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It is known (Wolf-Koranyi [7]) that every hermitian symmetric space of
noncompact type has a standard realization as a Siegel domain of type III. In
this note we give an explicit formula for the Bergman kernel function of such a
symmetric Siegel domain.

The general definition of Siegel domain of type III was given by Pyatetskii-
Shapiro [4] as follows. Let U, V and W be complex vector spaces. Let UR be
a real form of U, Ω an open convex cone in UR, and B a bounded domain in W.
Given any weB, let Φw be a semi-hermitian form of Vx Fto 17, i.e., ΦW = Φ*,+
ΦJ, where Φ£ is hermitian relative to the complex conjugation of 17 over UR and
ΦJ, is symmetric C-bilinear. Then the domain

{(u, ϋ , w ) e ί / Θ F ® ^ ; I m u - R e Φ w ( v , υ)eΩ, weB}

is called a Siegel domain of type III. Siegel domains of type II are degenerate
special case W=0, i.e., B = (0), Φg = O and Φg is positive definite relative to Ω.

For Siegel domains of type II (not necessarily symmetric nor homogeneous),
an explicit formula for the Bergman kernel was given by Gindikin [1, Theorem
5.4] in terms of a certain integral over the dual cone of Ω (see also Koranyi [3,
Proposition 5.3]).

Every hermitian symmetric space of noncompact type can be written as GjK,
where G is a connected semi-simple linear Lie group and K is a maximal compact
subgroup of G. Let g, ϊ be the Lie algebras of G, K and g = ϊ + p be the cor-
responding Cartan decomposition. We denote the complexifications of g,
l» P by 9c> ϊc> Vc> respectively. Then p c is decomposed into the direct sum of
two complex subalgebras p + and p~, which are (±i)-eigenspaces of the complex
structure of p, respectively, and are abelian subalegbras of gc normalized by

ίc
Let Gc be the complexification of G and let P ± , Kc be the connected sub-

groups of Gc corresponding to p*, ! c , respectively. It is known that the map
p + xX cxp~->G c, given by (Z + , fe, Z~)->exρX+ -fc expZ", is a holomorphic
diffeomorphism onto a dense open subset P+KCP~ of Gc, which contains G.
Therefore, every element g eP+KcP~ <=GC can be written in a unique way as
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(1) 9 = π+(0) πo(0) π_(0), πo(g)eKc, π±{g)eP±.

Furthermore, the map ζ: P+KcP~-+p + , given by

(2)

induces a holomorphic diffeomorphism of GjK onto ζ(G) = D, and D is a bounded

domain in p + .

Let t be a maximal abelian subalgebra of !. Then t c , the complexification

of t, is a Cartan subalgebra of g c. For each root α of g c relative to t c , let gα be

the corresponding root space, and let Ha e it n [gα, 9"α] be the unique element such

that α(Ήα) = 2. We choose a linear order in the dual of the real vector space

it such that p + is spanned by root spaces for noncompact positive roots. For

each noncompact root α, we choose a root vector Eae§a such that [£α, £ _ J =

Ha and Eα = £ _ α where the bar denotes the complex conjugation of g c with

respect to g.

Let Ψ be a maximal set of strongly orthogonal noncompact positive roots.

Following Wolf-Koranyi [7], we define, for every subset Γaψ, the partial

Cayley transform by

Then cΓGaP+KcP~ and we can define

(3) SΓ = ζ(cΓG) c p +

where ζ is as in (2). In [7] it is shown that SΓ is a Siegel domain of type III and

in the special case Γ=Ψ, SΨ is a Siegel domain of type II. For our purpose,

however, the precise description of SΓ as a Siegel domain of type III is not needed.

F o r (g9 z)eGcxp + , s u c h t h a t g QxpzeP+KcP~9 w e d e f i n e g-zep+ b y

g z = log(π+(0expz))

where π+ is as in (1). Then the map z->g z is holomorphic and SΓ is the partial

Cayley transform of the bounded symmetric domain D, i.e.,

SΓ = cΓ D.

Let JfΓ(z, w) be the Bergman kernel function of SΓ and let χ: Kc-+Cx be

the holomorphic character of Kc defined by

χ ( ) ( ( V ) , keKc.

Then we have

PROPOSITION. The Bergman kernel function of SΓ is given by
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JΓΓO, w) = vol (D^χίπoίexp ( - w)cj.2 exp z))

where vol(D) is the Euclidean volume of the bounded symmetric domain D,

π0 is as in (1), and w-+w denotes the complex conjugation o / g c with respect to

9

PROOF. Let JfD(z, w) be the Bergman kernel of the bounded symmetric

domain D. Then it is known ([2], [5]) that

(4) JTD(z9 w) = vol ( D r ^ π o ί e x p ( - w) exp z)).

For zeSΓ, let j(cpι, z) denote the complex Jacobian (determinant) of the holo-

morphic map z-^cp1 z at the point z. Then by [5, Lemma 5.3, p. 65],

j(cr\ z) = χ(πo(cp 1expz)).

On the other hand, since D = Cp1-SΓ, the general theory of the Bergman kernel

implies that, for z, weSΓ,

(5) JΓΓ(z, w) =j(cr\ z)XD{crι z9 cp^wi/ίc?1, w)

In what follows we write c instead of cΓ. We also write ez for exp z. Let σ

denote the complex conjugation of Gc with respect to G, and let c denote the

anti-automorphism of Gc defined by c(g) = g~ι. Then

= cσ[c~ιew - cπ_(c~ιew)

= σπo(cr1£?w) σπ_(c-χew) cσ(c"ιew),

exp (c" 1 z) = π + (c" 1 e z )

= c " 1 ^ cπ_(c~1ez) - cπo(c~1ez).

Since Kc normalizes P±

9 and since σπ_(c~iew)eP+, σπo(c~1ew), cπo(c~1eΣ)eKc,

cπ_(c~xez) e P~, it follows from (4) that

= vol (^"^(πoCexp (-c^-w) exp ( c " 1 . z)))

= vol ( D r

On the other hand

Xc-K w) = χ(πo(c-ie™)) =
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Hence (5) implies that

z , w ) = vol (D^χC

Here cσ(c~1ew) = exp( — w) cσ(c~ί) = εxp( — vv) c~\ since σ(c) = c"J, and the
proposition follows.

We illustrate our result by the following example.

EXAMPLE. Let G/K = SU(p, q)/S(U(p)xU(q)) (p>q>l). We have Gc =
SL(p + q, C)and

o 2 ) ' a G GL(i>> C)> d € G L(^' C ) ' det (α) det W = 4 "
If we write (p + q) x (p + ̂ ) complex matrices in block form

( c djίsPxP>bίsPx<2> c is q x p, d is q x q),

then

! « - { ( θ J); tnu» (β) + teacβ (rf) - θ}, P C ={(^ *)};

furthermore, we can put

and hence

Every element 9=\ j )εP+KcP~ can be written uniquely as

p bd~1\ia-bd-ic 0 \ | 1, 0

* \0 1, j \ 0 d)\d-ιc 1

Therefore, C(ί)=( J ^Q" 1 ) ( ί ( s ) i s a s i n ( 2 ) ) a n d [ t f o l l o w s ( c f W o l f ί6^ t h a t

where z* is the conjugate transpose of z and " > " means "is positive definite".
For ί^k<q, let
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Cv =

0
o n k o

,-k o o
i\k 0 lk 0

0 0 0

These elements ck will play the role of partial Cayley transforms cΓ. As in (3) we

put

Sk = ζ(ckG) <z p+.

Then the domain Sfe can be described as follows (cf. Pyatetskii-Shapiro [4]).

We identify p + with the space Mpq(C) of pxq complex matrices and write ze

Mp>q(C) in the form

z =
u v2

u is kxk, vt is (p — k)xk
vι w ) \ v2 is kx(q-k), w is (p- k) x (q-k)

Corresponding to the decomposition

u υ2\ I u ϋ \ / 0 Vi \ ( 0 0

w

we have the direct sum decomposition

u 0 \ / 0 i2

0 o j Vi?! 0/ • \0 w

where 17 = M M ( C ) , K = M r ^ C ) φ M M ^ C ) and ^ = M p

real form UR of (7, we take UR = {ueU\ u* = u}. Let

B = {w G PF; iβ_ fc - w*w > 0},

and for each weB, we put [w]=(l^_ / k — w * ^ " 1 . For wefi and t?

£f — ( 9 J 2 ) G K we define

Φw(v, v) = 2(vΐ(lp-k-ww*)-1υί + υ2[w']vξ) + Ϊ{Ό2IW']W*

Then Φ w : Fx V-*U is a semi-hermitian form and we have

For a

= ί ^2 J,

Sk = j( l \eMPfq(C); Im w-Re Φw(v, v) >09weB

where t;=( ^2 ). Therefore, Sfc is a Siegel domain of type III.
\vί 0 /
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We turn to the Bergman kernel of Sk. Let Z ' = ( Q f j e p + and w'

> (

(7) χ(g) = det (Ad (g)\p+) = (det β)«(det d)~p = (det

Thus if we write

exp ( - w')cϊ2 exp z' = I 1 ( e P+KCP~),

(6), (7) and the proposition imply that the Bergman kernel Xk of Sk is given by

z'9 w') =

To compute d we write z=( Zl Z 3 Y w=( W l W 3 ) where z t and vvt are fcxfe,

z 4 and w4 are (p-k)x(q-k\ and the sizes of the other rectangular blocks are

determined accordingly. Then noting that exρ(-vv' )=( _ / * ? J (~ denotes

the conjugation of sl(p + q, C) with respect to su(p, f̂)), a simple computation

shows that

Therefore, under the identification p+ =MP f 9(C), we have for z = ί Z χ * 3 Y w =

/(wf - zO - wJz2 - ΪZ3 - wJz4

jfk(z9 w) = vol (D)"1 det

In the special case k = q,

u\ u is q x q and v is (p — q) x #,1

J ( C ) J
and S, is a Siegel domain of type II. In this case we have ΐoτ z—(Zί\ w—CZ1

jTq(z, w) = vol (iD)"1 det ( i « - zt) - wjz2)-<*+*>.
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