
Hiroshima Math. J.
13(1983), 379-391

A stochastic method for solving quasilinear parabolic

equations and its application to an ecological model

Masaaki INOUE

(Received December 2, 1982)

Introduction

We are concerned with the following Cauchy problem for a quasilinear

parabolic equation:

f ^ \ Σ?=i bt(t, x; u)p- + c(t, x; u)u9 t > 0,
(1.1) dt 2 dχ

U(0, * ) =
where 6j(ί, x; •)> l ^ ί ^ w , and c(t9 x; •) are mappings defined for some functions

u: [0, oo)x Rn~*R. We assume that the coefficients bf(ί, x; w), l<£ί<£n, and

c(ί, x; ύ) are independent of the future {u(s, y): s>t9 yeRn} for each t. (See

§ 1 for precise definition.)

Our main results are stated in §1 and §2. They are summarized as follows.

The equation (1.1) has a unique solution which has a nice probabilistic expression

(1.2) based upon an n-dimensional Brownian motion {Bt = (B},..., J5?), t^O}:

(1.2) u(U x) = Exlf(Bt) exp | £ c ( t - s , Bs;

Mt(u) = exp

under some suitable conditions. In a special case where b^t, x; u) = 6f(ί, x, u(ί,

x)), l 5 u ^ n , and c(t9 x; w) = c(ί, x, u(t, x)), Freidlin [2] solved the Cauchy

problem (1.1) by finding the unique solution of (1.2). Our results can be regarded

as a generalization of Freidlin's. In §3, our theorem is applied to the equation

t > Q,xeR,

which appears in an ecological model. It can be proved that there exists a unique

solution of (3.1) for each r, which is bounded for 0:gί<oo and continuous in the

parameter r e [0, oo]. Here the expression (1.2) of the solution plays an essential

role. We make two remarks on some related problems in §4; the one is on

time-lag systems and the other is on Neumann problems.
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The author expresses his thanks to Professor H. Tanaka for posing the
problem and to Professor M. Mimura for suggesting the examples of ecological
models.

§ 1. The generalized solution

A function w = u(ί, x) is called a generalized solution for the Cauchy problem
(1.1) if u satisfies the equation (1.2) for all (t, x). In this section we show the
existence and the uniqueness of the generalized solution for (1.1).

For each ί>0, let % be the Banach space of bounded measurable functions
u: [0, t] x Rn-*R with the norm ||w||f = sup {\u(s, x)\: (s, x) e [0, f] x Rn).

Fix T>0. Throughout the paper we assume that the coefficients b^t, x; ύ)
and c(t, x; ύ) are defined for uetfιτ and (ί, x) e [0, T] x Rn, and they are measur-
able in (t, x) for each u e <%τ. We also assume that the coefficients are inde-
pendent of the future: If w^s, x) = u2(s, x), (s, x) e [0, t] x Rn, then b^s, x;uί) =
bi(s, x; u2), l ^ ϊ ^ n , and φ , x; ui) = c(s, x\ u2), (s, x)e [0, t] x Rn for each ί^T.
Hence for each (ί, x) e [0, T] x Rn these coefficients can be considered as func-
tions on %.

We put the following conditions:
(I) For any K>0, there exist Cl9 C 2 >0 satisfying

(i)

\c(t, x; M)| ύ Cu (ί, x)e [0, T] x R\

for ueWτ with ||i*||τ^K,

(ii) \biU x; u) - bit, x; v)\ ̂  C2 | |ιι-t;|| t, 1 ^ i ^ n,

\c(t, x; ύ) - c(t, x; ι>)| ^ C2\\u-v\\t, (t9 x)e [0, T] x

for u, ve<%τ with | |M||T, b |
(II) There exists a constant C>0 such that c(ί, x;w)^C for each (ί, x)e

[0, T] x Rn and for u e ^ τ with u^0.

THEOREM 1. Assume that the coefficients bi(t,x;u), l^i^n, and c(t9 x;
w) satisfy the conditions (I) and (II). 77ie/t ί/ie equation (1.2) ftas a unique solu-
tion in %τfor any bounded measurable function f.

Before proving Theorem 1, we prepare the following

LEMMA 1. Let {Bt = (Bl,..., Bn

t), ί^0} be an n-dimensional Brownian
motion defined on a complete probability space (Ω, «̂ \ P) and &t be the σ-
field generated by {Bs: O^srgί} and all P-null sets. Suppose that ^-adapted
processes {bki(t),O^t<^T}, l ^ i ^ n , fc = l, 2 satisfy \bki(t, ω)\^C* for (ί, ω)e



{ω:
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[0, Γ] x Ω. Then for functionals

(1.3) ak(t) = Σ7-i Γ &«(s)d*ί - (1/2) Σ?=i Γ 6«(«)2^, fc = 1, 2,
Jo Jo

if fto/ds ί/iαί

(1.4) £[|exp (βl(ί)) - exp (α2(ί))|] ^ M { Ϊ [ £ Σ?=I IM*) -

/or some M=M(C*, T, n)>0.

PROOF. Let χt(ω) be the characteristic function of the set

α2(ί)|^l} Using |expx-l |g2|x| for |x|^l, we obtain

(1.5) E d e x p ί α ^ - e x p ^ ί ) ) ! ]

S {£[exp (2α2(ί))]}1/2{£[|exp ( α i (ί)-α 2 (ί))- H2]}1 / 2

^ {£[exP(2α2(ί))]}1/2[4£[|α1(ί) - α2(ί)|2]

+ {£[|exp(α1(ί)-α2(ί))-l|4]}1/2{£[(l - j ^

The martingale property of exp (α2(0) yields that

(1.6) £[exp(2α 2 ( f ) )]^exp(nαί)

By the boundedness of bfci(()> we have

(1.7) £[K(ί) - α2(ί)|2] ̂  2ί[ | Σ?=I J^ieW - b2ι(s))dBί

+ 2£[|(1/2)Σ?=, ̂ { ^ ( s ) 2 -

381

Next we estimate the last term of (1.5);

(1.8) £[(1-Xx) 2] = P{ω: |α 1 (ί)-β 2 (ί) | > 1) ύ - α 2(ί) | 4]

4 ]
Set bi(s) = bu(s)- b2ί(s) and X, = Σ"=i \ bls)dBι

s. Then
Jo
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= 6

(' (ElX*])ll2(EiΣUι btsf\yiHs
Jo

Putting v4(s) = £[JSΓ}] and A = 6n1/2('ίί £[Σ?=i bisf\dsj12

9 we have

A(s)2 ^ A2 (S A(z)dz, 0 ^ 5 g ί.
Jo

Since A(s) is bounded on [0, ί], it follows that

Therefore we obtain

(1.9) E[\Σu\t

o(bu(s)-b2i(s))dBi

On the other hand,

(1.10)

E[\(1/2) Σ?

Finally we show the boundedness of E[\cxp(a1(t)-a2(t))-l\A:l. By Itό's
formula

- l} 3 exp(α 1 ( 5 )-α 2 ( 5 ) ) Σ?=i b2i(s)(b2i(s) -

fl1(s)-fl2(s)) - I} 2 exp(2α1(s)-2α2(S)) Σ?=i (^i^) - b2i(s))2dsj

£ 32nCi [' £[exp(4α1(5)-4α2(s)) 4- I]d5.
Jo

Using Itό's formula again, we obtain

£[exp(4α 1(ί)-4Λ 2(0)] ύ 1 + 36nC2

which implies

£[exp(4a 1(ί)-4α 2(ί))] ^ exp(36nC2ί).
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Hence

(1.11) £ [ | e x ρ ( α , ( f ) - α 2 ( 0 ) - l | 4 ] g 32nC|(l+exp(36nC|ί))'

Summarizing the estimates from (1.5) to (1.11), we reach

£[|exp(α,(O)-exp(α2(ί))|]

^ exp

U \bit(s) -

as was to be proved.

PROOF OF THEOREM 1. Owing to the assumptions (I) and (II), take C for

fixed Γ > 0 and C 1 ; C 2 > 0 for K = \\f\\x exp(CT). Define the operator Φ: %-•

{Φu){t, x) = £,[/(Bt)exp | £ c(t-s, Bs; u)ds(1.12)

Let °ll^ be the complete subset of % consisting of u with ||w||fg.K and w^O
for ί g T. Then Φ maps Φf into itself. For u,ve<&? and (ί, x) e [0, T] x R",
we get

|(Φu)(ί, x) -

exp ί-s, J3S; u)dsj - exp {5/(ί-S, βs; t>)dsj |Mr(u)]

£x[/(B,)exp 15/0-s, Bs; f)dsJ|M,(u) - Mt(v)\

h-

Using Lemma 1, we have

hύ 11/11 oo exp(CT)M(C1?T,

On the other hand,

ί-s , Bs; u) - 6,(1-5, Bs; ϋ)|4d
1/4

exp ^(φ-s, Bs;u)- c(t-s, Bs; v))

= 11/ILexp(Cί + nC?ί/2)J£x[I£(c(ί-s, Bs; u) - c(t-s,Bs; υ))
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c(ί-z, Bz\ ύ) - c(t-z, B2; v)

^ 11/11 o oexp(CT+ 2CXT+ nC\τ\Ί)tC2\\u

Combining the above estimates, we obtain

S ||/||ooexp(CT){Γ3/4exp(2C1T+nCfΓ/2) + n ^ M ^ , T, n)}C2tV*\\u-v\\t,

for (ί, x) e [0, T] x 1?\ Therefore there exists to>O depending only on K,
Γ, n, Cγ and C2 such that the operator Φ is contractive on <%fQ. The equation
(1.2) has a unique solution u0 on # £ .

For the continuation of w0, let the operator Φ' on ̂ ί'τ-tQ be

(Φ'»)(ί, x) = Ex[u0(t09 Bt) exp {£ c'(ί-s, Bs;

with

^ = {ve%: v(09 x) = uo(to, x)}9 0^t^T-to

M't{v) = exp JΣ?=i fa'titS' Bs> v)dBl - (1/2) ΣU \[ b'it-s, Bs; v

b'i(t, x; v) =

v*(t, x) = uo(t, x)χίO)toi(t) + v(t-t09 χ)χίto,τ-toίt)'

Then by the assumptions (I), (II) and the estimate

\\uo(to, )llot,exp(C(Γ-ίo)) ^ ll/lloo exp (CΓ) = K,

Φ' is again contractive on (Wt0)
κ for the same ί0. Let ϋ0 E (Wt0)

κ be the unique
fixed point of Φ\ In consideration of Markov property of {Bt}, we can regard
(v0)* as a unique continued solution of (1.2) for 0:g t^2t0. The rest of the proof
is a routine work.

§2. The classical solution

In this section we prove that, under some additional conditions, the gen-
eralized solution constructed in §1 is a solution of (1.1) in the classical sense.

Let ^(α) be the space of bounded continuous functions u: [0, t] x Rn-+R,
which are Holder continuous in xe Rn with exponent α>0. Besides the condi-
tions (I) and (II) in §1, we put the following conditions:

(III) If u e &τ(<x)9 then the coefficients fef( , u), 1 :g i :g n, and c( , ύ)
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are in &τ(oί).

(IV) For any K > 0 there exists a constant C 3 > 0 satisfying

Mt, x; u) - bit, y; u)\ ̂  C3L\x - ;μ|«, 1 ^ i ^ n,

\c(t, x; u) - c(t9 y\ u)\ g C3L\x - y\*, 0 ^ t ^ T, x, y e # " ,

for w e ^ τ ( α ) with Holder coefficient L and ||w|

THEOREM 2. Assume (I)^(IV). // an initial function f is bounded and

satisfies \f(x)—f(y)\^L0\x — y\ao,x9yeRn for some α0, L o > 0 then for each

T>0 there exists a unique solution u e ^ Γ ( α 0 ) of (1.1) in ίfte classical sense.

The solution u is characterized by

(2.1) u(t9 x) = \ f(y) U(t, x 0, y lOrfy,

w/zerβ U(t, x; s, y; w) is the fundamental solution of the equation

(2.2) vt = (l/2)Δi> + Σ?=i bit, x; w)vXi + c(ί, x; w)ϋ,

/or βαc/i w e

The proof of Theorem 2 is essentially based on the following lemma. Let

^(α, L) be the collection of we # f(α) whose Holder coefficients are not bigger

than L and ^f(α, L) be the collection of ι/e^ ((α, L) satisfying | |M|| f^X and

LEMMA 2. Assume (I)~(IV) and that f satisfies the conditions stated in

Theorem 2. Put K= H/IL exp (CT). Then Φ defined by (1.12) maps # f (α 0 , L)

into ^ f (α 0 , NL0 + JLt1/4) for each ί^Γ, w/iere N and J are positive constants

depending only on K and T.

PROOF. We prove the lemma only for n = l writing b(t, x; u) = bί(t, x; ύ)

and Bt = B}. Take Cl9 C2 in the condition (I) and C 3 in (IV) for K. For u e

) and O g s g ί ^ T, x, yeR, we have

\(Φu)(t, x) - (Φu)(s, y)\

= E0[f(Bt + x) exp 1 ^ c(ί - z, Bz + x u)dz^Mt(x w)]

exp |J* φ - z , 5 2 + );; u)dz^Ms{y; i ι ] |

exp
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exp | £ c(t-z, Bz + x; u)

- exp {JVs-z, Bz+y; u)

; w) - Ms(y;

where

Mf(x; u) = exp {£ *>('-*, «2 + x; u)dB2 - (1/2) ̂  ί)(ί-z, Bz+x; u)2dz} .

It follows that

g L0[2\x-y\*° + 2|ί-s|ί[o/2κ

where κ2 = ί z2oc°(2π)-1/2exp(-z2/2)ί/z. Next we have

£o|Jexp(joc(ί-z, B2+x; u)dz - ^ φ - z , B^y; ύ)dzJ-\ JJ-

x J2C2|f-s|2 + 2s£0[£ |c(ί-z, Bz + x; u) - φ - z , Bz+y; «

For the last term, we obtain

/ 3 g I/I„ exp(Cί)M|cf|ί-S |

\Kt-z, Bz + x; u) - b(s-z, Bz + y; M)|

where M = M{CU T, 1) is the constant in Lemma 1. By the estimates of l u I2

and 13, we can easily see that Φu is continuous in (ί, x)e [0, T] x R. Set ί = s .
Then it follows that

|(Φu)(ί, x) - (Φu)(t, y)\

||/||ooexp(CΓ+2C1T+C?Γ/2)2ί1/2

|c(ί-z, Bz+x; u) - c(t-z, Bz+y; u
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+ II/IL exp(CΓ)M{£0[Jjfc(ί-z, Bz + x; u) - b(t-z, B2

2exp(CT+C?T/2)L0|x-j>h

Therefore Lemma 2 has been proved.

PROOF OF THEOREM 2. We first show, by iteration, that the equation (1.2)

has a unique solution in ^ Γ (α 0 ) . Put φ(°ϊ=I, φ(«) = φoφ(n-1)> n ^ l , and K =

11/11 „ exp(CΓ). Using Lemma 2 n-times, we see that Φ(M) maps #f(α 0, Lo) into

<jff(α0, Ln) for each ί^Twith L ^ ί i V + . + N ί J ί 1 / 4 ) " - ^ ^ 1 / 4 ) ' 1 } ^ .

Let ί 0

>^ be the same as in the proof of Theorem 1, and put ί1 = min{ί0,

(2J)"4}. Then Φ is contractive and has a unique fixed point M0 = limn_00 φ(")/ in

^^(αo, 2NLQ). We can uniquely prolong the solution u 0 to we ^V(α0) in the

same manner as in the proof of Theorem 1.

Next we prove that the solution u is unique one of (1.1) in the classical sense,

by showing (2.1). Since b^ , u), l g z ^ n , and c( , ύ) are in #Γ(α 0), the

linear equation (2.2) for W = M has a fundamental solution U(ί, x; s9 y u) (cf.

[3]). Putting v(t, x)= \ f(y)U(t, x; 0, y; u)dy, we can conclude that

v = u as follows. Let

Ys = Σ ϊ - i \5bi(t-z9 Bz; u)dB\ - (1/2) Σ?=i \' bfr-z, Bz; ufdz
Jo Jo

+ [Sc(t-z, Bz;u)dz
Jo

for s e [0, ί]. Then, using Itό's formula, we have

(2.3) £»[ι<ί-s, J5S) exp (Ys)] = £,[t<ί, Bo) exp (Yo)], s g t.

For s = ί, (2.3) becomes

j = t<ί, x),

which implies v = u. This theorem has been proved.

§ 3. Application to an ecological model

We consider the following equation intoroduced by M. Mimura:
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(3.1) t > 0, xeR,

v(09 x) = vo(x) ^ 0, [ vo(x)dx = 1.
JR

This equation (3.1) is regarded as a spatially aggregating population model
consisting of a forward equation for the probability density v(t, x)9 which drifts
to the right (left) direction if

(x Γx+r

\ v(t, y)dy < \ v(t9 y)dy (>, respectively).
Jx-r Jx

In case of r = 0, (3.1) is reduced to the heat equation. As an application of our
theorem, we have the following

PROPOSITION 1. Assume that v0 is bounded Lipschitz continuous. Then
the equation (3.1) has a unique solution v^ in ^Y(l) for each T>0, and v^
satisfies

(3.2) 0 ^ t><'>(ί, x) g Klloo + 1/2, (ί, x)e[0, oo)xΛ,

O^r^oo, and

(3.3) hmr^oυ^(t9x) = Ό^KUx)9

uniformly in (t, x) e [0, T] x R for each r0 e [0, oo] and each T>0.

We give the outline of the proof. If (3.1) has a solution v, then u(t, x) =
Γx
\ v(t9 y)dy satisfies
J-00

(3.4) ut = (l/2)uxx + b^(t9 x; u)uχ9

where b(r>(ί, x; u) = 2u(t9 x)-u(t9 x + r)-u(t9 x-r), 0gr<oo, and b^\t9 x; u)
= 2u{t9 x) — 1. By Theorem 2 in §2, the equation (3.4) has a unique solution
w(r)(ί, x) for each r. We can see that vir^=(u(r))x is the unique solution of (3.1)
and

0 ύ *'KU x) ^ Ibolloo + 2ii^(i, x){l-iι<'>(ί, x)},

which implies (3.2). Notice that limx^±o0v^(t9 x) = 09 uniformly in fe[0, T]
and r e [0, oo]. Hence we obtain (3.3).

REMARK. Let us consider more generally
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v, = (l/2)vxx- \([ k(x-y)v(t,y)dy)v~\ , t > 0, xeR,
L\JR / Jx

(3.5)
v(0, x) = vo(x) ^ 0, \ vo(x)dx = 1.

JR

Here the function k satisfies the following conditions: (i) k is bounded, (ii) k is

differentiable except for a finite number of discontinuous points of the first kind

and fc'eL1, and (iii) the limits l i m ^ . ^ k(x) exist. In this case, the same kind

of method as in (3.1) is also applicable: the equation (3.5) has a unique solution

in #Γ(1) Π {υ^O: \ v(t, x)dx = l, te [0, T]} for each JΓ>0 and for any bounded
J R

Lipschitz continuous function v0.

§4. Related problems

1. The time-lag systems. In the theory of the population dynamics, the

time-lag systems appear very often. As a simple case, we consider

ut = (lβ)uxx + b{t, x, w(ί-r, x))ux + c(t, x, u(t-r, x))u,

(4.1) ί > 0 , xeR,

u(s, x) = /(s, x), — r ^ s ^ 0, x e R,

for some r>0. We put the following conditions:

(4) bit, x, y) and c(t, x, y) are continuous functions on [0, co)x Rx R.

(B) For any Γ>0, there exist constants C l 5 C 2>0 such that

(i) |6(ί, x, 0)|, |c(ί, x, 0)| ̂  C l 5 O^t^ZxeR,

(ii) |Z>(*> x l 5 y j - bit, x2, y2)\ ̂  C2(|x1~x2 |) + 1^

forx 1 ? x2, yu y2e

Using Theorem 2 in §2, we obtain

PROPOSITION 2. Assume (A) and (B). If the initial function f(s, x) is

bounded continuous and satisfies \f(s, Xi)—/(s, x 2)l^^l^i — *2l> xu * 2 e ^ >

— r^s^0,for some L>0, ί/iβn the equation (4.1) /ί«s α unique solution in ^Y(l)

for each Γ>0.

In a special case where b(t, x, y) = b(x, y) and c(ί, x, >;) = c(x, ^), the solution

of (4.1) is expressed by
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with

ψl = ψ ψn+l _ ψoψn

(Ψv)(t, x) = £xΓt<r, Bt) exp {[' c(Bs, v{t-s, Bs))ds\Mt{v) |, υeVJίl),
L Uo

Mt(v) = exp { £ b(Bs> v(t-s, Bs))dBs - (1/2)

/ *£( f γ § -^ T I / — f Y^ ί l ^C / ^C f Y C J?

2. The Neumann problem. The Neumann problem analogous to (1.1)
is formulated as follows:

f ut = (l/2)Δw + Σ?=i HU x\ u)uXi + c(ί, x; M)W, t > 0, x eD,
(4.2)

I II(O,X)=/(JC), ιιXl(ί, x)L1=o = 0,

where D = {x=(x1,..., xn)eRn: x1>0}. If the equation (4.2) has a solution
M, then u satisfies

(4.3) u(t9 x) = E^f{Xt) exp |J^ c(t-s, Xs; u)

= exp JΣ?=i J^ι(ί-5, Xs; u)dB[

Xt = (XJ, B?5...5 J??), Zί = JBJ - min {J3J Λθ: O^s^ί},

where {(B^,..., B?), ί>0} is an n-dimensional Brownian motion. For the equa-
tions (4.2) and (4.3), we can obtain the analogous theorems to Theorems 1 and 2.

Let fyf be the Banach space of bounded measurable functions u: [0, t] x
D-*R with the norm HuH^sup {\u(s, x)\: (s, x)e[0, ί]xD}9 and ^f(α) be the
space of continuous functions u e^J", which are Holder continuous in xeD
with exponent α>0.

Here b^t, x; •) and φ , x; •) are considered as functions on ^ . The con-
ditions (I)~(IV) are called (I)+ ̂ (IV)+ respectively if %, Rn, and ^(α) in (I)~
(IV) are replaced by <%f, D and ^J"(α) respectively.

THEOREM 1'. Under the conditions (I)+ and (II)+ the equation (4.3) has a
unique solution in °U% for each bounded measurable function /!^0 and each
Γ>0.

THEOREM 2'. Assume (I)+~(IV)+. // the initial function f is bounded
and satisfies \f(x)-f(y)\^L0\x-y\a°9 x, yeD, for some α0, Lo, then for each
T>0 there exists a unique solution «6^ί(α 0 ) of (4.2) in the classical sense.
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