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1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary S, and consider an

n-dimensional linear elastic solid occupying Ω in its non-deformed state. Let us

denote by u(x9 f) = {ui(x9 0}i<ί<« the displacement vector from x = {Xi}ι^i^n

 a *

the time t of the material particle which lies at x in the non-deformed state. If

the temperature of the medium is not taken into consideration, then ut(x9 i)

(1 ^i^ή) satisfy the system of equations

(1.1) p(x)(d2uildt2)(x,t)=Σ]=iδσijldxj + gi(x,t) in O x (0, oo),

where p(x), σ ^ l g i , j^ή) and g(x, t) = {gi(x, O l i ^ π denote the density, the

stress tensors and the external force respectively. By Hook's law, there exists

the linear dependence

* y = Σ l ι = i a i J k f i k i u \ l ^ ί j S n

between the stress tensors σ^ and the linearized strain tensors

βf/ιι) = (dujdxj + dujldxύβ, 1 g i, ^ n.

Here aijkl are, in general, functions in t and x, but independent of the strain tensors.

The functions aijkl are called the coefficients of elasticity.

The problem of controlling the deformation of the medium by applying

traction forces/(x, 0 = {/ί(X 0}i^i^n o n t n e boundary as

(1.2) Σ]=i v/x)σ v =fi(x, t) on S x (0, oo),

where v(x) = {vί(x)}1^ί^π is the outward unit normal vector at x on S, was con-

sidered by Clarke [1] and the author [15]. They obtained approximate

controllability of the control system (1.1) with (1.2) when aijkl are independent of

time t.

If the coefficients of elasticity are constants and further do not depend on the

rotation of the coordinate axes, that is, if the elastic properties of the medium are

the same in all directions, then the medium is said to be isotropic. In this case,

aijkl are given by

(1.3) aijkl = λδuδkl + μ(δuδjk + δikδβ),
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where {<50} is the Kronecker tensor and λ and μ are constants called Lame coeffi-

cients. The free energy of the deformed isotropic medium is given by

(1.4) F(u) = μΣlj=i fe/tt) - (l/π)ί<y ΣUi skk(u)}

The non-deformed state u = 0 must be a minimal point of the free energy F when

no exterior forces are applied on the medium. Hence the restrictions

(1.5) μ>0, λ + 2μ/n>0

must be satisfied. When aijkι are given by (1.3) and the density p(x) is equal to

a constant p0, the system of the equations (1.1) can be written as

(1.6) Po(d2u/dt2)(x9 i) = μΔu(x, t) + (λ + μ)graddiviι(x, t) + g(x, t)

in Ω x (0, oo),

where gτsiάφ = {dφ/dxi}ί^i^n for a scalar function φ(x), divw = Σ?=i Sujdxi

for a vector function u(x) = {ui(x)}ί^i^n and A = Σΐ=i S2/dXi2. The author [16]

considered control problems for the control system (1.6) with (1.2) and obtained

the exact controllability by proving the "feedback stabilizability" along the lines

of Russell [17], and also obtained the admissible controllability with boundary

controls constrained in some prescribed sets.

The exact controllability for the control systems described by the wave

equation was obtained by Russell [17], Graham and Russell [5] and Lagnese [9].

The admissible controllability for the control systems governed by partial differ-

ential equations has not yet been considered so much.

Under the assumption that the temperature of the medium is the same at all

points and does not change during deformation, the influence of the temperature

on deformation can be ignored. In reality, however, a deformation is followed by

a variation in temperature and, conversely, a variation in temperature is followed

by a deformation of the medium due to thermal expansion. Thus whenever one

wishes to precisely describe the state of the medium, deformations produced by

variations in temperature must be taken into account. It seems to be meaningful

to consider the thermoelastic system as a continuation of [16], since it arises

as often in mechanics as the isotropic elastodynamics (1.6).

Assume that when the medium is at rest, no exterior forces are applied to it

and its absolute temperature is Jo. Let us denote by J(x, t) the absolute tempera-

ture at the time t of the point x + u(x, t) and by θ(x, t) the increment J(x, t) — J0.

Then the free energy F(u) of the thermoelastic medium is given by

F(u)= -*ΘΣU
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where α is a constant determined below and F is the free energy (1.4) for the

non-thermoelastic medium. Therefore the stress tensors σtj in this case are given

by

(1.7) σ.. = dF/deu = Σlι=i aiJklekl(u) - ocθδij9

where aijkι are the coefficients of elasticity (1.3). Thus, when there exists a volume

source of heat q(x, t)9 u(x9 t) and θ(x, t) satisfy the system of thermoelastic

equations

(1.8)

po(d2uldt2)(x, t) = μAu(x, t) + (2+μ)graddivide, 0

-αgrad0(x, t) + g(x9 t)

(dθldt)(x, t) + βάiv(du/dt)(x, t) = κAΘ(x9 t) + q(x, t)

in Ω x (0, oo), where

(1.9) α = (λ + 2μ/n)γ > 0, β = {cp-cv)jycv > 0, K = κ\cυ > 0.

Here γ, cp9 cv and ic mean the coefficient of linear heat expansion, the heat capacity

at constant pressure, the heat capacity at constant volume and the heat conduction

coefficient, respectively.

If we apply traction forces /(x, t) on the boundary and deformations of the

boundary cause forces proportional to the strain, then the boundary condition is

given by

(1.10) { Σ ^ i V ^ . J ^ i ^ + Γ W φ , t)=f(x,t) on S x ( 0 , oo),

where Γ(x) is an n x n symmetric positive matrix with smooth components and

{Σ./=i VjGij}i^i^n a n d u(x9 t) are taken as column vectors. On the other hand if

the deformations of the boundary are given by/(x, t), then the boundary condition

is

(1.11) u(x, t) = f(x, t) on Sx(0, oo).

In this paper, we consider the thermoelastic system (1.8) under (1.5), (1.9)

with boundary conditions (1.10) or (1.11), and

(1.12) θ(x9 0 = 0 on S x ( 0 , oo).

By (1.3), (1.7) and (1.12), we have

Σ?=i v/Γy = λvt Σj-i ejjμ) + 2μ Σ]=i vfy/μ) on 5.

Thus the boundary condition (1.10) turns into

2μ Σ]=i V ^ / I I ) } ^ , ^ + Γ(x)u(x9 t) =/(x, t)
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on Sx(0, oo). The problems which we consider are whether it is possible to
control the deformation of the medium, disregarding the values of temperature,
by applying boundary forces or by giving boundary deformations f(t) and further
what sort of deformations can be controlled by controls constrained in some
prescribed set; that is, exact controllability and admissible controllability for the
control system (1.8) with (1.10) or (1.11), and (1.12).

As for mathematical treatment of thermoelastic systems, see e.g. Duvaut
and Lions [2], Kupradze [8] and Landau and Lifshitz [10].

Throughout this paper, we denote by HS(Ω) and HS(S) the Sobolev spaces of
order s in Ω and S respectively and by HS(Ω) and Ha(S) the product spaces Hs(Ω)n

and Hs(S)n. Further we denote by Hl(Ω) the closure of C$(Ω) in ff^Ω).
For an element u(x) in HS(Ω) or HS(S)9 u^x) (l^i^n) denotes the z-th com-
ponent of u(x). For n-dimensional vectors x = {xi}i^i^n and y = {yi}ι^i^n, we
denote by <x, y} the Euclidean inner product Σ?=i î)7*- For real numbers r
and 5, || ||r, || ||(ΓtS) and < >r denote the norms of Hr(Ω), Hr(Ω)xHs(Ω) and
Hr(S) respectively. Further for simplicity let ( , ) and || || denote the usual inner
product and the norm in L2(Ω) or in L2(Ω). For a Banach space X and a non-
negative integer fc, by *f*(0, T; X) and Wk>\0> T; X) we denote the Banach
spaces of fc-times continuously differentiate Z-valued functions on [0, T] with
the usual uniform norm

and X-valued functions whose -times weak derivatives with respect to t are in
1/(0, T; X) for O^j^k with the norm

respectively. For an element u(t) in ^£(0, T; X) or WkΛφ, T; X)9 we put u' =
ut = du/dt, u" = utt = d2u/dt2 and u^\t) = dJu/dP (1^/^/c).

2. Exact controllability

In this section we consider the exact controllability of deformations under
the restrictions

μ > 0, λ + 2μ/n > 0.

For simplicity, let ρ0 be normalized as 1 and let us put

Λu = μΔu + {λ + μ) grad div u in Ω,

du/dvA = {λVi Σj=i dUj/dXj + μ Σj=i v/δw^x,. + duj/dXi
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BDu = u and BΓu = du/dvA+Γ(x)u on S. The control systems (1.6) with (1.2),

and (1.8) with (1.10) or (1.11) and (1.12), are written respectively as follows:

{ utt = Au + g in Ω x (0, oo)

Bu = / on S x (0, oo),

' utt = Au - α grad 0 + g
in Ω x (0, oo)

θt + βdivut - KAΘ = q

Bu=f
on S x (0, oo),

u = 0

where B = BD or BΓ. In the sequel we do not distinguish between column vectors

'[w, u], *[w, v, 0] and line vectors [M, ι>], [w, ι;, 0], when it causes no confusions.

The problem of controlling the deformations, disregarding the values of

temperature, is formulated as follows:

For a given set [w0, v0, 0O] of initial state of deformation and an increment

of temperature and a given final state of deformation [uί9 Ό{\, are there at all

a control/(0 and a time To for which there exists a solution [w(ί), 0(ί)] of [T£, g,

q9B] satisfying [ιι(0), u,(0), 0(0)] = [uo, i;0, 0O] and [u(T0), wf(Γ0)] = [Wl, vJΊ

When there exists such an/(ί), we say that the control/(ί) steers [w0, t;0, 0O]

to \uu vx~] or to [ul9 vu ΘJ (θί = θ(T0)) at To and a solution [M(0, 0(0] is often

called a trajectory which connects [w0, ι>0, 0O] and [uu v^~] or [uί9 vu 0X]. We

consider trajectories and controls which have the appropriate regularity naturally

determined by initial and final states. Namely, when initial and final states are

in Hm(Ω)xHm-\Ω)xHm(Ω) with m^2, or in H\Ω)xL\Ω)xL2{Ω) (the case

m = 1), we take the trajectory in

, T;H»-J(Ω))

, Γ; JΪ-^ίOWΛ^rHO, Γ; L2(Ω))} (m ^ 2)

Γ; Hi-J(Ω)) x *? ( O j Γ ; L2(Ω)) (m = 1),

Γ] =

which are called the trajectory spaces. Further, according to the regularity of

initial and final states described above, we take the spaces ΛJ=o < /̂(0, T;

H™-S-V\S)) ( m ^ l ) in case B = BD and Λ?=£ */(0, T; J5P»-'-3/2(S))

in case B — BΓ as the control spaces and denote them by «̂ "jg[O, T] and

respectively.

REMARK 2.1. For the control system [£, g, J5], all states [w0, ϋ 0] in JEΓm(Ω) x

Hm~1(Ω) are controllable, that is, the space Hm{Ω) x Hm~1(Ω) is exactly control-

lable. See [16]. But for the control system [TE, g, q, B~\, not all states [w0,

v09 0O] in Hm(Ω)xHm~\Ω)xHm(Ω) can be controlled when m ^ 2 . In fact,
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if there exists a solution [u(t)9 0(ί)] in ίfm[0, T] with the initial state [uθ9vθ9 0O],

then the following compatibility conditions (2.1) and (2.2) must be satisfied:

' Buj = /O )(0), 0 ^ j g / n - 2 , on S

(2.1) and further

sBum_ί =/(w"1)(0) on S when B = BD

and

ί 0,EH»-J(Ω) Π HJ(O), 0 ^ j g m - 2 ,
(2.2)

I "m— 1

where uj9 Θj are defined inductively as follows:

, j ^ l 2 ^ j ^ m - 1,

0y = -βdivuj + κΔθj_ί + gU-^CO), 1 ^ ^ m - 1.

It is possible to choose a control /(ί) so that the compatibility conditions (2.1)

are satisfied, while (2.2) must be satisfied a priori, since they are the conditions on

the given functions uθ9 v0, θ0, g(t) and q(t).

Thus we put

WZq(Ω) = {[iι0, v0, θ 0 ] e J3P»(Q) x J5Γ»-i(fl) x fP»(O) | [κ0, ^o, β 0] satisfies (2.2)}

for m ^ 2 and ^ , / Ω ) (=Wί(Ω)) = Hι(Ω) x L 2 (β) x L2(Ω).

Now we define weak solutions of [T£, ^, q, B~\.

DEFINITION 2.1. For [M0, υ0, θo^eH^Ω) x L2(Ω) x L2(Ω), / ( ί )eL 2 (0 , Γ;

L2(5)), gf(ί)eL2(0, Γ; L2(Ω)) and q(t)eL2(0, T; H " 1 ^ ) ) , a function [iι(ί),

θ(0] = ["(^> 0» β(^9 0] i s c a l l e d fl w ^ f l ^ solution of[TE, g, q9 BΓ~\ with the initial

state [u09 v0, ΘQ] if

ί w(0e^?(0, T; J5P(O)) n
(2.3)

1 β ( ) ? ( 0 , Γ; L2(ί2)) n L2(0, T;

and

(2.4) - Γ (Mf, Φf)Λ - (t>o, Φ(0)) + Γ ( <ΓM, Φ>S^ί + Γ a(u, Φ)dt
Jo Jo Js Jo

+ α Γ (grad 0, Φ)Λ - fT (0, Φr)Λ - (0O, φ(0)) - j8 (div w0,
Jo Jo

- β [T (div w, ψ^dί + K [T (grad 0, grad φ)dt
Jo Jo

= Γ (3, ΦMί + Γ ( </, Φ>^Sdί + Γ (q, φ)dt,
Jo Jo Js Jo



Boundary value control 233

for all smooth n-dimensional vector functions Φ(i) = Φ(x, t) and smooth scalar

functions φ(t) = φ(x, t) which satisfy

Φ(T) = 0, φ(T) = 0 in Ω and φ(t) = 0 on S x (0, T).

Further [u(t), 0(ί)] is called a weak solution of[_TE, g, q, BD~\ with the initial

state [u0, v0, ΘQ] if it satisfies (2.3) and

(2.5) - Γ (ut, Φt)dt - (ι;0, Φ(0)) - Γ (u, AΦ)dt + α Γ (grad 0, Φ)Λ
Jo Jo Jo

(0, φt)dt - (θ0, φ(0)) -β(divu0, φ(0)) - )8^(divu, φt)dt

ΓT
+ K \ (grad θ, grad φ)dt

Jo

(^, Φ)dt - JQ

Γ J s </, (dΦ/dvA)}dsdt

for all smooth functions Φ(t) = Φ(x, ί) and (/>(ί) = φ(x9 ί ) o n Ω x [0, T] which satisfy

Φ(t) = 0 on S x (0, T), Φ(T) = 0 i n Ω

and

φ(t) = 0 on 5 x (0, T), φ(Γ) = 0 in Ω.

Here (#, <̂ ) appearing in (2.4) and (2.5) means the duality between H~1(Ω) and

Hl(Ω) and a(,) is a bilinear form defined on Hι(Ω) as

= 2(div w, divu) + μ Σ?,7=i (duJdXj + dUj/dx

for any u, t; e fl^Ω). We note that if u e H\Ω) and t; e H\Ω\ then

(AM, U) = -a(u, v) - \ <ΓM, v} dS + \ <B Γ M, ι>>dS.
Js Js

It is easily verified that, when g(t), q(t) and/(ί) are sufficiently smooth, a classical

solution is a weak solution and conversely, a smooth weak solution is a classical

solution. The uniqueness of the weak solution can be proved in the usual way.

See e.g. Duvaut and Lions [2, p.p. 130].

Putting

ί (μβlκ)(l + κ-<m-») when m = 1, 2, 3
ωm(α, β9κ)= \

[ (aLβlκ)(l + κ-2(m-V) when m ^ 4,

we have the following
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THEOREM 2.1. Let m ^ 2 , B = BD (resp. B = BΓ)9 g(t) e Γλjz

Hn-i-J'iΩ)), q(t)er\JZ&*{(0, oo; H^^iΩ)) and let To be the time appearing

in Theorem A stated below. If ωOT(α, β9 K) is smaller than a positive number

dm9 depending only on m, A, and Ω9 then for the control system \_TE9 g, q, B~\

and for any [u0, vθ9 θo]eW^q(Ω) and [uu vί']eHm(Ω)xHm-1(Ω) there exists

a control f(t) in ^ [ 0 , Γ o ] (resp. J ^ [ 0 , To]) which steers the initial state [u0,

vθ9 ΘQ] to the final state [uί9 v^ at the time To.

Further if g(i)e£°(0, oo; L2(Ω))9 q(t)e£°(Q, oo;L2(Ω))9 then the statement

is also valid for m = 1 and B = BD with weak solutions as the trajectories.

REMARK 2.2. If the speed of heat conduction is so small in comparison with

the propagation speed of vibration that the thermal expansion can be ignored,

then the heat conduction coefficient K is regarded to be equal to zero. In this case,

the system of equations (1.8) with an initial state [w(0)5 wf(0), 0(O)] = [wo, vθ9 ΘQ]

turns into the equations

po(d2u/dt2)(x9 t) = μAu(x9 t) + (λ + μ + aβ)graddivu(x9 t)

+ g(x9 t) - α grad θo(x) - aβ grad div uo(x)

— α \ grad q{x9 τ)dτ
Jo

and

θ(x, t) = θo(x) - βάiwu(x9 t) + j8divιιo(x) 4- Γ q(x, τ)dτ.
Jo

Hence this control system is equal to the system [E9 gad9 B~\ with Lame coeffi-

cients

μad = μ,λad = λ + aβ

and the external force

gad(x, t) = g(x9 t) - αgrad0o(X) - α)5 grad div MO(X)

- a \ grad g(x9 τ)dτ.
Jo

By [16]? for the control system \_E9 gad9 £ ] , the space Hm(Ω) x Hm-\Ω) is exactly

controllable in ^ g [ 0 , T] whenB = jBD and in J*"$[0, T] when B = BΓ. Hence

we obtain the results in Theorem 2.1 in this case, although the hypotheses are not

satisfied. But for the thermoelastic system \TE9 g9 q9 B~] with a small nonzero

K, we do not know whether the exact controllability holds or not.

Before the proof of Theorem 2.1, we recall some results obtained in [16].

Although the results in [16] are given for the control system [E9 Ό, BΓ~\ with
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Γ = 0, we easily obtain the same results for [£, 0, #£>] and [£, 0, BΓ~]. Namely

we have

THEOREM A. Let m ^ 2 and B = BD (resp.B = BΓ). Then for the control

system [£, 0, 5 ] , there exists a positive time To such that the space Hm(Ω) x

Hm-\Ω) is exactly controllable in ^ [ 0 , Γo] (resp. ^ [ 0 , T o]); namely, for

any \u0, VQ] and [iii, t^] in Hm(Ω)xHm~1(Ω), there exists a control f(t) in

^DL®* Tol (resp. ^$[0, To]) for which the system has a solution u(i) in Γ\J=0

<?J

t(0,To;H
m-J(Ω)) satisfying [u(0), uf(0)] = [uθ9 ι?0] and [iι(T0), u f(Γ0)] =

[w1? ϋ j .

Further if we consider weak solutions as trajectories, then the statement

is also valid for m = l and [£, 0, BD].

Further from the way of construction of the control in the proof of Theorem

A, we see

COROLLARY B. Under the same assumptions as in Theorem A, there exist

bounded linear operators KD from Hm(Ω) x Hm~\Ω) to ^ [ 0 , Γo] (resp.KΓ

from Hm(Ω) x Hm~\Ω) to &%[0, Γo]) and Lfrom Hm(Ω) x Hm~\Ω) to Γ\J=0 ̂ /(0,

T o ; Hm~j(Ω)) such that, for each \uu vi]eHm(Ω)xHm-ί(Ω)9 KD[uu v^ (resp.

KΓ[μί9 ι?t]) is the control which steers [0, 0] to [uu v{] for the control system

\E, 0, BD~] (resp. [E, 0, BΓJ) and L[uί9 v{] is the trajectory for the control

KD[uu vj (resp. KΓ[uu vj).

In the proof of Theorem A, the following lemma, which is Lemma 2.2 in

[16], plays an essential part.

LEMMA 2.1. Let m be a nonnegative integer and B a bounded open ball

in Rn which contains Ω U S. Then there exist bounded linear operators Em

and Fm from Hm(Ω) to Hm(Rn) which satisfy the following (1)~(4) for any ue

Hm(Ω):

(1) Emti + Fmu = u in β ;

(2) div£mii = 0;

(3) there exists a function φ in Hm+1(Rn) such that F m w=grad φ;

(4) the supports of Emu and Fmu are contained in B.

An outline of the proof of Lemma 2.1 was given in [16], but the bounded-

ness of the operators Em and Fm were not proved there. Hence we give here

afresh a proof of Lemma 2.1 in detail.

PROOF OF LEMMA 2.1. Let G be a simply connected domain in Rn such that

ΩczG^GczB. Then there exists a bounded linear operator Pm from Hm(Ω) to

Hm(G) such tht Pmu = u in Ω for all ueHm(Ω). (See Lions and Magenes [11,
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p.p. 75-76].) Since G is simply connected, Hm{G) is decomposed into the direct

sum of two closed subspaces: Hm(G) = Xm(G) + Ym(G), where

X"(G) = {δw|w6Jfm + 1(G), δw v = 0 on S},

7W(G) = {dφ\φeHm+ι(G)}.

Here elements in Hm{G) and Jfm+1(G) are regarded as 1-forms and 2-forms in

Hm(G) and Hm+1(G) respectively. The operator d is the exterior differentiation

and δ is its formal adjoint. Thus, in case n = 3, δw = τotw and dφ = gmdφ.

For details see [12]. Put

jTm + 1(G) = { w e ^ m + 1 ( G ) | δ w . v = 0 on S} .

Then for any ueHm(Ω), there exsits a 2-form w in «#m + 1(G) and a function ψ in

J7m+1(G)such that Pmu = δw + dφ. We define a closed subspaceAΓ of 3&m+1(G) as

JV = {xe^m + 1(G)|<5w = 0}andlet β m + 1 be the orthogonal projection of J? m + 1 (G)

onto the orthogonal complement N1 of JV. Let P m + 1 be a bounded linear exten-

sion operator from ^fm + 1(G) to jfm+ί(Rn) such that the support of Pm+ίv is

contained in B for each ve Jf m+1(G), and we define an operator Em as

Emu = δPm+ίQm+1w for Pmu = (5w + dφ.

If Pmu = δw1+dφί=δw2 + dφ2 (w,e J?m+1(G), φ^H^^G), i = l, 2), then
2m+iH ;i : =Qm+iw2- Thus the operator £ m is well defined. It is clear that the

operator Em is linear and the support of Emu is contained in B for any ueHm(Ω).

We show the boundedness of Em. Since 5 is a differential operator of order 1,

it is bounded from iV1 to Xm(G). By the definitions of Xm(G) and N\ it is

bijective. Hence, by the closed graph theorem, it is a homeomorphism from

N1 to Xm(G). Thus we have, for any ueHm(Ω) with Pmu = δw + dφ,

\\Emu\\m=\\δPm+1Qm+ίw\\m£const. | | l 5

I l i + iβ I I I + 1w| | l l l + 1 g const. | | β m + 1 w | | m + 1

^ const. \\δQm+M\m ^ const. ||Pmw||m g const. | |W | |m,

where const, are independent of u. Hence Em is a bounded operator from Hm(Ω)

to Hm(Rn). Similarly we can construct a bounded operator Fm satisfying the

properties (1), (3) and (4).

In order to prove Theorem 2.1, we give some lemmas.

We define closed operators s/Γ on Hί(Ω)xL2(Ω) and seΓ on H\Ω)x

L2(Ω) x L2(Ω) as

J* Γ [M, U] = [i>, i4κ], ^ ( ^ r ) = {[u, ϋ] G if 2(Ω) x H K β ) \BΓu = Q on S}

and



Boundary value control 237

u, v, 0] = 0, Au - αgrad0, -βάivv + κΛ0],

Γ) = {[ιι, t>, 0] eH2(Ω) x fl^β) x # 2 ( β ) | BΓu = 0

and 0 = 0 on S}.

The closed operators s/D and J ^ , associated to the boundary conditions (1.11)

and (1.12), are defined on the Hubert spaces Hh(Ω) x L\Ω) and H&Ω) x L2{Ω) x

L2(Ω) in the same manner.

Now we have

LEMMA 2.2. The closed operator ££Ώ (resp. £?Γ) generates a Co semigroup on

Hh(Ω) x L\Ω) x L2(Ω) (resp. Hι(Ω) x L2(Ω) x L2(Ω)).

PROOF. We consider the bilinear form a(, ) on H1(Ω) defined in Defini-

tion 2.1. By the assumption (1.5), we have

a ( u 9 u ) ^2μΣl j = ί \ \ S i j ( u ) \ \ 2 w h e n λ ^ O

a n d

\\2 w h e n λ<0

for any ueH1(Ω). Hence there exists a constant cx >0 such that the inequality

(2.6) a(u, u) ^ cx Σlj=i WduJdxjW2

holds for any ueHι(Ω), since as is well known (see e.g. Gobert [4]) Korn's in-

equality

Σϊ.y-1 llδtti/^yll2 ^ const. {Σ?,7 =i llδw^x, + duj/dx^}

holds for any ueH\Ω). Let Jf be the space H\Ω) x L2(Ω) x L2(Ω) with the

inner product

(tfl, V2)#, = fl(Ml, M2) + (Uί9 U2) + (t?l9 I?2) + (0 l 9 02) + ί (ΓUU U2}dS
j s

and the corresponding norm ||Ux\\̂  = (UU U^ψ for Ut= [ui9υi90J e je(i=l,2).

Then by the inequalities (2.6) and

0 g [ <ΓM, u}dS ^ const. «w>§ g const. | |M||2 for any ueH\Ω),
JS

the norm is equivalent to the standard one in /f *(Ω) x L2(Ω) x L2(Ω).

For any U = [u, v9 0] e@(<PΓ) and positive number ξ0, integrating by parts

and applying arithmetic-geometric mean inequality, we have
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((2>Γ-ξ0)U, U), = a(υ-ξou, u) + (v-ξou, u) + \ <Γ(v-ξou), u}dS
J S

+ (Au-<xgτadθ-ξov, v) + {-βάiwv + KAΘ - ξoθ, θ)

= -ξoα(u, u) + (v, «) - ί o | | «p - ξo\s<Γu, u}dS - α(grad0, v)

-ξo\\v\\2 + (v, gradfl) - κ| |gradβ| | 2 - ίoll^ll2

^ -ξoα(u, u) - (ζo-ί/2)\\u\\2-ξo[ <Γu,u>dS
JS

-{ξ0 - 1/2 - (<x2+jF)/κ}|!t;||2 - (κ/2)|| gradfl||2 -

since u and θ satisfy the boundary conditions du/dvA + Γ(x)u = 0 and 0 = 0 on

S. Thus if ξ0 > 1/2 + (α2 + β2)/κ9 then we have

{{SeΓ - ξo)U, U)jr S 0 for any U e ^ ( J ^ Γ ) .

This means that the closed operator &Γ-ζ0 is dissipative on Jf. Next we show

that &Γ — ξ0 is maximal. To show this, it is sufficient to prove that, for some

ξ^ξ0, the operator &Γ — ξ is surjective. Let F = [ / , g, h~] be any element in

Jf and consider the equation

(2.7) (j£V - ξ)U = F.

If U = [u9 v9 θ], then this equation is equivalent to

v — ξu = /, Au — αgrad θ — ξv = g and — /?div i? + KAΘ — ξθ = h.

By substituting the first equation into the second and the third equations, we have

(2.8) Au -α grad θ - ξ2u = g + ξf and

-ξβάivu + KAΘ - ξθ = h + βάivf in Ω.

By (2.6), there exists a constant c2>0 such that

a(vv, w) + ||w||2 ^ c2||w||? for any weH ι {Ω).

Let us take ξ so large that ξ>2, ot2/κξ2 <c2/(nβ2ξ) and choose ε such that 0L2jκξ2<

ε<c2/(nβ2ξ). We define a bilinear form 5 on Hι{Ω) x #έ(Ω) as

i, Φil, [w2, 0 2 ]) = α(w1? w2) + α(gradψ l 5 w2).+ ξ2(wu w2)

+ ε{κ:(grad φl9 grad 0 2 ) + ί)S(div wl9 φ2)

for O;, φ^eH\Ω) x H&Ω) (i = 1, 2). Then it is easy to see that
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\\φ2h),

where const, depends on ξ. By Schwarz's inequality and arithmetic-geometric
mean inequality, we have

B([w, φ], [w, φj) = a(w, w) + α(grad φ, w) + {2||w||2 + ^ <Γw, w>dS

+ β{κ|| grad φ\\2 + ξ/J(div w, 0) + ξ\\φ\\η

δ c2||w||f - (α2/2ξ2)|| gradφ||2 - (£2/2)||w||2 + (ξ2 - l

+ ( <Γw, w>dS + ε{κ\\ grad φ P - (ξj32/2)ll divw|p

for any [w, φ']eHί(Ω)xH}>(Ω). Thus we can take a constant (5>0 such that
B([w, φ], [w, 0])^δ(| |w| |ϊ+||0| |f) holds for any [w, φ-]eH1(Ω)xHh(Ω). For
any given F = [/, g, /?] e 3tf, the functional LF[w, 0] = — (# + ξf, w) — ε(/i +
βdiγf,φ) is bounded linear on H1(Ω)xH}i(Ω). Hence, by Lax-Milgram's
theorem, there exists a unique element [w, 0] in //*(i2) x Hl(Ω) satisfying 5([w, 0],
[w, φJ) = LF[w9 φ~] for any [w, φ~\ eH1(Ω) xifl(Ω). In particular, taking we
C§(Ω)n, φ = 0 and w = 0, φeC$(Ω), we see that the two equalities (2.8) hold in
the weak sense. Further by taking weC°°(Ω)n, φ = 0 and w = 0, φeC°°(Ω),
we see that w and θ satisfy the boundary conditions BΓu=0 and 0 = 0 on S in the
weak sense. By the general regularity theorem for the elliptic boundary value
problems, u and θ belong to H2(Ω) and H2(Ω) respectively (see e.g. Fichera [3]).

Putting v = / + ξu, we have a solution U= [w, v, 0] e ^(^fΓ) of (2.7). Thus
the closed operator ^Γ — ξ0 is maximal dissipative on Jf. A closed operator
with a dense domain is the generator of a contractive Co semigroup if and only
if it is maximal dissipative (see e.g. Tanabe [22, Chap. 3]). Therefore J?Γ — ξ0

generates a Co semigroup in Jίf, and hence «#γ is the generator of a Co semi-
group on e^. Since the norm || \\#, is equivalent to the standard one in
H1(Ω)xL2(Ω)xL2(Ω), the closed operator <£Γ generates a Co semigroup on
H\Ω)xL2(Ω)xL2(Ω).

The proof for the operator <£D is similar.

REMARK 2.3. If [u(ί), 0(0] is the trajectory in ίfm[0, T] of the control
system [Γ£, #, g, BD~\ (resp. [T£, #, <?, BΓ~]) for a control /(ί), then by the usual
trace theorem/(ί) belongs to jηg[0, T] (resp. ^$[0, Γ]) and further the compati-
bility conditions (2.1) and (2.2) are satisfied at t = 0. Conversely, we may ask the
question whether for given/(ί) in ^"S[0, T] (resp. ^$[0, T]) and an initial state
[M0, vθ9 ΘQ] in Hm(Ω)xHm~ί(Ω)xHm(Ω) satisfying the compatibility conditions
(2.1) and (2.2) with B = BD (resp.£ = £Γ), there exists a trajectory [u(t)9 0(ί)] in
<̂ m[0, T] of the control system [T£, #, q, BD~\ (resp. [T£, f̂, q, J5Γ]) with the
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control/(0 and [M(0), wf(0), 0(O)] = [ι/o, v0, θo~\. For the initial boundary value
problem of the wave equation

utt(x, 0 - Δu(x, t) = g(x, t) in Ω x (0, T)

with Dirichlet boundary condition (resp. Neumann boundary condition), that is,

u(x, t) =/(* , t) (resp. (du/dv)(x, t) = f(x9 t)) on 5 x (0, T),

Sakamoto [20], Miyatake [13], [14] obtained the energy inequality

(2.9) ||fi(0||£ + IMOIIi-i ύ const. {\\u(ϋ)\\l + \\ut(0)\\l-ι

(resp.

(2.10) ||ιι(0lli + \\ut(t)\\i-i ^ const. {||iι(0)||i + \\ut(0)\\2

m-i

They also obtained the energy inequalities for various other boundary conditions.
It seems to us that the energy inequalities (2.9) and (2.10) are best possible.
Further the results of Graham and Russell [5], when the domain Ω is a unit ball,
make us to conjecture that the corresponding question for the wave equation is
negatively answered (see Remark 3.2 in [16]). Hence it seems to us that for the
control system [7Έ, g, q, B] the answer to the above question is negative.

In spite of Remark 2.3, for the special controls the answer to this question
is affirmative.

LEMMA 2.3. Let m ^ l and B = BD (resp. m^2 and B — BΓ). Assume that,
for a control f(t) in ^g[0, T] (resp. ̂ [ 0 , T]), there exists a solution v(t) in
Γ\J=o cf/(0, T; Hm~j(Ω)) of the control system [£, 0, £] with the initial state
M0), uXO)] = [0,0].

Then there exists a solution [u(t)9 θ(t)~] in ^m[0, T] of the control system
[T£, 0, 0, £] with the control f(t) and the null initial state [w(0), w,(0), 0(0)] =
[0, 0, 0].

Further we have the energy inequality

(2.11)

- δ) (' || grad0(*)(τ)||2dτ
Jo

(α2/4<5)
Jo
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(resp.

(2.12)

(κa/β-δ) Γ ||grad0(fc>(τ)||2dτ
Jo

for O^t^T, 0 = fc^m-l and α constant δ with O<δ^κoc/β9 where w(t) = u(t)-
v(t).

PROOF. We prove the case B = BΓ. Given v(t)9 consider the equations

ί
wtt — Aw + α grad θ = 0

in Ω x (0, T)
θt + β div wf - KAΘ = -βάiw vt

with the homogeneous boundary conditions BΓw = 0 and 0 = 0 on Sx(0, T) and
the null initial state [w(0), wt(0), 0(0)] = [0, 0, 0]. By Lemma 2.2, the operator
3?τ generates a Co semigroup on H1(Ω)xL2(Ω)xL2(Ω)9 which we denote by
SΓ(t). Since ι;f(ί) belongs to S'ψ'1^, T; L2(Ω)) and satisfies the initial conditions
!><*)(0) = 0 (O^k^m), we can take φit) = φix9 ί)eCf(Ωx(0, T])w, / = l, 2,...,
such that {φit)} converges to vt(t) in ^J 1" 1^, T; L2(β)) as /->oo. Let us define
[w*(0, 0^)] by

^ S r ( ί - τ ) [ 0 , 0, -/?div^T)]dT.

Since [0, 0, άiw φι(t)'] e Γ\f=ί @(&j

Γ) for each t, [w^ί), 0/(0] is smooth in t and
x and [>ίfc>(0, 0ίfc)(O] (O^fc^m-1) satisfy the equation (2.13) and the boundary
conditions with B = BΓ (see Tanabe [22]) and [>ίfc)(0), 0[fc)(O)] = [0, 0]. Multiply
the first equation of (2.13) with [w(τ), 0(τ)] = [wifc)(τ), 0ίk)(τ)], by wife+1)(τ) and
the second equation by θ\k\τ) and integrate over Ω x (0, t). Integrating by
parts, we have

= 0,
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Multiplying the second equation by a/β and summing up, we have

(2.14) (1/2) {||w|*+1>0)||2 + α(wί*>(/), w|»(/)) + (.«/β)\\θ\k\l)\\2

||gradflί»>(τ)||a£/τ

for any positive δ. Let us take (5 with 0<δ<κoc/β. By considering {w{fc)(ί) —

w\k)(t)} and {flί^ίO-flί^CO} in place of {w\k\t)} and {0|fc)(f)}, the inequality

(2.14) implies that the sequences {w[Λ)(ί)} and {0Jfc)(ί)} (0 = fc = ra-l) are Cauchy

sequences in ^ ( 0 , T\ L2(Ω)) Π <f °(0, T; H^Ω)) and ^?(0, T; L2(Ω)) Π L2(0, Γ;

H\Ω))9 since {0/(0} converges in ^jrKO, Γ; L2(Ω)). Here we use the fact that

the norm defined by the bilinear form

is equivalent to the usual one in H1(Ω) and the inequality

Thus there exist wk(t) and θk(t) such that

w U ) ( ί ) , ^ ) i n ^ o ( 0 f T; JϊHQ)) Π ̂ K0, T;

> θk(t) in ^°(0, T; L2(Ω)) Π L2(0, T;

as /^oo for each 0^/c^m — l. It is easy to see that vvΛ+1(ί) = vvo

fc+1)(ί) and 0fc(ί) =

9 ^ ( 0 , for O g f c ^ m - 1 . Furthermore, [tt(ί), 0(0] = [wj(ί)» θ/(0] satisfies (2.4)

with/(0 = 0, flf(0 = 0 and q(t)=-βdiv φt(t). Letting /->oo, we see that [wo(0,

9 0(0] i s a weak solution of (2.13) with boundary conditions J3rw = 0 and 0 = 0 on

S x (0, T) and initial state [0, 0, 0] in the sense of Definition 2.1. Since w(

o

k\t) e

*?(0, T; H*(Ω)) n ^J(0, T; L2(Ω)) and 9(

o

fc>(0 e <f°(0, Γ; L2(Ω)) n L2(0, T; H\Ω))

(0 ^ fc ^ m — 1), we see that, by the ellipticity of A and A with the boundary

conditions BΓw = 0 and 0 = 0, the function [vvo(0, 9 0(0] belongs to <fm[0, T]

and satisfies the equation (2.13). Passage to the limit as Z-»oo in (2.14) gives the

energy inequality (2.12) for [wo(0, # o (0] Putting u(t) = v(t) + wo(t) and 0(0 =

90(0, we obtain the results for the case when B — BΓ.

The proof for the case when B=BD is similar.

LEMMA 2.4. Let m, g(t), q(t) be as in Theorem 2.1 and B = BD (resp. B = BΓ).
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Then for any T > 0 and [w0, vθ9 0O] e W^q(Ω), there exists a function f(t) in

^Ί5[0> T] (resp. ^ # [ 0 , T]) such that there exists a trajectory \u(t), 0(0] in

«fm[0, T] of the control system [TE, g, q, B~\ with the control f(t) and the initial

state [w(0), w,(0), 0(O)] = [uo, v0, 0O].

PROOF. Let £ be a bounded linear extension operator from Hk(Ω) to Hk(Rn)

(O^fc^m) and let R be the restriction operator from Hk(Rn) to Hk(Ω). Now we

consider the system of equations

ί ύtt - Aύ + αgrad£0 = Eg in Rn x (0, T)
(2.15)

[ θtt + j5Λ div ύt - KAΘ = q in Ω x (0, T)

with the boundary condition 0 = 0 on Sx(0, T) and the initial state [M(0), wf(0),

0(O)] = [£wo, £ϋ 0 , 0o] Here the differential operator A is thought to be defined

over Rn in the same way as in Ω. Let us define the closed operator ££ on H1(Rn) x

L2(Rn) x L2(Ω) similarly to £?Ώ, that is,

[w, v, 0] = [v, Aύ - αgrad^0, —/^i^divί? + κAΘ~],

^Γ2(ΛM) x Hx{Rn) x {i7 2(β) n Hl(Ω)}.

Further let & be the space H\Rn)xL2{Rn)xL2{Ω) with the inner product

Φι> Ui)# = &{ul9 u2) + (w1? M2)RΠ + (vu v2)Rn + (01 ? 02)

and the resulting norm | | C f

1 | | ^ = (ί71, ί / i )^ 1 / 2 for U^Cfi,, i;,., ΘJe J? (i = l, 2),

where α(, ) denotes the bilinear form on H1(Rn) defined by A similarly to α(, )

and ( , ) R n means the L2(jRw)-inner product. Since £ is a bounded operator from

H\Ω) to H\Rn) and 0 = 0 on 5, the inequalities

|(gradJBfl,tORn|^ const. HΘIUIIβll̂

and

KXdivtί, 0)| = \(Rv9 grad0)| ^ const. llθllxllί Ln

hold for any v e H^R"), θ e H&Ω). From these inequalities, it follows that

j ^ — ξ is a maximal dissipative operator for some ξ>0, and hence <£ generates

a Co semigroup, which we denote by 3(t). Then, by the general semigroup theory,

if Oo is in &{&) and F(t) is in #?((), T; «#), then the mild solution

ϋ(t) = S(t)U0 + [' S(t - τ)F(τ)dτ

is in tf}(0, T; «#) and is the strong solution of the equation (d/dt)U(t) = & U(t) +

). Further if F(t) is in <f r ' ( 0 , Γ; «#) and
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(2.16) ϋθ9 Uo

then U(t) belongs to ^~ι(0, T; Jf). If we put F(t) = [0, Eg(t)9 q(t)~] and £70 =
[£w0, £^o, ΘQ], then it is easily verified that F(t) belongs to ^JT^O, T; «#) and
the compatibility conditions (2.2) imply (2.16). Hence the mild solution ϋ(t)
is in &r\0, Γ J F ) and if we put £/(0 = [u(0, wf(0, 0(0], then [w(0, 0(0]
satisfies the equation (2.15). Since [£#(0, 4(0] is in Λ7=J «?ί(0, T; H^J-^R"1))
x n ^ o 1 ^/(0, Γ; H^J-^Ω)) when m ^ 2 and in Π} = 0 ^/(0, T; H^XR"))
x <f?(0, T; L2(Ω)) when m = 1, [«(/), 0(0] is in Λ7=o ^/(0, T; Hm-J(R"))
x n j 1 ^ 1 ^/(0, T; Hm-J'(Ω)) when m^2 and in Λj=o ^/(0, T; H^iR")) x <f?(0, T;
L2(β)) when m = l. Letting u(t) = Rύ(t) and f(t) = Bύ(t), we see that [w(0, 0(0]
belongs to «fw[0, T] and is a trajectory of [7E, gf, q, 5] for the control f(t)
with the initial state [w(0), ŵ O), 0(O)] = [wo, ι?0, 0O] and further, by the general
trace theorem,/(0 belongs to ^ [ 0 , T] when £ = βD and to ^ [ 0 , T] when
B = BΓ. By the uniqueness of solution, [u(0, 0(0] and f(t) are the required
functions.

LEMMA 2.5. Given \ul9υ{\ in Hm{Q)xHm~\Q\ let w(t) be the function
stated in Lemma 2.3 with B = BD9f(t) = KD[ul9v1'](t) and v(t) = L[ul9v1'](t),
where KD and L are the bounded linear operators stated in Corollary B. If
aβ/κ^l, then there exists a constant cm>0 depending only on m, A and Ω such
that

(2.17)

S cmωm(α, β, /c)T0 f

PROOF. Putting δ = κa/β and t= To in (2.11), we have

(2.18)

[
Jo

By the well known Poincare's inequality

Hull2 g const. Σlj-i WduJdxjV (ueHh(Ω))

and (2.6), (2.17) imply

^ co(<xβ/κ)To sup 0 < t < Γ o ||»(*+1)(ί)||2 for 0 ^ k ^ m - 1,

where c0 is a constant depending only on m, A and Ω. Since L is a bounded
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linear operator from Hm(Ω)xHm-\Ω) to r\J=0 <?/((), To; H" -J(Ω)),

supo<t<τo lk ( t + 1 )(OII2 ύ \\\L\\\2Kuu

for any [uι,υ1'] eHm(Ω)xHm~1(Ω), where |||L||| denotes the operator norm of L.

Thus we have

(2.19) M><*>(T0), ? )

uu r j l l? , , , ,- ! ) for O ^ k ^ m - 1 .

Now, we show, by induction on j ,

(2.20) ||wθ

for l ^ j ^ m if ocβ/κ^l, where cm is a constant depending only on m, ̂ 4 and Ω.

The inequality (2.19) for k = m —1 implies (2.20) for j = l. For simplicity let us

put

Let us assume that (2.20) holds for l^j^l ( l g / g m - 1 ) . By the regularity

theorem for elliptic systems, if

Aw = g in Ω, w = 0 on S and Aθ = h in Ω, 0 = 0 on S,

then

IM| f c + 2 g Cm||flf||k and | | 0 | | 4 + 2 ^ Cm||Λ||k

for geHk(Ω) and heHk(Ω) ( f e = - l , 0, l , . . . , m - 2 ) . Here and hereafter Cm

denote constants depending only on m, 4̂ and Ώ. Noting that w(t) and 0(0 satisfy

the equation (2.13) and the homogeneous boundary conditions, we have

(2.21) W

S c m { |k<- ' + »(ϊΌ)l l?-i + βea||β(«-*-*>(y0)i)f>,

and

(2.22) α 2| | θ (--ϊ
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Note that the inequalities

κ ~ k e ι ^ 2 e ι + 1 , 0^k

hold. Hence, by (2.20) for 1 g j ^ /, we have

and

S Cmeι+ί.

In the last inequality we have used the assumption that ccβ/κ ̂  1 and the inequalities

2

I - I

^ Γgsup0 < ί < T o | | ί;(--^1)(0ll?-1 ^ To

when T 0 ^ l , and

when To> 1. Thus, by (2.21) and (2.22), we have

(2.23) \Wm-ι-ιKT0)\\hi£

Further, by the assumption of induction, (2.22) and the above estimate, we have

(2.24) ||w(»- |)(T0)||f^cmβIg2c l l lβI + 1 and (a/β)\\θ^-^KT0)\\j^ Cmeι+1.

By (2.23) and (2.24), the inequality (2.20) holds for j = ϊ + l. Hence (2.20) is
valid for each l g j ^ m . Taking j = m, we have (2.17) for m^4. Calculating
directly, we have (2.17) when m = l, 2 and 3.

Now, we give the proof of Theorem 2.1.

PROOF OF THEOREM 2.1. Let R be the linear operator on Hm(Ω) x Hm~\Ω)
which maps \uu v{\ to lw(T0), wί(T0)] = [w(T0)-w1, u£Γ0)-v1']9 where w(ί)
and u(i) are the functions stated in Lemmas 2.3 and 2.5. Then the inequality
(2.17) means that
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(2.25) \\\RFUcmωJta,β,κ)T0\\\L\\\*

^ 1, where |||R||| is the operator norm of R. Since [w(0, 0(0] is the solution

obtained in Lemma 2.3, the null state is steered to [ul9 v{]+R\uu υ{] at To by

the control f(t) = KD[ul9 uJCO in ^S[0, Γo] for the control system [TE9 0, 0,

BDl If we'put ί/m = (cmΓ 0 | | |L | | | 2)- 1 for cm in (2.25), then

(2.26) ωjμ, β, K) < dm

implies |||R||| < 1 . Hence if (2.26) is satisfied, then the operator I + R is onto,

so that for any [w, υ] in Hm{Ω) x Hm'\Ω\ there exist a control f{i) e « "̂B[0, To]

and an increment of temperature 0 e Hm(Ω)Λ/jΓj(Ω) such that /(ί) steers [0,0,0]

to [u, v9 0] for the control system [TE9 0, 0, B J .

By Lemma 2.4, for any [uθ9 vθ9 0O] e W™ ^(Ω), there exists a function / x(ί)

in «^*g[0, Γo] which steers [w0, ι;0, 0O] to some state [ul9 vί9 Θ{] at To for the

control system [T£, gr, ^, 5 D ] . For any [M, U], let us take a control / 2 (0 in

^Ί8[0, Γo] and 0 such that/ 2(ί) steers [0, 0, 0] to [u-uu v-υl9 0] at To for the

control system [ΓE, 0, 0, BD~]. Putting f(t)=fί(t)+f2(t), we see that the control

f(t) steers [u0, v0, 0O] to [w, ι?, 0 + 0 x] at To for the given control system. This

completes the proof of the theorem for [TE, g, q9 BD~\.

The above controllability implies that, given [uθ9 vθ9 0O] in W™tq(Ω) and

[ul9 v{] in Hm(Ω)xHm-1(Ω)9 there exists a solution [w(0, 0(0] of (1.8) in

*»[0, To] satisfying (1.12), [u(0), Wί(0), 0(O)] = [tιo, vθ9 0O] and [M(Γ 0 ) , Mf(Γ0)] =

[M1 9 ϋ j . If we put/(0 = BΓu(0 on S for this u, then, by the general trace theorem

and the uniqueness of solution, we see that/(0 is in .^"$[0, ^o] a n d steers [uθ9 vθ9

0O] to [ul9 vl9 0 J for the control system [TE9 g9 q9

COROLLARY 2.1. Let m, To be as in Theorem 2.1. // ωm(α, β9 κ)< dm9

then there exist bounded linear operators KD (resp.KΓ) and Lfrom Hm(Ω)x

Hm-\Ω) to «^*S[0, TQ] (resp. &%[09 T0J) and to <^,[0, Γo] such that, for [M, V] e

Hm{Ω)xHm~\Ω)9 KD[u9 ϋ] (resp. KΓ\u9 vj) is the control which steers the null

state [0, 0, 0] to [w, v\ at To and L[u9 v] is the trajectory [u(t)9 0(0] for the

control KD[u9 υ] {resp. KΓ[u9 υ]) for the control system [TE9 0, 0, BD] {resp.

[TE9 0, 0,

PROOF. Let M be the operator which maps υ e Γ\J=0 ^/(0, T o; Hm~j{Ω))

to [v + w9 0]e^ w [O, T o], where w is the solution of (2.13) with homogeneous

boundary conditions and null initial state. It can be shown as in the above proof

that M is a bounded operator. Then, KD = KD{I-\-R)-\ L = ML{I + R)-X and

KΓ=BΓL are the required operators.

In Theorem 2.1, we assume that ωm(α, β9 K) is sufficiently small. But if

g{t)=Q and #(0 = 0, then the subspace Xm(Ω) x Xm~1{Ω) is controlled by controls
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in «^*g[0, To] when B = BD and in ^ $ [ 0 , To] when B = BΓ without this assumption,

which is seen in the following theorem. Here, for nonnegative integer k, Xk(Ω) =

{ueHk(Ω)\Fku=0}.

THEOREM 2.2. Let m = 2. Then, there exists a constant C > 0 such that,

for any [w0, VQ] and [uί9 v{\ in Xm(Ω)xXm~1(Ω), there exist a control f(t) in

^z>[0> TQ] (resp. JH?[0, Γo]) which steers [w0, v0, 0] to \_uu vx~] for the control

system [T£, 0, 0, BD~] (resp. \_TE, 0, 0, BΓJ) at To and a trajectory [u(t)9 0] for

the control f(t) satisfying the inequalities

(2.27) SUPo< f<Γ o«/(0>«-l/2 =

(resp. SUp 0< ί < Γ o «/(0»,n-3/2 ύ

(2.28) | |[u(0, 0] | | / m [ 0 i r 0 ] ύ C(||[u0,

PROOF. The proof is similar to that of Theorem 2.1 in [16], but slightly

different. We consider the operator Ek constructed in Lemma 2.1. Then, for

any ueHk(Ω)9 there exists a 2-form p in J^k+ί(Rn) such that Eku=δp. Hence

for given [u0, VQ] and [ul9 υ{] in Xm(Ω)xXm~1(Ω), there exist 2-forms pt in

jem+ί(Rn) and qt in jfm(Rn) such that E^^δpi and Em.ίvi = δqi (Ϊ = 0, 1).
Since the restrictions of p{ and q( to Ω belong to Jfm+1(Ω) and Jί?m(Ω) respectively,

by Russell [17], there exists a 2-form solution p(t) in Λ^ίo1 ^/(0, Γo; Hm+ί-J(Ω))

of the wave equation

(2.29) p f ί(0 - μzlp(0 = 0 in Ω x (0, Γo)

with the initial state [p(0), pf(0)] = [po, qo~\ \Ω ( = the restriction of [p0, g 0 ] t o ^)

and the final state \_p(T0), pt(TJf] = [pu q{\\Ω. Then u(i) = δp{t) also satisfies

(2.29) and [iι(0), u^O)] = [δp o, δ^ 0] | Ω = [ M O ^ O ] ? MTO), uί(To)] = [ιι1, wj , since

FmUi = 0 and ^ . ^ ^ O (i = 0, 1). Further divw(0= -<5u(0= - δ 2 p ( 0 = 0, since

^ 2 = 0. Thus M(0 satisfies the equation

(2.30) utt(t) - Λu(t) = 0 in Ω x (0, T o).

If we put 0(0 = 0, then [u(t\ θ(tj] e<Tm[0, To] satisfies the equation (1.8) with

0(0 = 0, *(0 = 0 and [ιι(0), wf(0), 0(O)] = [tιo,t>o,O], [ιι(To), W ί(Γ 0), θ(Γ0)] = [tι 1 ,ϋ 1 ,

0]. Let us t a k e / ( 0 = BDM(0 on 5 (resp./(0 = BΓw(0 on 5). Then the control

/ ( 0 steers [u0, t;θ5 0] to [uu vu 0] at To.

Next we show the existence of a control and the corresponding trajectory

which satisfy the estimates (2.27) and (2.28). Let us denote by Sm(0, To) the

space of all u(t) in Γ\y=o#ί(0, To; Hm~j(Ω)) which satisfy the equation (2.30),

div iι(0 = 0 for all ί e [ 0 , ΓO], [ιι(0), w,(0)] = [0 ,0] and [ιι(T0), ut(T0)-]e X*»(Ω) x

Xm"1(Ω). Noting that Xk(Ω) is a closed subspace in Hk(Ω)9 we easily see that

5m(0, To) is a closed subspace in Γ\J=0 < /̂(0, Γo; Hm-j(Ω)). Hence it is a Banach
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space. Let F be the operator which maps u(t) to [w(T0), ut(Toy]. Then it is easy

to see that F is a bounded linear operator from Sm(0, To) to Xm(Ω)xXm-\Ω).

We have shown that, for any \uu vΐ']eXm(Ω)xXrn-1(Ω), there exists u(t)eSm(09

To) such that [u(T0)9 ut(Toy] = [ul9 v{]. Hence the operator F is surjective.

Therefore, by the open mapping theorem, F is an open map. This means that

there exists a constant C > 0 such that, for any [ul9 i^] e Xm(Ω) x Xm~1(Ω)9 there

exists tt(ί)eSw(O, To) satisfying [u(T0), wf(T0)] ( = F(u(ί))) = [wi, »i] and

Σ 7 = o s u p 0 < ί < r o llu^KOL-j ^ C| | [ W l , i J H ^ - ! ) .

Putting fι(t) = BDu(t) (resp. fί(t) = BΓu(t))9 we have the estimates (2.27) and (2.28)

when [w0, fo] = [0, 0]. Similarly we have a control f2(t) and the corresponding

trajectory u(t) such that [u(0), uf(0)] = [u0, t>0] and [w(T0), ut(T0)'] = [0,0] which

satisfy the estimates (2.27) and (2.28) when \ul9 y J = [0, 0]. By putting /(*) =

ί w e have the required results.

REMARK 2.4. It often appears, in mechanics, the case when the boundary

condition (1.12) of the increment of temperature is replaced by

(2.31) γ(x)(dθ/dv)(x, t) + (1 -y(x))θ(x9 0 = 0 on S x (0, oo)

in the control system \TE9 g9 q9 BD~]9 where y(x) is a smooth function on S with

0 ^ γ(x) g 1. We denote this control system by [TE9 g9 q]r But we do not obtain

the exact controllability for this control system. We can show that the closed

operator <£y defined similarly to ££Ώ for the boundary conditions (1.11) and (2.31),

generates a C o semigroup on the space Hl(Ω)xL2(Ω)xL2(Ω). In the proof

of the estimate of the resolvent, we use the Hubert space Vy(Ω) which is defined as

the completion of the space of all θ each of which belongs to C°°(Ω) and satisfies

θ(x) = 0 on the set {xeS|y(x) = 0} and | |0 | | F y <oo with || | |F y-norm defined by

cf. Inoue [6], Kaji [7].

But, for this system, we do not obtain the energy inequality of the type (2.11)

appearing in Lemma 2.3. Put S'0 = {x65|'y(x) = 0} and assume λ + μ = 0. By

Russell [18], for the control system [£, g9 BD~\ when λ + μ = 0, that is, the control

system governed by the wave equation, the space Vm(Ω) x Vm~\Ω) is exactly con-

trollable at some time T by controls f(t) in n ^ o 1 ^/(0, T; Hm-J-^2(S)) with

s u p p / ( ί ) c S o x [0, T] under the assumption that (Ω9 So) is a "star-complemented"

region. Here Vm(Ω) is the closure in Hm(Ω) of the space of all ueC°°(i2)M

vanishing in a neighborhood of S — So. For the definition and examples of

"star-complemented" regions and for the proof of exact controllability, see Russell

[18], [19]. For controls/(ί) with suρρ/(ί) c So x [0, T] and the solutions v(t)
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of the control system [£, 0, BD~\ for/(ί) with \_v(0), tff(0)] = [0, 0], we can obtain

the existence of the solutions [w(0, 0(0] °f the control system [T£, 0, 0] y with

[w(0), w,(0), 0(0)] = [0, 0, 0] for this f(t) and the energy inequality of the type

(2.11). Further Lemma 2.4 holds with controls/(0 satisfying supp f(t)czSox

[0, T] if we consider the first equation of (1.8) in R"-Ω* with the boundary condi-

tion w = 0 on dΩ* and the second equation in Ω with 0 = 0 on S instead of (2.15),

where Ω* is a star-shaped domain with <9f2*=>S0 and Ω* f)Ω = 0. Thus, in this

case, we obtain the exact controllability of the space

= {[iι, υ, 0] e Vm(Ω) x Vm-\Ω) x Hm(Ω)\

[u, v, 0] satisfies the compatibility conditions}

for the control system [T£, g, q]γ in the same way.

In Theorem 2.1 we have shown that, when the Lame coefficients and a domain

are fixed, the control system [T£, g, q, B~] is exactly controllable if ωm(α, β, K)

is sufficiently small. Now let the Lame coefficients λ and μ and the coefficients

α, β and K are fixed. If the domain Ω is small, then the time Γo, at which the

control system [£, g, B~\ is exactly controllable, is also small. But since the

operator norm of the extension operator from Ω to Rn is not necessarily small,

IIILHI2 appearing in (2.25), and hence the operator norm |||i?||| may not be small.

Thus we do not know whether the control system is exactly controllable or not

under the assumption that the domain Ω is small.

Here we consider the case where Ω is shrinked in similar figures. For a

domain Ω and a real number r with 0 < r < l , let us put

Qr = rΩ ( = {rx I x e Q}), Sr = dΩr ( = the boundary of Ωr),

and consider the control system (1.8) in Ωr with (1.10) or (1.11) and (1.12) on Sr.

By putting y = r~xx and τ = r~1ί, the equation (1.8) in Ωr with #(0 = 0, #(0 = 0

and p o = l is reduced to the equation

ujτ) - Ayύ(τ) + αr grady θ(τ) = 0
in Ω x (0, oo),

θτ(τ) + βr-1 div, uτ(τ) - κr^Ayθ(τ) = 0

where ύ(y, τ) = u(ry, rτ), θ(y, τ) = θ(ry, rτ) and ^ grady, divy and J y mean that

A, grad, div and A are taken with respect to y respectively. By Theorem 2.1,

if the inequality

f r(ocβ/κ){l + (r/K)"1-1} < dm when 1 ^ m ^ 3
ωw(αr, jSr"1, fcr"1) =

I r(aβjκ){\ + (r//c)2<m"1)} < dm when m = 4

holds, then each initial state in W™q(Ω) is controllable to any state in Hm(Ω)x
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Hm'1(Ω) at τ = Γ0. Since ωm(αr, βr"1, i c r " 1 ) - ^ as r->0, we have the following

COROLLARY 2.2. Lei A, μ satisfying (1.5), α, β and K: be given and to Ω

fee a bounded domain with smooth boundary. Then there exists rm>0 such that,

i/* 0 < r < r m , then for the control system [TE, g9 q, BD~] (resp. [TE, g, q, BΓJ) in

Ωr with the boundary Sr, each initial state in W™q(Ωr) is steered to any state in

Hm(Qr)xHm'^r) at rT0 by a control f(t) in jηg[O, rT0~] (resp. .F5J[0, rTo]).

Here To is the time stated in Theorem A for the domain Ω.

3. Admissible controllability with constrained controls

As is stated in the introduction, we now introduce a constraint set and consider

what sort of deformations can be controlled by controls in this constraint set.

For a subset G in L2(S) and an integer m ^ l we define the constraint set

of controls 1F%G) as

= {/(0 e Γ\TA *ί(0, oo H»~J-U2(S)) \f(t) e G for all t e [0, oo)},

and, for an integer m ^ 2 , we define ^%G) as

r\JZ2

Q ^ ( 0 , oo Hm'J'^2(S)) \f(t) e G for all t e [0, oo)}.

DEFINITION 3.1. (1) For the control system [T£, g, q, J3Γ] a state [u 0, t;0,

θ0"] e PFy>β(Ω) is said to be admissibly controllable to a state [w l5 t;x] e Hm(Ω) x

Hm~1(Ω) in the constraint set J*"$(G), if there exist a positive time T and a control

/(ί) in ̂ {G) such that/(ί) steers [M 0, V0, ΘQ] to [wl5 ι?J at the time T, i.e., there

exists a solution [u(ί), 0(0] in <fm[0, Γ] of the control system [T£, r̂, q, Br]

for the control f(t) which satisfies [w(0), w^O), 0(0)] = [u0, ϋ0, 0O] and [M(T),

(2) A subset D of W'£g(ί2) is said to be admissibly controllable to a subset #

of Hm(Ω)xHm-ι(Ω) in the constraint set &%G\ if any [w0, i;0, 0O] in D is ad-

missibly controllable to any [uu v{] in R in the constraint set J ^ G ) .

The admissible controllability in the constraint set &%{G) for the control

system [TE, g, q, BD~] is defined similarly.

REMARK 3.1. As is in the case of the isotropic elastodynamic system

[£, g, £ ] , if an initial state [w0, v0, 0O] is steered to a final state [μl9 vu θ{] by a

control/(0 at a time Tfor the control system [TE, #, q, B]9 then w0 and ut have

to satisfy the compatibility conditions

Buo=f(0) and Buί=f(T) on 5.

Thus if a subset D is admissibly controllable in &%G) (resp. <^"$(G)), then D is
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contained in the set {[>, v, 0]e W^q(Ω)\Bu eG}, where B = BD (resp. B = BΓ).

Now we put

= {[w, υ, 0] e W ^ Q ) I βDw e G}

and

Λf(G) = {[iι, t;, 0] e ^ ( Ω ) I B Γ w e G } .

First we consider the control system \_TE, g, q, BΓ~\. We begin with the

following

LEMMA 3.1. Let m = 2 or 3, G be an open and connected subset of Hm~3^2(S)

containing 0. Then, for any [w0, υθ9 0O] in Jt™(G)9 there exist an element

[i* l9 vί9 0 J in ^(^ψ~ι) and a control f(t) in «^(G) such that f(t) steers [uθ9

Vo, ΘQ] to [ui9 υu θx~] at the time To given in Theorem A, for the control system

[TE, 0, 0, BΓl

PROOF. By Lemma 2.4, for [w0, vθ9 ΘQ]E W%t0(Ω), there exist a function

f(t) in . ^ [ 0 , To] and a solution [ΰ{t\ 9(ί)] e ^M[0, To] of the control system

[T£, 0, 0, BΓ] for the control /(*) with the initial state [w(0), M^O), 0(0)] =

[w0, vθ9 ΘQ], Then, by Theorem A, there exists a function f(t) in ^ $ [ 0 , To]

for which there exists a solution i (ί) in Γ\7=o ^{(0, To; Hm~j(Ω)) of the control

system [£, 0, 5 Γ ] for the control/(ί) with [t (O), ϋ(0)] = [0, 0] and ίv(T0), vt(T0)']

= - [ ΰ ( T 0 ) , ΰίίΓo)]. For this control/(ί), by Lemma 2.3, there exists a solution

[w(ί), 9(0] in <fm[0, To] of the control system [T£, 0, 0, 5 Γ ] with the initial state

[M(0), ut(O), 9(0)] = [0, 0, 0]. Since G is open and connected and since /(0) +

kθ) = BΓΰ(0) + BΓv(0) = BΓu0eG and /(T 0 )+/(Γ 0 ) = BΓΰ(To) + BΓv(To) = 0eG9

there exists a function/(ί) in [C°°(S x [0, T 0])]Λ which satisfies

/ϋ)(0) = /u>(T0) = 0, O ^ j ^ ,

and J(t)+?(t)+f(t)eG for all ί e [ 0 , T o]. Since /(ί) is smooth, there exists a

solution [β(ί), 9(0] in <^,[0, ^o3 of the control system [T£, 0, 0, £ Γ ] for the

control / ( 0 with the null initial state. Putting u(t) = ΰ(t) + ύ(t) + ύ(t), θ(t) =

0(0 + 9(0 + 9(0 a n d / ( 0 = / ( 0 + / ( 0 + / ( 0 ? we see that [w(0, 0(0] is the trajectory

of the control system [T£, 0, 0, BΓ~] for the control f(t) with the initial state

[tι(0), Mf(0), 0(0)] = [M 0, ^o? β 0 ] . For this [u(ί), 0(0], we have

BΓu(To)=f(To) = 0 when m = 2, 3,

BΓιi|(To) = ft(T0) = /.(To) + faT0) = BΓUt(T0) + B ^ T Q ) = 0

when m = 3 and

0(ΓO) = 0 on S when m = 2, 3,

- βdivwXTo) + κAΘ(T0) = Θt(T0) = 0 on S when m = 3,
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since θ(ή = O on 5. This means that [u(Γ0), ut(T0), 0(ΓO)] belongs to

Thus Oo, vOi ΘQ] is steered to [u(T0% ut{T0\ 0(TO)] in Θi^ψ'1) by the control

/ ( 0 = / ( 0 + / ( 0 + / ( 0 in the constraint set

We define the energy semi-norm Em on @(J?f) as

EoLu, v, 0] = α(ιι, u) + |M| 2 + ί <Γ«, W>dS + (α//Q||0||2

Js

Emίu9 v, 0] = Σ 7 = o £ o [ ^ f | > , f?, 0]]

and a finite dimensional subspace ^ Γ of Hm(Ω) as

^ r = {φ e C™{ΩY I β(ψ, φ) + f <Γφ, 0>^S = 0} .
J S

Then we have

LEMMA 3.2. Letm = 2or3. Then there exists a constant ώm(0 < ώm ^

depending only on m, v4, Γ and O,/(9r w/z/c/z the following holds:

If ωm(α, jS, K) is smaller than ώm, then for any ε, η>0 and [u0, v0, ΘQ]E

^(^fψ'1), there exist a positive time T, a control f(t) in ^ $ [ 0 , T] with s u p 0 < f < Γ

«/(0»m-3/2<^7 and [fi l f ΌU θ^e&iJZ"?-1) such that Em^[ul9 vu 0 J < ε and

f(i) steers [uθ9 v0, 0O] to [ul9 υu 0 J at Tfor the control system [ΓE, 0, 0,

s

PROOF. First we define a semi-norm || ||β on @(jtfΓ) as

<Γu9u>dS

+ a{υ, υ) + ||v4w||2 + { (Γv9 v

By Duvaut and Lions [2, Theoreme 3.4], the bilinear form

α(w, i?) + [ <ΓM, v}dS for M, veH^Ω)

induces canonically a norm on H1(Ω)/&Γ, which is equivalent to the standard

quotient norm of H1(Ω)/^Γ. Namely, there exists a constant 7o>^ s u c h that the

inequality

(3.1) yoι{a(u9 u) + ( <ΓM, u}dS} ^ mΐφ^Γ \\u + φ\\\
j s

S yo{<u, u) 4- [ <ΓM, u>dS}
Js

holds for any ueHι(Ω). Since 0tr x {0} c ^(V Γ ) and ^10 = 0 for φe@Γ, it
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follows that || | |β induces cannonically a norm on @(j/Γ)l(&Γx{0}) which is

equivalent to the standard quotient norm of 3>(s/Γ)l{@Γ x {0}). Here @(s/Γ) is

thought to be a Banach space endowed with the graph norm. Namely, there

exists a constant yt > 0 such that the inequality

y7ΊI[>, υ]\\e ύ infφeΛr ||[« + 0, i>] | | ( 2 i l ) s yΛlu, i>]||e

holds for any [u, v~\ e ^{s/Γ), since the graph norm of @{sέΓ) is equivalent to

II II(2.D

By Corollary B, if ωm(α, β, κ)<dm9 then there exists a positive constant δ0

such that, for any [u, ι?]eJEΓm(Ω)x£Γm~1(Ω) with ||[w, f]| | ( m,m-i)^<50, there exists

a control/(0 in ^J?[0, To] with s u p o < f < Γ o «/(0>m-3/2<^/ which steers [0,0,0]

to [u, i?] at To for the control system [T£, 0, 0, β Γ ] . Now let m = 2 and let ε<

min {1/3, yί MQ}. Given [M0, ι;θ5 ^ol e ^ ( ^ r ) ? Let [w(ί), #(0] be the trajectory

in «f2[0, oo) of the control system [T£, 0, 0, BΓ~] for the null control f(t) = O

with the initial state [M(0), W,(0), ^(0)] = [w0, v0, 0O] τ h e n w e n a v e t n e following

energy equality in the same way as in the proof of (2.14):

(3.2)

7=0, 1, for any T>0. Thus we have

(m/β) IJJ Hgrad fl(OII2Λ +

By Poincare's inequality, we have

[X{\\θ(t)\\i + II0ΛOII?}* = const.Et[_u0, v0, θo].
Jo

Now assume that ζ > 0 satisfies

< ε/3.

Since 0(ί)e<f°(O, oo; H2(Ω)) n ^ K 0 5 °o; L2(Ω))9 there exists a time TX^

such that
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(3.3) 110(̂ )11 < ζ, nβXTJII < ζ and || grad 0(7̂ )11 < ζ.

Put [uCΓJ, «((7\), fl(Tx)] = [M 1 ( δ l f 0 J . Then by (3.2), we have

(3.4) EiWi, vu &{] ζ Etlu0, v0, 0 O ] .

If

then we have

£i[fii, «Ί, 0 J = β(C,, fi,) + \\vt\\2 + \ <Γΰ l 5 a t

+ a(vu v±) + MMJ - αgrad^J 2 -f [ (Γvί9 v
Js

+ (α//0H - i S d i v ^ + KJ^II 2

^ 2||[w1? vJWl + 2α2|| gradβjl2 + (α/mil^ill2 +

^ 2ε/3 + 2α2C2 + 2{*lβ)ζ2 < β.

Next we consider the case when \\[ul9 δi]||5>β/3. Put | | [S l s δi3llβ

:=rΓ

0<ε<l/3, r>ε. Let 0<<5<ε. For (<5/r)[w1? {5J, there exists a function φ 0 in

&Γ satisfying

(3.5) Kδujr + φ0, δϋJrlWvu ^ yi(δlr)\\[uu vj\\e = 7 l δ .

Put [w, i5] = [̂ Mi/r + 0o, δϋjr]. Then, since

the null state [0, 0, 0] can be steered to -[w, ϋ] at To by a control /0(ί) in

^ [ 0 , To] with sup o < ί < T o </0(0>i/2<^ Further, by Lemma 2.5 and the proof

of Theorem 2.1, we can take/0(ί) so that

j i ^ c2ω2(a, β, κ)

with [uu vί~\=(I+R)-1[u, i;]. Hence,

(3.6) (*lβ)W2-JKT0)\\j-i S c2ω2(α, β, κ)T0\

^ c2ω2(α, β, κ)T 0 | | |L | | | 2 (l- | | |^ | | | r 2 | | [ i/, tΓH|2

2j l)

for ; = 1, 2 where a2 = {ω2(α, jS, K ) ^ 1 } 1 / 2 (gl/2). Let us put Λ(0 = 0 on

[0, Tx - To], Λ(0 =/0(ί + To - TO on [Tx - To, T J . Then Λ(ί) steers [0,0,0] to

- [ ΰ , i?, 9] at Tt with some BeH2(Ω) n #£(Ω). If we denote by [w(0,0(0] the

corresponding trajectory, then we have, by (3.6)
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(3.7) (0Llβ){\\θ(Ti)\\l + II0XW} ^ a2

2(l-a2)-

^ ω2(α, β, κ

provided that ω2(α, β, K)^d2l4. It is easy to see that the control fγ(ί) steers
[>o> υo> ΘO2 to [MJL — M, vί-v, Θ1-θ'] at 7\ for the control system [TE,0, 0, £ Γ ] .
Since ϋ = δuίlr + φ0 and v=δvί/r9 we have

^ i [ " i - " , { ? ! - ϋ, ^ - 0]

= α(w1-tiJ Mx-ΰ) + ||t?! - i;||2 + ί (Γiu^U), ύx-u>dS
j s

Pι-v, vt-v) ^ 0

\ <rau a
J S

2a(l -δlτ)(AUu grad9) + (α/j3)||0||2 + α2|| grad 0||2

1, gradθ)

= £,[«,, vu θj - {2δjr-δη^)\\ [ΰ l 5 t JII 2

+ 2α(l-5/r)(i4δ1, grad9) + /?„ + tf2.

Here

H x = (α//O||0||2 + α2|| grad9||2 + (oc/βW^ψ,

H2 = 2(δoc/r)(Auι, grad^Ί) - 2α2(gradί^, grad 9)

- (2«lβ){(θu B) + ( t o ) , to))}

By the well-known L2-estimate, (3.5) and (3.7), we have

(3.8) α2 | | grad 0||» ^ Cα 2 |μ9| | 2 g C(α2//c2) {||δ,(Ti)H2 +

5, κ)y\δ* + nβ2\\ϋ\\l}

lκ)2δ2 = C(l+n)ω2(α,
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with a constant C > 0 depending only on Ω. Then by (3.7) and (3.8), we have

Iffi I ̂  {C(l + n) + r?}ω2(α, β, κ)δ2

and noting that HΛMJ g | | [ M 1 ( ΰil||lβ = r, by (3.3), (3.7) and (3.8), we have

(3.9) \H2\ :£ 2«α<5 + C'/2(l +n) 1 ' 2 αω 2 (α, β, κ)δ + 2(α/J8)1/2ω2(α, β,

= 2ζrJ(oc,β),

where

J(α, yS) = α

Since

α(ΰ t, β t) + H0!||2 + ί iΓUu ΰ
Js

+ a{vu δ t) + MMIII2

a(ΰu fix) + P i P + J s <rU!, «i>ί/S + a(pu δt)

j 2 + ί <Γϋl5 ϋ^dS + 2α2||
Js

g 2JE1[M0, »O, ΘO]

we have by (3.9)

\H2\ ̂  2ζJ(a, β){2Eί[u0, v0, β0]

g 4ζJ(α, β){E1lu0, v0, 0O]

Further we have by (3.8)

\2(ί-δlr)(Aΰu αgrad0)| ^ 2(1-^)11^ ! , e 1]| |Jαgrad0| |

Hence, if {C(l + n) + y?}ω2(α,)?, K) < 1/2 and C 1 ' 2 ^ + ny2ω2(«, β, K) < 1/4,
then we have
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E1\u1 - ΰ,v1 - v, θί - 0]

^ E1tuu υu 0 J - (2rδ - δ2) + {C(l + n) + 72}ω2(α, β, κ)δ

+ σi2(l + nyi2ω2{x9 β9 κ)(rδ - δ2)

+ 4CJ(α, β){E1[uθ9 vθ9θo2

^ E ^ , δ x, 0 J - rδ/2

Therefore, if <5 = ε/2 and £ > 0 has been so chosen that

4ζJ(α, /OίJBiCiio, vθ9 β 0] + «2C2}1/2 < ε2/8,

then

^ I [ M I ~ w, vt - v, θί-Θ^S Eίluί, vl9 θ^ - ε2/8

09 v0, β 0 ] - ε2/8.

Further, clearly, [« ! — w, 0̂  — v, 91— 0] belongs to @(<gr). Let us put ώ2 =

min {J2/4, ( l ^ ί C C l + ^ + y2}-1, ( l / ^ C - ^ ^ l + n)"1/2} and assume ω2(α, j8, κ)<

ώ 2 . Then we have seen that, under the assumption \\[ul9 ί5i]||β<e/3, we can take

[ul9 vl9 θj] in ^(JδfΓ) such that

o, β 0] - ε2/8

and [u0, ι;0, θ 0 ] c a n t>e steered to [wl5 i;l5 0 J at T t by some control fx{t) in

^ N [ 0 , T J with supo< f < Γ l « Λ ( 0 » i / 2 < ^ .

Next we start with the initial state [uί9 vl9 θ{] at t = Tt. In the sequel we

say that a control/(ί) steers a state [w, t;, 0] at ί =7" to a state [M, V\ or [w, {;, ^]

at t=T (>T) and [u(ί), 0(0] is a trajectory which connects [u, v9 0] at T and

[u9 v9 θ~\ at !Γ for the control system [TE9 g9 q9 J5Γ], if there exists a solution

[w(ί), 0(0] of [TE9 g9 q, BΓ~\ for the control/(ί) such that [«(T), u t(T), 0(T)] =

[w, i?, 0], [w(f), M^f), 0(f)] = [w, g, 0]. Further we define ^ [ T , T] and

^ J T , T] similarly to ^ [ 0 , T] and ^m[0, T]. Let [β(0, δ(0] denote the

trajectory in S2\Tγ9 oo) of the control system [T£, 0, 0, BΓ~\ for the null control

/(ί) = 0 with the initial state [#(7^), ^ X r j , 0(ΓX)] = [uu vl9 0 J . Then the equality

(3.2) for ύ(t) and Tt in the place of u and 0 holds, and hence there exists a time

T2>Tί such that (3.3) holds for 0(Γ2), 9f(T2) and gradδ(Γ2). Put [w2, i;2] =

[β(T2), Wί(T2)]. Then, by the same arguments as above, we see that, if \\[u29

£ 2 ] | | 2 >ε/3, then there exist [u2, v29 0 2] in @(&Γ) satisfying

w2, v29 0 2] ^ Et[uu vί9 Θ J -

and a control/ 2 (0 in ^ | T i > Γ2] with s u ρ T l < ί < Γ 2 </ 2 (0>i/2<^ which steers

[ul9 vu 0 J at Tj to [M 2, i72, 0 2] at T2 for the control system [T£, 0, 0, B Γ ] .

Repeating this procedure, there is an integer JV^ 1 such that we can take [wn, t J e
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H\Ω) x J5Γi(fl), [ii,, vH, flj € ^ ( ^ Γ ) , Tπ > rM_± and /,(*) € ^ [ T M _ l f TJ with
sup Γ n _ 1 < ί < Γ n «/ n (0» i/2<^ for which the null control steers [wM_1? ι;n_1? 0W_J

at Γ ^ to [fiB, δ j at T^/^ί) steers [uH-l9 vn.u θn_{\ at Tw_x to [wn, ι?B, 0J at

Tn and the inequalities

hold for l ^ n ^ N , and either the inequality

l|[fijv> %]|I5 ^ β/3 or E ^ u ^ %, ΘN] < ε

holds.

Puttingf(t)=fM Tn-^t£Tn9 n = l,2,...,JV-l,and

ί 0 when | | [%,%] | | ?<ε/3

I /JV(O when E^w^, %, ΘN] < ε,

TN_! ^ ί ̂  TN, we obtain the required control in the case of m = 2.

In case m = 3, we consider the energy E2[u, v9 0] and the semi-norm

+ ( iΓ{Au-{θLβjκ)grad [ J " 1 (divt?)]), ^w - (μβ/κ)grad [J
Js

4- α(^w - (αj8/ιc)grad [^l"1 (div t?)], Au - (αjϊ/κ) grad [ J " 1 (div ι>)])}1/2

instead of the energy E^u, v, θ~] and the semi-norm ||[w, ϋ] | | e respectively. Here

we denote by A'1 Green's operator related to Dirichlet's homogeneous problem

for A, i.e., if feL2(Ω), then J " 1 / i s defined as the solution u of the problem

ueH&Ω) Π H\Ω\ Au = / in Ω.

It is well known that A'1 is a bounded linear operator from L2(Ω) to Hl(Ω) n

H2(Ω) and from f ί^β) to ifJ(Ω) Π i/3(Ω). If [u0, ̂ θ 5 θ 0 ] belongs to i^( j^) ,

then for C>0, we can take a positive time T such that, in addition to (3.3), the

inequalities

\\snάθHT)\\<ζ, \\UT)\\<ζ
and

UmάA~%{T)\\x ^ \\A-iθt(T)\\2 ύ const. ||θ f(T)|| < ζ

hold for the trajectory [u(t), 0(ί)] of the control system [T£, 0, 0, 5 Γ ] for the

null control/(0 = 0 with the initial state [w(0), ut(0), 0(O)] = [wo, vθ9 0O] Since

i4iι(Γ) - α grad 0(Γ) = ^κ(Γ) - (αj8/ιc) grad [A'1 (div wf(T))]



260 Kimiaki NARUKAWA

if ocβ/κ is small, then the semi-norm || | | s induces canonically the norm on
(βτ x {0}) which is equivalent to the standard quotient norm of @(sfr)l(&Γ x
{0}); and the norm of ^{s/}) is equivalent to || ||(3,2) Thus we can prove the
result for the case m = 3 by the same procedures as in the case of m = 2, although
estimates are much more complicated. We omit the details of the proof.

LEMMA 3.3. For any η>0 there exists a constant δ>0 satisfying the
following:

// T>nT0 for a positive integer n, then for any φe&Γ with \\φ\\mSnδ9

there exists a control f(t) e ^"$[0, T] with sup 0 < f < Γ ^f(t)ym-3/2<η which steers
[0, 0, 0] to lφ, 0, 0] at the time Tfor the control system [T£, 0, 0, BΓ~],

PROOF. It is easy to see that any element φ in @Γ is represented as φ = δp
with some 2-form p in #Fm+1(Ω). Hence, in the same way as in the proof of
Theorem 2.2, we see that there exists a control f(t) in ^"$[0? ^o] which steers
[0, 0, 0] to [(/>, 0, 0] at the time To and, further, satisfies the inequality suρ 0 < ί < Γ o

C/(0^m-3/2 = c o n s t HΦIIm Thus there exists δ>0 such that, for any φ0 in
@Γ with ||</>0||mg(5, the state [0, 0, 0] is steered to [φ0, 0, 0] at To by a control
fo(t) in JFft[0, To] with supo<ί<ro«/o(0»m-3/2<>7. Noting that [i<(0, 0(0] =
lφ0, 0], 0 ^ ί ^ T o , is a trajectory of the control system [T£, 0, 0, BΓ~\ for the null
control/(0 = 0, we see that the state [φ0, 0, 0] is steered to [2φ0, 0, 0] at To by
the control /o(0 I n this waY> w e s e e t n a t t n e n u l l s t a t e is steered to [nφθ9 0, 0]
at nT0 by the control f(t)=fo(t-kTo), kT0^t^(k + l)T0, /c = 0, 1,..., n-\. For
any T^nTo, putf(t) = 0, 0^ t^T-nT o , f(t) =f(t-T+ To), T-nT0^t^T. Then,
clearly this control/(0 belongs to ^"$[0, T], satisfies sup 0 < f < Γ C/(0^m-3/2<^/
and steers the null state to [φ, 0, 0] at Tfor any φe@Γ with \\φ\\m^nδ.

LEMMA 3.4. Given η>0 there exist ε>0 and T>0 such that, for any u(t)e
<f?(0, oo;Hm(Ω)) Π *?K0, oo Hm~\Q)) with sup0 < ί < α D ||wt(0ll <ε and any T> T,
there exists a control f{t) in ^ [ 0 , T] with sup 0 < ί < Γ </(0>m-3/2<^ w/ιzc/i
sί^rs [0, 0, 0] to [ - P M ( T ) , 0,0] αί the time T for the control system [T£, 0, 0,
Bp]. Here P is the orthogonal projection from L2(Ω) to &Γ.

P R O O F . Let r = s u p 0 < f < 0 0 ||wf(OII Then we have

Γ(n+l)T0

\\Pu(T)\\ ί ||u(T)|| g ||U(O)|| + ||u((τ)||dτ g ||«(0)|| + (n + ί)rT0.
Jo

for any Te\nT0, (n + l)T0]. Since the subspace @Γ is finite dimensional, there
exists a constant y2 such that

Il0ll»^72ll0li for all

Hence

\\P<T)L ^ yiWum + nry2T0 for all Te [nT0, (n + l)Γ0] .



Boundary value control 261

For given η>0, let us take δ > 0 stated in Lemma 2.3 and put & = δj2y2TQ. Then,

if r < ε , then choosing n0 so large that

(no + ί)rγ2To<noδ

we have

(3.10) \\Pu(T)\L < nδ for any Te [nT0, (n + l)Γ 0 ] , n ^ n0.

Put T = n 0 T 0 and let T> T. Then taking an integer n so that n T 0 ^ T<(n + 1)ΓO,

by Lemma 3.3, we see that the null state can be steered to -[Pu(T\ 0, 0] at T

by a control/(0 in ^ ? [ 0 , Γ] with s u p 0 < ί < Γ «/(0»m-3/2<>7 for the control

system [Γ£, 0, 0, 5 Γ ] , since (3.10) holds.

LEMMA 3.5. Let m — 2 or 3. Then there exist positive constants ωm and

3m, depending only on m, A9 Γ and Ω, such that if com(cc, β, κ)<ωm, then the

following is satisfied.

For any η>0 and Lu^v^ in 2>(stTι) wίίΛ IICwi,^i]||(m,m-i)^3m^/ωm(α,β,

κ)9 there exist a positive time T and a control f(t) in "̂Xf[O, T] with s u p 0 < ί < r

€f(t)ym-3/2<rl which steers [0 ,0 ,0] to \uuv{\ at Tfor the control system
ITE, 0, 0, BΓl

PROOF. We define a semi-norms || ||βm on @(stfψ) as

for \u,Ό\eH\Ω)xL2(Ω\

II[u, V\\\em = {Σ7=o WKu, v-]\\loY12 for O, »]

Then {||[M, t ; ] | | 2

w + | | u | | 2 } 1 / 2 defines a norm on @(jtfψ) which is equivalent to

the graph norm. Let Zm be the orthogonal complement of @Γ x {0} in the space

@(sέψ) with respect to the inner product defined by the norm {||[w, t ; ] | | 2

m +

| |M| | 2 } 1 / 2 and Qm be the orthogonal projection from &(jtfψ) to Z w with respect

to this inner product. By (3.1), the inequality

(3.11) INI2 ύ 7o{a(u, u) + ^ <Γu, u>dS}

holds if u e H\Ω) and (w, φ) = 0 for any φ e @Γ. Since (u, φ) = 0 for any [w, υ] e

Z m _ ! and ^ e ^ Γ and the norm {||[w, ϋ ] | | 2

m _ 1 + ||w||2}1 / 2 is equivalent to

II ll(m,m-i) by (2.6), (3.11) implies that || \\em^ is a norm on Zm_1 which is equi-

valent to the standard norm induced by || ||(m>m_ ίy Hence there exists a constant

y m >0 satisfying

(3.12) ||[ii, ι > ] | | ( w , m - υ g yJίu, υlW^ for any [u, υ]eZm^.
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Let V(t) be the semigroup generated by s/Γ. Then the energy equality

holds for any [w, υ\e^{^ψ-χ) and ί^O; cf. [15]. For any [w, υ] e
and positive integer n, we put [w0, r 0] = [u9 —1;],

= V(T0)[uk9 vk-] -

(3.13) Λ(ί) = - (lKn-k))KΓίQm-xV(T0)[uk9 υj](t), 0 ^ ί ^ To,

^ίί-fc^oX A:Γ0^ί^(/c+l)Γ0, Og/c<n~l, where KΓ is the bounded
linear operator stated in Corollary B. Let ϋ(t) be the trajectory of the control
system [£, 0, BΓ~] for the control f(t) with the initial state [w0, ί>o] Then we
easily see that

v(t) = PV(t-kT0)[uk9 vjj -

on [kT09 (fc + l)T0], 0^fe^n-l , where P[M, V] = II for [ti, t;] eHm(Ω)x Hm~\Ω)
and L is the bounded linear operator stated in Corollary B. Since Qm-i — Qm-ι
and

IIQm-il>, tfllL-t = II[tι, v]]^ for any [u, ι;] e

we have

= (1 -l/(n-/c +1)) ||Ct/fc_ 19 t fc-i l l l^

= (l-fc/n)||Ct/0, t;0]|Lm_l9 1 ^ k ^ n

Hence, if t e [kTθ9 (k + 1)ΓO] (0^ fcS n -1), then

(3.14)

and

^ (1-fc/B) ||[uo,

g cM{(n-fe + l)/n} ||[up, POIII^-L 0 g g m - 1,
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where cm is a constant depending only on m, A, Γ and Ω. Put

(3.15) v(t) = v(nT0-t) and f(t) =J(nT0-t).

Since

IIWO), flMIII^ = \\ίv(nT0X -ϋinT0)-]\\em_x = 0,

f?(0) e @Γ and uf(0) = 0. As in the proof of Lemma 2.3, we see that there exists a

solution [w(0, 0(0] in «?m[0, nT 0 ] of the control system [TE, 0, 0, JBr] for the

control / ( 0 with the initial state [w(0), uf(0), 0(0)] = [t (O), 0, 0], and w(ί) =

— i>(0 satisfies the inequalities

+ fl(w<'>(nT0), W ^

In a way similar to the proof of Lemma 2.5, we have

(3.16) l l ft^-iMnΓo), w^nΓoHll

ύ cwωm(α, J8, /c)nT0||[M0,

with a constant cm depending only on m, ̂ 4, Γ and Ω. Clearly the operator which

maps [u, t;] = [w0, — VQ] to v(t) is linear. Thus the operator Rn which maps

[u, !?] to [w(nT0), w^nTo)] is linear. Further if [w0, -t? 0 ] e ^ j / ? " 1 ) , then

[w(nΓo), wt(nΓ0)] belongs to ^ ( j ^ Γ 1 ) - Putting i?II = ρm_1Λn, we see that £„

is a linear operator on Z m _ t . Further the inequalities (3.12), (3.16) and the

equality ||[u, tf]||(m,m-i)=||[>o> ^o]ll(m,m-i) imply the inequality

(3.17) \\\Rj\*£γma>Jt*9β9κ)nT0

with a constant ym depending only on m, ̂ 4, Γ and Ω. As in the proof of Theorem

2.1, (/+5 w )[M,y] = β m _ 1 [ φ Γ 0 ) , ut(nToy]9 where [u(0, 0(0] is the trajectory of

the control system [T£, 0, 0, BΓ~} for the control/(ί), which is given by (3.13)

and (3.15), with the initial state [u(0), u/0), 0(0)] = [ι (O), 0, 0] . Put

B(r) = {[ιι, v}eZm-± \ ||.[iι, »Dlie—.——x> < ^

for a positive number r. Then, by (3.14), if [w, ι>] e B(nηl(2cm)), then C/(0^m- 3/2

<ιj/2 on [0, n T 0 ] . Now assume that
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(3.18) Sωjμ, β, κ)ymT0 < 1,

and take a positive integer n 0 such that

(3.19) {4ωm(α, β, K ^ . T O } " 1 - 1 < n 0 g {4ωm(α, j?, KM

Then, by (3.17),

l\\R«o\W ^ {ymωm{«, β, κ)n0T0}
112 ύ 1/2.

Hence (I+R^)'1 exists and

Therefore

By (3.18) and (3.19),

no>//4cw ^ (ι//4cJ{4ωM(α, ft fc^Γo}" 1 - 1

^ηl{32cmωm(*,β9κ)γmT0}.

Putting

ω m = l/(8ywΓ0) and ίm = l/(32cmywΓ0),

we have shown that, for any [w, ϋ] e Z m _ 1 with | | [δ, t J H ^ ^ - D ^ ^ i y / ω

there exist some elements [u, υ~]e@{s/ψ~ι) with βm_i[w, ϋ] = [ΰ, ϋ],

Θ e Hm{Q) ίl HJ(O) and a control /(*) e ^SJ[O, n 0 T 0 ] with sup 0 < f <M o Γ o«/(0»m- 3/2 <

ιy/2 such that f(t) steers [φ 0 , 0, 0] to [u, 1?, 0] at π 0 T 0 for the control system [T£,

0, 0, 5 Γ ] . Note that the inequalities

WQm-ilu, »]II(«,*-D ^ y»llβ«-i[t«, ^ L . - ,

^ OmIICw, l>]||(m,m-l)

hold for any [M, υ] e^is/ψ"1) with a positive constant c'm depending only on

m, A and ίλ Putting 3 m = 5m/(c^ym), we see that, for any [w, ι?] e ^ ( J ^ ? " 1 ) with

II[w, ϋ]||(m.m-i)^2mi7/ωm(α, J?, K:), there exist functions </>0, φχe^τ, θeHm(Ω)Π

H&Ω) and a control f(t)e^[09 n 0 T 0 ] with sup o < f < M o Γ o «/(ί)»m-3/2<ι//2 such

that /(ί) steers [φθ9 0, 0] to [M + Φ I , v, θ]. Subtracting φ 0 from the trajectory,

we see that J(t) steers [0, 0, 0] to [u + φ9 v, θ] for some φ e ^ Γ .

By Lemma 3.3, the null state is steered to [ — </>, 0, 0] at a time T(^n0T0)

by a control /(ί) in ^ [ 0 , T] with s u p 0 < f < Γ </(0>m-3/2<V/2. Putting /(ί) =

/(0 , 0 ^ ί ^ T - n o 7 7 o > / ( 0 = / ( ί - ^ + W o T o ) + / ( 0 J T-n0T0^t^T, we easily see that

the control/(ί) steers [0, 0, 0] to [w, t;] at Γand satisfies s u p 0 < t < τ

Thus we obtain the result.
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Put ώ m = min{ώm, ωm}, where ώm, ω m are constants given in Lemmas 3.2

and 3.5 respectively. Let

Bm{r) = {[iι, ι>] e ^ ( ^ Γ 1 ) I I! [a, i>]||(m,M-i) < r} for r > 0.

PROPOSITION 3.1. Let m = 2 or 3, G be an open and connected subset of

Hm~^2(S) containing 0 and g(t)e Γ\J=i όa{ (09 oo; Hm-J-ί(Ω))[]Wm-1'ί(0, oo;

L2(Ω)), q(t) e Γ\JΞ& *ί (0, oo Hm~J-\Q)) n ^ m ~ 1 ' 1 ( 0 , oo L2(β)). Fiirffter let us

assume that in case m = 2,

110(011 + 11̂ (011 > 0 as ί — . o o ,

and in case m = 3, q{t)eHl{Ω) for all t>0 and

110,(011 + llfcίOII + llrtOlli + I k ί O h — > o as . * — > oo.

// ωm(a, /?, κ ) < ώ w , ί/ien, /or ί/ẑ  control system [T£, #, f̂, 5 Γ ] , ί/ie subset

^ψ(G) is admissibly controllable to the set Bm(dmηj2ωm{a, β, K)) in the constraint

set &%G).

Here η is a positive constant such that the η-neighborhood of the origin in

Hm~3/2(S) is contained in G and dm is the constant stated in Lemma 3.5.

PROOF. Noting [0, g(t), q(ty] e ΓλJ=i <?{(09 oo H\Ω) x L2(Ω) x L2(Ω)) and

[0, 0(0), g(0)] e ^(J^r) when m = 3, by the general semigroup theory, we see that

the null control /(ί) = 0 steers the null state to a state in ^ ( j ^ y 1 ) at the time To

for the control system [TE, g9 q, Br~]. By Lemma 3.1, any state [w0, υ0, ΘQ] in

Λ?ψ(G) is steered to some state in @(J£ψ~x) by a control fo(t) in ^ ^ ( G ) at the time

To for the control system [T£, 0, 0, β Γ ] . Hence we easily see that fo(t) steers

[w0, vθ9 ΘQ] to some state [uί9 vu θ{] in ^(ifψ~ x) at To for the control system

[Γ£, g, q, BΓl

We give the proof for m = 2. By the assumptions on g(t) and q(t), for any

ε > 0 we can take 7\ ( ^ To) such that

(3.20) ||0(ί)|| + ( α / ^ W O I I < e for ί^

and

(3.21) Γ {||0^)(OII + («//01/2lkU)(0ll}Λ < β, 7 = 0, 1.

i(t)=fo(t\ 0 ^ ί ^ Γ o , / 1 ( 0 = 0, ToStύTί9 and let [iι0, ι;0, θ 0 ] be steered to

[w2, ι;2, θ 2 ] at T± by/ t(O. Since [w2, v2, Θ2~\ is in ^(JδfΓ), we see, by Lemma 3.2,

that for any ε>0, [w2, v29 02] at Tx is steered to some [w3, ι?3, 0 3] e @(&Γ) with

^i[w3 ? ^ 3 J β 3 ] < ε 2 at T2 ( ^ T x ) by a control/2(ί) in J ^ ( G ) for the control system

[T£, 0, 0, BΓ~\. Let [δ(0, 5(0] (t^TJ be the trajectory for the null control

^O with initial state [£(7^), jί^Γi), 9(Γ1)] = [0, 0, 0] for the control system
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[TE9 g, q, BΓ] and SΓ(t) be the semigroup generated by JSfr. Putting V(t) =

[δ(ί), ΰt(t)9 5(0] and F(ί) = [0, g(l), q(t)]9 we have

Since F(t)e<?}(Tu oo; ^(ΊQ) x L2(Ω) x L2(Ω)), V{t) belongs to 0(J2?Γ) for each

t e [Tl9 oo) and satisfies the equality

<eτV(ί) = - F(t)

The equality (3.4) shows that EolSΓ(t)[u, υ, θ]]^E0[u, v, 0] for any ί^O and

[u,v,θ']eH1(Ω)xL2(Ω)xL2(Ω). Since Ey2 is a semi-norm on Hι(Ω)x
L2(Ω) x L2(Ω), we have

(3.22) EV2Mt), ut(t)9

- F(t)

(α//01/2H«ι(τ)||)dτ

for any t^Tl9 where the last inequality follows from (3.20) and (3.21). Put

hΦ^fiif)* Ά^tST2,/3(0 = 0, t^>T29 and let [ώ(ί), δ(ί)] be the trajectory for the

control/3(ί) with the initial state [ώίΓj), ώXTi), ^Tj)] = [M 2, I;2, θ 2 ] for the control

system [TE9 g9 q, B Γ ] . Then [ώ(ί), w^O, 9(ί)] = S Γ ( ί - T 1 ) [ιι3, ι?3, fl3] + [ΰ(0,

wf(ί)» 9(0] for ί^ T2. Hence, by the inequalities (3.4), (3.22) and £ } / 2 [ M 3 , I?3, 0 3]

<ε, the inequality

holds for any ί^ Γ2. By Lemma 3.4, we can take ε > 0 so small that there exists

a control /4(ί) e ^ J [ Γ 2 , T3] with s u p Γ 2 < ί < Γ 3 </ 4(0>i/2<^/4 which steers the

null state at T2 to [—Pu(T3)9 0, 0] at some time T3 for the control system

\TE9 0, 0, JBΓ], since

5ε for any ί ^ T2.
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We can take T3 as large as we wish. Let us take T3 so large that T3^.T2 + T0.

This implies that the state \ύ(T2\ ύt(T2)9 0(Γ2)] at T2 is steered to [u4, i?4,04] =

[^(T3)~Pβ(Γ3), tff(T3), 0(T3)] at T3 by the control /4(ί) for the control system

[T£, #, g, £ Γ ] . Since P is the orthogonal projection from L2(Ω) to ^ Γ , we easily

see that [u4, ι>4] e Z t . Thus, by the inequality (3.12),

4 ] | | 2

e = yϊii [ώ(r 3 ),

Noting the inequalities

II gradg(T 3)| | 2 ^ const. | M 0 ( T 3 ) | | 2

^ const. {\\κΛθ(T3) - βdiwUt(T3)\\2 + β2\\ diw Ut(T3ψ}

^ const. Exιa(τ3)9ύjiτ3)96(τ3y]9

we have

α2 | | grad9(T3)| |2}

^ const. EiC^CΓa), ί/XΓa), δ(T3)] ^ const, ε2,

where const, may depend on α, β and K. By Corollary 2.1, if ε is sufficiently

small then there exist a control f5(t) e J ^ [ 0 , Γo] with s u p 0 < f < Γ o C/ 5 (0>i/2<^/ 4

and ^ 4 6 H2(Ω) fl HJ(Ω) such that /5(ί) steers the null state to [u 4, y4, ^ 4 ] at Γo

for the control system [T£, 0, 0, B Γ ] . By Lemma 3.5, for any [u, v]eB2(cl2ηl

2ω2(α, β, K)), there exist a positive time T4 ( ^ Γo), a control/6(ί) 6 ^"£[0, T4] with

suρ o < ί<r4«/6(0>i/2<^/2 and θ e H2(Ω) f) H&Ω) such that the control / 6(ί)

steers the null state to the state [u, υ, 0] at T4 for the control system [T£, 0, 0,

Taking T3 greater than T2 + T4 and putting

/ 2 (0,

τ3 - τ0 ^ t g τ3,

we see that the control f(i) belongs to «^"^(G) and steers [u o ,t ; o . ^O] t o

at T3. This completes the proof for the case m = 2.

Noting that
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= J?Γ(-F(t) + SAt)F(.Tt) + [' SΓ{t-τ)Ft{τ)dτ)

= - <?ΓF(t) + SrV&rFiTt) - F,(t) + S ^ O W . ) + {' SΓ(t-τ)Ftt(τ)dτ
JT

holds under the assumptions on g(t) and q(t)9 we can similarly prove the case

m = 3.

As in [21], we give the definition of holdable states.

DEFINITION 3.2. An element u in Hm(Ω) is said to be a holdable state for

time independent external forces g e Hm~2(Ω), q e Hm~2(Ω) and a constraint G,

if u satisfies the following

— Au + α grad θ = g in Ω and BΓu e G

for the solution θ of

- KAΘ = q in Ω and θ = 0 on S.

Now we easily come to the main theorem.

THEOREM 3.1. Let ra = 2 or 3, G be an open and connected subset of

Hm-*l2(S\ g0eHm-2(Ω) and qoeHm-2(Ω). Further assume that the functions

9(i) — Qo and q_{t) — q.o satisfy the assumptions in Proposition 3.1 in place of g(t)

and q(t) respectively.

If ωm(α, β, κ,)<ώm, then, for any holdable state u0 for g0, q0 and G, the

set Jΐψ(G) is admissibly controllable to the set [w0, 0] +Bm(3mη/2ωm(θί, β9 K))

in the constraint set ^(G).

Here η is a positive constant such that the η-neίghborhood of BΓu0 in

Hm~3/2(S) is contained in G.

Especially the set J?ψ(G) is admissibly controllable to any holdable state

in the constraint set ^^(G).

PROOF. Applying Proposition 3.1 to the control system [TE, g—gQ, q — qo>

BΓ~] and to the open set G — BΓu0, and then adding [w0, 0, 0O] to the trajectory,

we obtain the results.

For the control system [TE, g9 q, JBD], we have similar results in the same

way. We define holdable states for the control system [Γ£, g, q, BD] similarly

to Definition 3.2.

Then we obtain

THEOREM 3.2. Let m = l or 2, G be an open and connected subset of

Hm~ί/2(S) and the hypotheses on g(t) and q(t) in Theorem 2.1 be satisfied.
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Further assume that there exist functions g0eHm~2(Ω) and q0 e Hm~2(Ω) such

that, in case m = ί3

0, αo L\Ω)\ q(t) - q0eL\0, oo L\Ω))

and, in case m=2, in addition to the above,

g(t) > Qo in L2(Ω), q(t) > q0 in L2{Ω) as t > oo,

gt(t) e L\0, oo L\Ω)), qt(t) e L\0, oo L2(Ω)).

Then, if ωw(α, β, κ)<ώm, for any holdable state u0 for g0, q0 and G, the

set Jt%G) is admissibly controllable to the set [u0, 0] +BJdmηl2ωm(θL, β, K))

in the constraint set ^S(G).

Here η is a positive constant such that the ψneighborhood of BDu0 in
j5T»-i/2(S) is contained in G.

REMARK 3.2. For the control system [£, g, BΓ~] (resp. [E, g, BDJ), we obtain

the results corresponding to Proposition 3.1 under the simpler assumptions

(3.23) \\gu\t)\\ • 0 as t > oo, 0 ^ j ^ m - 1.

In fact, for any ε > 0 there exists Tt such that ||^(J)(OII <e, O ^ j ^ m - 1 , for

all t^ Tx. Hence the difference between the values of trajectories at TQ + T for the

external force g(t) and the zero external force with the same initial state at t — T

(^7\) is estimated by cmεT0 with a constant cm depending only on m, A and Ω.

For any η>0, taking ε so small that the null state is steered to any state with the

norm estimated by cmεT0 at Γo by a control/(ί) with s u p o < ί < Γ o C/(0^m-3/2< l?

(resp. s u p o < ί < Γ o C/(0^m-1/2<*/)> w e s e e that it is sufficient to consider the case

when #(ί) = 0. Thus we obtain the results in the same way as in the proof of

Proposition 3.1.

Noting that the control system [E, 0, J5r] (resp. [E, 0, BDJ) is invariant under

time reversal, we easily see that the set Mψ(G) (resp. ΛPg(G)) is admissibly control-

lable in the constraint set ^^{G) (resp. ^*S(G)) under the assumptions (3.23)

for any open and connected subset G in Hm~*l2(S) (resp. Hm~1/2(S)) containing

0. Here

Mψ(G) = {[11, »] G Hm(Ω) x H™-\Ω) \ BΓu e G}

and

= {[u, ι>] e Hm(Ω) x Hm~\Ω) \ BDu e G} .

REMARK 3.3. For the control system \TE, g, q, B^\, there always exists a

holdable state for any g e Hm~2(Ω), q e Hm~2(Ω) and G ( φ 0). But, for the control

system \TE, g, q, B r ] , there does not in general exist a holdable state. In [16],
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the case where the controls are constrained so that small forces are exercised by

means of pushing the boundary was considered. There, we considered the

constraint set ^^(G^) with

for constants η>0 and γ, 0 < y < l , and showed that, if the absolute values of

(3.24) [ g(x)dx, \ { x i β j ( x ) - x j θ i ( x ) } d x (l£i<j£n)
JΩ J Ω

are small in comparison with η9 then there exists a holdable state u for g and

Gηγ, which is defined as a solution of

— Au = g in Ω, dujdvAeGηr

There also exists a holdable state for the control system [T£, g, q, B Γ ] for

g, q and Gηtγ under the same assumptions on g. In fact, it is easy to see that a

necessary and sufficient condition for the existence of the solution of the boundary

value problem

(3.25) -Aw = g-ocgmdθ in β, BΓw = h on S

for given functions g, θ and h, is that the equality

(3.26) ( (g - αgradθ,ψ>dx = - ( <Λ, φ>dS
JΩ JS

holds for any function φe&Γ. By noting that ®Γ c {φ e C»(Ω)n \ a(φ9 φ) = 0},

we see, in the same way as in [16], that if the absolute values of (3.24) are small,

then there exists a function h in Gηy satisfying the equality

\ <0, φ)dx = - \ </?, φ>dS for any φe@Γ.
JΩ JS

For any given function q9 there exists a solution of the equation

-KAΘ = q in Ω, θ = 0 on S.

For this solution θ and for any φe&Γ, we have

[ < - α grad 0, 0>dx = - α [ <0v, 0>dS + α ( <0, div 0>Jx = 0,

since 0 = 0 on 5 and div0 = 0 for any φe@Γ. Hence h satisfies (3.26) fof any

Γ* Thus, for the functions g9 q and h, there exists a solution of (3.25),
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Therefore, for any g such that the absolute values of (3.24) are small, for any

qeHm~2(Ω) and for any constraint Gηγ9 a holdable state exists.

By Sobolev's imbedding theorem, we see that the subset Gηtγ is open and

connected in H3/2(S) when n — 3. Thus we can apply Theorem 3.1 for m = 3 and

n = 3, with the constraint set
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