbol{C}}=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) ; \operatorname{trace}(a)+\operatorname{trace}(d)=0\right\}, \quad \mathfrak{p}_{\boldsymbol{c}}=\left\{\left(\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right)\right\} ;
$$

furthermore, we can put

$$
\mathfrak{p}^{+}=\left\{\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)\right\}, \quad \mathfrak{p}^{-}=\left\{\left(\begin{array}{ll}
0 & 0 \\
c & 0
\end{array}\right)\right\}
$$

and hence

$$
P^{+}=\left\{\left(\begin{array}{ll}
1_{p} & b \\
0 & 1_{q}
\end{array}\right)\right\}, \quad P^{-}=\left\{\left(\begin{array}{cc}
1_{p} & 0 \\
c & 1_{q}
\end{array}\right)\right\} .
$$

Every element $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in P^{+} K_{c} P^{-}$can be written uniquely as

$$
g=\left(\begin{array}{cc}
1_{p} & b d^{-1} \tag{6}\\
0 & 1_{q}
\end{array}\right)\left(\begin{array}{cc}
a-b d^{-1} c & 0 \\
0 & d
\end{array}\right)\left(\begin{array}{cc}
1_{p} & 0 \\
d^{-1} c & 1_{q}
\end{array}\right)
$$

Therefore, $\zeta(g)=\left(\begin{array}{cc}0 & b d^{-1} \\ 0 & 0\end{array}\right)(\zeta(g)$ is as in (2)) and it follows (cf. Wolf [6]) that

$$
D=\zeta(G)=\left\{\left(\begin{array}{ll}
0 & z \\
0 & 0
\end{array}\right) \in \mathfrak{p}^{+} ; 1_{q}-z^{*} z>0\right\}
$$

where z^{*} is the conjugate transpose of z and " $>$ " means "is positive definite".
For $1 \leq k \leq q$, let

$$
c_{k}=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1_{k} & 0 & i 1_{k} & 0 \\
0 & \sqrt{2} 1_{p-k} & 0 & 0 \\
i 1_{k} & 0 & 1_{k} & 0 \\
0 & 0 & 0 & \sqrt{2} 1_{q-k}
\end{array}\right)
$$

These elements c_{k} will play the role of partial Cayley transforms c_{Γ}. As in (3) we put

$$
S_{k}=\zeta\left(c_{k} G\right) \subset \mathfrak{p}^{+}
$$

Then the domain S_{k} can be described as follows (cf. Pyatetskii-Shapiro [4]). We identify \mathfrak{p}^{+}with the space $M_{p, q}(\boldsymbol{C})$ of $p \times q$ complex matrices and write $z \in$ $M_{p, q}(\boldsymbol{C})$ in the form

$$
z=\left(\begin{array}{ll}
u & v_{2} \\
v_{1} & w
\end{array}\right) \quad\binom{u \text { is } k \times k, v_{1} \text { is }(p-k) \times k}{v_{2} \text { is } k \times(q-k), w \text { is }(p-k) \times(q-k)} .
$$

Corresponding to the decomposition

$$
\left(\begin{array}{ll}
u & v_{2} \\
v_{1} & w
\end{array}\right)=\left(\begin{array}{ll}
u & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & v_{2} \\
v_{1} & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
0 & w
\end{array}\right)
$$

we have the direct sum decomposition

$$
M_{p, q}(\boldsymbol{C})=U \oplus V \oplus W
$$

where $\quad U=M_{k, k}(\boldsymbol{C}), V=M_{p-k, k}(\boldsymbol{C}) \oplus M_{k, q-k}(\boldsymbol{C})$ and $W=M_{p-k, q-k}(\boldsymbol{C})$. For a real form $U_{\mathbf{R}}$ of U, we take $U_{\mathbf{R}}=\left\{u \in U ; u^{*}=u\right\}$. Let

$$
B=\left\{w \in W ; 1_{q-k}-w^{*} w>0\right\},
$$

and for each $w \in B$, we put $[w]=\left(1_{q-k}-w^{*} w\right)^{-1}$. For $w \in B$ and $v=\left(\begin{array}{cc}0 & v_{2} \\ v_{1} & 0\end{array}\right)$, $\tilde{v}=\left(\begin{array}{cc}0 & \tilde{v}_{2} \\ \tilde{v}_{1} & 0\end{array}\right) \in V$ we define

$$
\Phi_{w}(v, \tilde{v})=2\left(\tilde{v}_{1}^{*}\left(1_{p-k}-w w^{*}\right)^{-1} v_{1}+v_{2}[w] \tilde{v}_{2}^{*}\right)+i\left(v_{2}[w] w^{*} \tilde{v}_{1}+\tilde{v}_{2}[w] w^{*} v_{1}\right)
$$

Then $\Phi_{w}: V \times V \rightarrow U$ is a semi-hermitian form and we have

$$
S_{k}=\left\{\left(\begin{array}{cc}
u & v_{2} \\
v_{1} & w
\end{array}\right) \in M_{p, q}(C) ; \operatorname{Im} u-\operatorname{Re} \Phi_{w}(v, v)>0, w \in B\right\}
$$

where $v=\left(\begin{array}{ll}0 & v_{2} \\ v_{1} & 0\end{array}\right)$. Therefore, S_{k} is a Siegel domain of type III.

We turn to the Bergman kernel of S_{k}. Let $z^{\prime}=\left(\begin{array}{ll}0 & z \\ 0 & 0\end{array}\right) \in \mathfrak{p}^{+}$and $w^{\prime}=$ $\left(\begin{array}{cc}0 & w \\ 0 & 0\end{array}\right) \in \mathfrak{p}^{+}$. If $g=\left(\begin{array}{cc}a & 0 \\ 0 & d\end{array}\right) \in K_{\boldsymbol{c}}$, then

$$
\begin{equation*}
\chi(g) \equiv \operatorname{det}\left(\left.\operatorname{Ad}(g)\right|_{p^{+}}\right)=(\operatorname{det} a)^{q}(\operatorname{det} d)^{-p}=(\operatorname{det} d)^{-(p+q)} . \tag{7}
\end{equation*}
$$

Thus if we write

$$
\exp \left(-\bar{w}^{\prime}\right) c_{k}^{-2} \exp z^{\prime}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad\left(\in P^{+} K_{\boldsymbol{C}} P^{-}\right)
$$

(6), (7) and the proposition imply that the Bergman kernel \mathscr{K}_{k} of S_{k} is given by

$$
\mathscr{K}_{k}\left(z^{\prime}, w^{\prime}\right)=\operatorname{vol}(D)^{-1}(\operatorname{det} d)^{-(p+q)} .
$$

To compute d we write $z=\left(\begin{array}{ll}z_{1} & z_{3} \\ z_{2} & z_{4}\end{array}\right), w=\left(\begin{array}{ll}w_{1} & w_{3} \\ w_{2} & w_{4}\end{array}\right)$ where z_{1} and w_{1} are $k \times k$, z_{4} and w_{4} are $(p-k) \times(q-k)$, and the sizes of the other rectangular blocks are determined accordingly. Then noting that $\exp \left(-\bar{w}^{\prime}\right)=\left(\begin{array}{cc}1_{p} & 0 \\ -w^{*} & 1_{q}\end{array}\right)(-$ denotes the conjugation of $\mathfrak{s l}(p+q, C)$ with respect to $\mathfrak{s u}(p, q))$, a simple computation shows that

$$
d=\left(\begin{array}{cc}
i\left(w_{1}^{*}-z_{1}\right)-w_{2}^{*} z_{2} & -i z_{3}-w_{2}^{*} z_{4} \\
i w_{3}^{*}-w_{4}^{*} z_{2} & 1_{q-k}-w_{4}^{*} z_{4}
\end{array}\right) .
$$

Therefore, under the identification $\mathfrak{p}^{+}=M_{p, q}(\boldsymbol{C})$, we have for $z=\left(\begin{array}{cc}z_{1} & z_{3} \\ z_{2} & z_{4}\end{array}\right)$,w $\left(\begin{array}{ll}w_{1} & w_{3} \\ w_{2} & w_{4}\end{array}\right) \in S_{k}$

$$
\mathscr{K}_{k}(z, w)=\operatorname{vol}(\mathrm{D})^{-1} \operatorname{det}\left(\begin{array}{ll}
i\left(w_{1}^{*}-z_{1}\right)-w_{2}^{*} z_{2} & -i z_{3}-w_{2}^{*} z_{4} \\
i w_{3}^{*}-w_{4}^{*} z_{2} & 1_{q-k}-w_{4}^{*} z_{4}
\end{array}\right)^{-(p+q)}
$$

In the special case $k=q$,

$$
S_{q}=\left\{\binom{u}{v} \in M_{p, q}(C) ; \begin{array}{l}
u \text { is } q \times q \text { and } v \text { is }(p-q) \times q, \\
\frac{1}{2 i}\left(u-u^{*}\right)-v^{*} v>0
\end{array}\right\}
$$

and S_{q} is a Siegel domain of type II. In this case we have for $z=\binom{z_{1}}{z_{2}}, w=\binom{w_{1}}{w_{2}}$ $\in S_{q}$

$$
\mathscr{K}_{q}(z, w)=\operatorname{vol}(D)^{-1} \operatorname{det}\left(i\left(w_{1}^{*}-z_{1}\right)-w_{2}^{*} z_{2}\right)^{-(p+q)} .
$$

References

[1] S. G. Gindikin: Analysis in homogeneous domains, Russian Math. Surveys 19 (1964), 1-89.
[2] T. Inoue: Unitary representations and kernel functions associated with boundaries of a bounded symmetric domain, Hiroshima Math. J. 10 (1980), 75-140.
[3] A. Korányi: The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. of Math. 82 (1965), 332-350.
[4] I. I. Pyatetskii-Shapiro: Automorphic Functions and the Geometry of Classical Domains, Gordon and Breach, New York, 1969.
[5] I. Satake: Algebraic Structures of Symmetric Domains, Publ. Math. Soc. Japan 14, Iwanami, Tokyo and Princeton Univ. Press, 1980.
[6] J. A. Wolf: Fine structure of hermitian symmetric spaces, in "Symmetric Spaces", (ed. W. Boothby and G. Weiss), Marcel Dekker, New York, 1972, 271-357.
[7] J. A. Wolf and A. Korányi: Generalized Cayley transformations of bounded symmetric domains, Amer. J. Math. 87 (1965), 899-939.

> Department of Mathematics, Faculty of Science, Yamaguchi University, Yamaguchi 753, Japan

