The additive structure of $\tilde{K}\left(S^{4 n+3 /} Q_{t}\right)$

Kensô Fujil and Masahiro Sugawara
(Received December 25, 1982)

§ 1. Introduction

Let t be a positive integer and let Q_{t} be the group of order $4 t$ given by

$$
Q_{t}=\left\{x, y: x^{t}=y^{2}, x y x=y\right\}
$$

the group generated by two elements x and y with the relations $x^{t}=y^{2}$ and $x y x=y$, that is, Q_{t} is the subgroup of the unit sphere S^{3} in the quaternion field H generated by the two elements

$$
x=\exp (\pi \boldsymbol{i} / t) \quad \text { and } \quad y=\boldsymbol{j}
$$

and $Q_{1}=Z_{4}$ and Q_{t} for $t=2^{m-1}(m \geqq 2)$ is the generalized quaternion group which is denoted by H_{m} in [4].

Then, Q_{t} acts on the unit sphere $S^{4 n+3}$ in the quaternion $(n+1)$-space H^{n+1} by the diagonal action, and we have the quotient manifold

$$
S^{4 n+3} / Q_{t} \text { of dimension } 4 n+3
$$

Some partial results on the reduced K-ring $\widetilde{K}\left(S^{4 n+3} / Q_{t}\right)$ of this manifold are obtained by [4], D. Pitt [14], T. Mormann [13] and K. Kojima. In this paper, we shall determine completely the additive structure of $\tilde{K}\left(S^{4 n+3} / Q_{t}\right)$.

Consider the complex representations a_{0}, a_{1} and b_{1} of Q_{t} given by

$$
\left\{\begin{array} { l }
{ a _ { 0 } (x) = 1 , } \\
{ a _ { 0 } (y) = - 1 , }
\end{array} \quad \left\{\begin{array} { l }
{ a _ { 1 } (x) = - 1 , } \\
{ a _ { 1 } (y) = \{ \begin{array} { l }
{ i } \\
{ \text { if } t \text { is odd, } } \\
{ 1 }
\end{array} \text { if } t \text { is even, } }
\end{array} \quad \left\{\begin{array}{l}
b_{1}(x)=\left(\begin{array}{cc}
x & 0 \\
0 & x^{-1}
\end{array}\right) \\
b_{1}(y)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
\end{array}\right.\right.\right.
$$

and the elements

$$
\begin{equation*}
\alpha_{i}=\xi\left(a_{i}-1\right), \quad \beta_{1}=\xi\left(b_{1}-2\right) \quad \text { in } \quad \tilde{K}\left(S^{4 n+3} / Q_{t}\right) \quad \text { (cf. (3.3)) } \tag{1.1}
\end{equation*}
$$

where ξ is the natural ring homomorphism of the representation ring of Q_{t} to $\tilde{K}\left(S^{4 n+3} / Q_{t}\right)$. Furthermore, consider the following subgroups of Q_{t} :

$$
\begin{equation*}
G_{0}=Q_{r} \text { generated by } x^{q} \text { and } y, \quad G_{1}=Z_{q} \text { generated by } x^{2 r} \tag{1.2}
\end{equation*}
$$

where $t=r q, r=2^{m-1}, m \geqq 1$ and q is odd. Then, we have the ring homomorphisms

$$
\begin{align*}
& i_{0}^{*}: \tilde{K}\left(S^{4 n+3} / Q_{t}\right) \longrightarrow \tilde{K}\left(S^{4 n+3} / Q_{r}\right), \\
& i_{1}^{*}: \tilde{K}\left(S^{4 n+3} / Q_{t}\right) \longrightarrow \tilde{K}\left(L^{2 n+1}(q)\right) \quad\left(L^{2 n+1}(q)=S^{4 n+3} / Z_{q}\right), \tag{1.3}
\end{align*}
$$

induced from the natural projections $i_{k}: S^{4 n+3} / G_{k} \rightarrow S^{4 n+3} / Q_{t}$. Let

$$
\begin{equation*}
c: \widetilde{K O}\left(L_{0}^{2 n+1}(q)\right) \longrightarrow \widetilde{K}\left(L_{0}^{2 n+1}(q)\right)=\widetilde{K}\left(L^{2 n+1}(q)\right) \tag{1.4}
\end{equation*}
$$

be the complexification, where $\widetilde{K O}()$ is the reduced $K O$-ring and $L_{0}^{2 n+1}(q)$ is the $(4 n+2)$-skeleton of $L^{2 n+1}(q)$.

Then, we have the following
Theorem 1.5. (i) The ring $\tilde{K}\left(S^{4 n+3} / Q_{t}\right)$ is generated by the elements α_{1} when $t=1, \alpha_{1}$ and β_{1} when t is odd $\geqq 3, \alpha_{0}, \alpha_{1}$ and β_{1} when t is even, respectively, where α_{i} and β_{1} are the ones in (1.1).
(ii) Put $t=r q$ where $r=2^{m-1}, m \geqq 1$ and q is odd. Then, the ring isomorphism

$$
\pi=\pi_{0} \oplus \pi_{1}: \widetilde{K}\left(S^{4 n+3} / Q_{t}\right) \cong \widetilde{K}\left(S^{4 n+3} / Q_{r}\right) \oplus \widetilde{K O}\left(L_{0}^{2 n+1}(q)\right)
$$

can be defined by

$$
\pi_{0}=i_{0}^{*} \quad \text { and } \quad \pi_{1}=c^{-1} i_{1}^{*}
$$

by using i_{k}^{*} in (1.3) and the monomorphism c in (1.4). Further, for the generators α_{i} and β_{1} in $\tilde{K}\left(S^{4 n+3} / Q_{t}\right)$ or $\tilde{K}\left(S^{4 n+3} / Q_{r}\right)$, there hold the equalities

$$
\pi\left(\alpha_{i}\right)=\alpha_{i}, \quad \pi\left(\beta_{1}\right)= \begin{cases}\alpha_{1}^{3}+3 \alpha_{1}^{2}+4 \alpha_{1}+\bar{\sigma} & \text { if } t \text { is odd } \\ \beta_{1}+\bar{\sigma} & \text { if } t \text { is even }\end{cases}
$$

where $\bar{\sigma}$ is the real restriction of the stable class $\eta-1$ of the canonical complex line bundle η over $L_{0}^{2 n+1}(q)$ and it generates the ring $\widetilde{K O}\left(L_{0}^{2 n+1}(q)\right)$.

Consider the following integers $u(i)$ and elements δ_{i} and $\bar{\alpha}_{1}$ in $\tilde{K}\left(S^{4 n+3} / Q_{r}\right)$ with $r=2^{m-1}(m \geqq 2)$, where α_{i} and β_{1} are the ones in (1.1) for $t=r$ and

$$
\beta(0)=\beta_{1}, \quad \beta(s)=\beta(s-1)^{2}+4 \beta(s-1) \quad(s \geqq 1):
$$

For $i=2^{s}+d \leqq N^{\prime}=\min \{r, n\}$ with $0 \leqq s<m$ and $0 \leqq d<2^{s}$, put

$$
\begin{aligned}
& n^{\prime}=2 n+1 \quad \text { if } n \text { is odd, }=2 n \text { if } n \text { is even, } \\
& n^{\prime}=2^{s} a_{s}^{\prime}+b_{s}^{\prime}, \quad 0 \leqq b_{s}^{\prime}<2^{s} ; \\
& u(1)=2^{m-1+2 a_{1}^{\prime}}, \quad \delta_{1}=\beta_{1} \quad \text { if } i=1 \text {; } \\
& u(i)=2^{m-s-2+a_{s}^{\prime}}, \quad \delta_{i}=\beta(s)+\sum_{t=1}^{s} 2^{\left(2^{t-1)\left(a_{s}^{\prime}+1\right)} \beta(s-t)\right.} \\
& \text { if } i=2^{s}, 1 \leqq s<m ;
\end{aligned}
$$

$$
\begin{align*}
& \left\{\begin{array}{l}
u(i)=2^{m-s-3+a(i)}, \quad a(i)= \begin{cases}a_{s+1}^{\prime}+1 & \text { for } 2 d \leqq b_{s+1}^{\prime}, \\
a_{s+1}^{\prime} & \text { for } 2 d>b_{s+1}^{\prime},\end{cases} \\
\delta_{i}= \\
\beta_{1}^{d-1} \beta(1) \prod_{t=0}^{s-1}(2+\beta(t))-2^{a(i)-1} \beta_{1}^{d} \beta(s) \\
\\
\\
+\sum_{t=2}^{s+1} 2^{\left(2^{t-1) a(i)-1} \beta_{1}^{d} \beta(s+1-t) \quad \text { if } i=2^{s}+d \geqq 3, d \geqq 1 ;\right.} \\
\bar{\alpha}_{1}=
\end{array} \alpha_{1}-2 \sum_{s=1}^{m-3} \beta(s) \prod_{t=s+1}^{m-3}(2+\beta(t)) .\right. \tag{1.6}
\end{align*}
$$

Then, the additive structure of $\tilde{K}\left(S^{4 n+3} / Q_{r}\right)$ is given by the following theorem where $Z_{k}\langle x\rangle$ denotes the cyclic group of order k generated by x :

Theorem 1.7. Let $r=2^{m-1}, m \geqq 2$ and $N^{\prime}=\min \{r, n\}$. Then, we have

$$
\tilde{K}\left(S^{4 n+3} / Q_{r}\right)=Z_{2^{n+1}}\left\langle\alpha_{0}\right\rangle \oplus Z_{2^{n+1}}\left\langle\bar{\alpha}_{1}\right\rangle \oplus B^{n}(m), \quad B^{n}(m)=\sum_{i=1}^{N^{\prime}} Z_{u(i)}\left\langle\delta_{i}\right\rangle,
$$

where $B^{n}(m)$ is the subring of $\tilde{K}\left(S^{4 n+3} / Q_{r}\right)$ generated by β_{1}, which is isomorphic to the subring of $\widetilde{\mathrm{KO}_{(}}\left(L^{n^{\prime}}\left(2^{m}\right)\right)$ generated by $\bar{\sigma}$ by sending β_{1} to $\bar{\sigma}$.

We notice that the additive structure of $\widetilde{K}\left(S^{4 n+3} / Q_{1}\right)=\tilde{K}\left(L^{2 n+1}(4)\right)$ is determined in [10, Th. A].

For the reduced $K O$-group $\widetilde{K O}\left(L_{0}^{2 n+1}(q)\right)$ (q : odd) in Theorem 1.5 (ii), it is sufficient to determine its additive structure in case when q is a power of an odd prime (cf. (6.1)).

Let p be an odd prime and $r \geqq 1$, and consider the elements

$$
\begin{equation*}
\bar{\sigma}^{\prime}(s)=\sum_{i=0}^{q(s)}\left(p^{s} /(2 i+1)\right)\binom{q(s)+i}{2 i} \bar{\sigma}^{i} \quad \text { in } K O\left(L_{0}^{n}\left(p^{r}\right)\right) \quad(0 \leqq s \leqq r), \tag{1.8}
\end{equation*}
$$

where $q(s)=\left(p^{s}-1\right) / 2$ and $\bar{\sigma}$ is the one given in Theorem 1.5 (ii). ($\bar{\sigma}^{\prime}(s)$ is well defined as an integral polynomial in $\bar{\sigma}$ because the order of $\bar{\sigma}^{i}$ is a power of p by [9 , Th. 1.1 (ii) and Prop. 2.11 (ii)].) Furthermore, consider the following integers $t(2 i)$ and elements $\bar{\sigma}(s, k)$ in $\widetilde{K O}\left(L_{0}^{n}\left(p^{r}\right)\right)$, where $0 \leqq s<r, 0 \leqq k<p^{s}(p-1) / 2$ and $i=q(s)+k+1 \leqq[N / 2]\left(N=\min \left\{p^{r}-1, n\right\}\right)$:

$$
\begin{aligned}
& n-p^{s}+1=a_{s} p^{s}(p-1)+b_{s}, \quad 0 \leqq b_{s}<p^{s}(p-1) ; \\
& t(2 i)=p^{r-s+1+\bar{a}_{s}}, \quad \bar{a}_{s}= \begin{cases}a_{s}+1 & \text { if } 2 k+1<b_{s}, \\
a_{s} & \text { if } 2 k+1 \geqq b_{s},\end{cases} \\
& \bar{\sigma}(s, k)=\left\{\begin{array}{c}
\sum_{t=0}^{s} p^{\left(p^{t-1}\right) \bar{a}_{s}} \bar{\sigma}^{q(t)+k+1} \bar{\sigma}^{\prime}(s-t)^{p^{t}} \\
\text { if } b_{s} \leqq 2 k+1<b_{s}+p^{s}-1 \text { or } 2 k+1<b_{s}-p^{s}(p-2)-1, \\
\bar{\sigma}^{k+1} \bar{\sigma}^{\prime}(s) \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

Then, we have the following

Theorem 1.10. Let p be an odd prime and $r \geqq$. Then the additive structure of $\widetilde{K O}\left(L_{0}^{n}\left(p^{r}\right)\right)$ is given by

$$
\widetilde{K O}\left(L_{0}^{n}\left(p^{r}\right)\right)=\sum_{i=1}^{[N / 2]} Z_{t(2 i)}\langle\bar{\sigma}(s, k)\rangle,
$$

where $N=\min \left\{p^{r}-1, n\right\}, i=\left(p^{s}+2 k+1\right) / 2$ and $0 \leqq k<p^{s}(p-1) / 2$.
We prepare some results on the complex representation rings $R\left(Q_{t}\right)$ and $R\left(G_{k}\right)$ for Q_{t} and the subgroups G_{k} given in (1.2) in $\S 2$. In $\S 3$, we define the elements $\alpha_{i}(i=0,1,2)$ and $\beta_{j}(j \in Z)$ of $\widetilde{K}\left(S^{4 n+3} / Q_{t}\right)$ and study the homomorphism $i_{k}^{*}: \tilde{K}\left(S^{4 n+3} / Q_{t}\right) \rightarrow \tilde{K}\left(S^{4 n+3} / G_{k}\right)$ of (1.3) in Proposition 3.10. In $\S 4$, we first determine the order of $\widetilde{K}\left(S^{4 n+3} / Q_{t}\right)$ by using the Atiyah-Hirzebruch spectral sequence, and prove Theorem 1.5 in Theorem 4.7 by using the known results on c in (1.4) given in [9, Prop. 2.11] and the ones obtained in $\S 3$.

In $\S 5$, we study the subring $B^{n}(m)$ of $\tilde{K}\left(S^{4 n+3} / Q_{r}\right)\left(r=2^{m-1}, m \geqq 2\right)$ generated by β_{1} using the ring monomorphism $f: B^{n}(m) \rightarrow \widetilde{K O}\left(L_{0}^{n^{\prime}}(2 r)\right)$ of Lemma 5.10 and the additive structure of $\widetilde{K O}\left(L_{0}^{n^{\prime}}(2 r)\right)$ given in [5, Th. 1.9], and prove Theorem 1.7 by showing some relations in $\tilde{K}\left(S^{4 n+3} / Q_{r}\right)$. Theorem 1.10 is proved in $\S 6$ by using the additive structure of $\tilde{K}\left(L_{0}^{n}\left(p^{r}\right)\right)$ given in [11, Th. 1.7] and the complexification $c: \widetilde{K O} \rightarrow \tilde{K}$ which is monomorphic for $L_{0}^{n}\left(p^{r}\right)$.

§ 2. The complex representation ring $R\left(Q_{t}\right)$

Let t be a positive integer and let Q_{t} be the subgroup of order $4 t$ of the unit sphere S^{3} in the quaternion field H generated by the two elements

$$
x=\exp (\pi \boldsymbol{i} / t) \quad \text { and } \quad y=\boldsymbol{j} .
$$

Consider the complex representations $a_{i}(i=0,1,2)$ and $b_{j}(j \in Z)$ of Q_{t} given by

$$
\begin{align*}
& \left\{\begin{array}{l}
a_{0}(x)=1, \\
a_{0}(y)=-1, \\
\left\{\begin{array}{ll}
a_{i}(x)=-1, & \text { if } t \text { is odd, } \\
a_{i}(y)= \begin{cases}(-1)^{i-1} i & \text { if } \\
(-1)^{i-1} & \text { if } t \text { is even, }\end{cases} & \begin{array}{l}
b_{j}(x)=\left(\begin{array}{cc}
x^{j} & 0 \\
0 & x^{-j}
\end{array}\right), \\
b_{j}(y)=\left(\begin{array}{cc}
0 & (-1)^{j} \\
1 & 0
\end{array}\right) .
\end{array}
\end{array} .\right.
\end{array} .\right.
\end{align*}
$$

Then, we see easily the following
Proposition 2.2 (cf. [3, §47.15, Example 2]). The complex representation ring $R\left(Q_{t}\right)$ of Q_{t} is a free Z-module generated by $1, a_{i}(i=0,1,2)$ and b_{j} $(1 \leqq j<t)$, and the multiplicative structure is given as follows:

$$
\begin{aligned}
& a_{0}^{2}=1, \quad a_{1}^{2}=\left\{\begin{array}{l}
a_{0} \text { if tis odd, } \\
1 \quad \text { if tis even, }
\end{array} \quad a_{2}=a_{0} a_{1}, \quad b_{0}=1+a_{0}, \quad b_{t}=a_{1}+a_{2},\right. \\
& b_{t+i}=b_{t-i}, \quad b_{-i}=b_{i}, \quad b_{i} b_{j}=b_{i+j}+b_{i-j}, \quad a_{0} b_{i}=b_{i}, \quad a_{1} b_{i}=b_{t-i} .
\end{aligned}
$$

Let

$$
\begin{equation*}
\alpha_{i}=a_{i}-1(i=0,1,2) \quad \text { and } \quad \beta_{j}=b_{j}-2(j \in Z) \tag{2.3}
\end{equation*}
$$

be the elements in the reduced representation ring $\widetilde{R}\left(Q_{t}\right)$. Then, we have
Proposition 2.4 (cf. [4, Prop. 3.3]). The reduced representation ring $\widetilde{R}\left(Q_{t}\right)$ is a free Z-module generated by $\alpha_{i}(i=0,1,2)$ and $\beta_{j}(1 \leqq j<t)$, and the multiplicative structure is given as follows:

$$
\begin{aligned}
& \alpha_{0}^{2}=-2 \alpha_{0}, \quad \alpha_{1}^{2}=\left\{\begin{array}{ll}
\alpha_{0}-2 \alpha_{1} & \text { if t is odd, } \\
-2 \alpha_{1} & \text { if tis even, }
\end{array} \quad \alpha_{2}=\alpha_{0} \alpha_{1}+\alpha_{0}+\alpha_{1},\right. \\
& \beta_{0}=\alpha_{0}, \quad \beta_{t}=\alpha_{1}+\alpha_{2}, \quad \beta_{t+i}=\beta_{t-i}, \quad \beta_{-i}=\beta_{i}, \\
& \beta_{i} \beta_{j}=\beta_{i+j}+\beta_{i-j}-2\left(\beta_{i}+\beta_{j}\right), \quad \alpha_{0} \beta_{i}=-2 \alpha_{0}, \quad \alpha_{1} \beta_{i}=\beta_{t-i}-\beta_{i}-2 \alpha_{1} .
\end{aligned}
$$

These show that the ring $\tilde{R}\left(Q_{t}\right)$ is generated by α_{1} if $t=1, \alpha_{1}$ and β_{1} if t is odd $\geqq 3$, and α_{0}, α_{1} and β_{1} if t is even.

The following lemmas are well known:
Lemma 2.5 (cf. [7, Ch. 13, Th. 3.1]). $R\left(S^{3}\right)$ is the polynomial ring $Z[\zeta]$, where ζ is given by

$$
\zeta\left(z_{1}+\boldsymbol{j} z_{2}\right)=\left(\begin{array}{rr}
z_{1} & -\bar{z}_{2} \\
z_{2} & \bar{z}_{1}
\end{array}\right) \quad \text { for } z_{1}+\boldsymbol{j} z_{2} \in S^{3}
$$

Lemma 2.6 (cf. [1, §8]). $R\left(Z_{k}\right)$ is the truncated polynomial ring $Z[\mu] /$ $\left\langle\mu^{k}-1\right\rangle$, where μ is given by $z \mapsto \exp (2 \pi i / k)$ for the generator z of Z_{k} and $\left\langle\mu^{k}-1\right\rangle$ means the ideal of $Z[\mu]$ generated by $\mu^{k}-1$.

Consider the following three subgroups G_{k} of Q_{t}, where

$$
t=r q, r=2^{m-1}, m \geqq 1 \text { and } q \text { is odd: }
$$

$$
\begin{align*}
& G_{0}=Q_{r} \text { generated by } x^{q} \text { and } y \tag{2.7}\\
& G_{1}=Z_{q} \text { generated by } x^{2 r}, \quad G_{2}=Z_{2 r} \text { generated by } x^{q} .
\end{align*}
$$

Then the inclusion $i_{k}: G_{k} \subset Q_{t}$ induces the ring homomorphism

$$
\begin{equation*}
i_{k}^{*}: \tilde{R}\left(Q_{t}\right) \longrightarrow \tilde{R}\left(G_{k}\right) \tag{2.8}
\end{equation*}
$$

by the restriction of representations of Q_{t} to G_{k}. By the definitions (2.1) and (2.3), Proposition 2.4 and Lemma 2.6, we see easily the following

Proposition 2.9. (i) $i_{0}^{*}\left(\alpha_{i}\right)=\alpha_{i}(i=0,1,2)$,

$$
\begin{cases}i_{0}^{*}\left(\beta_{2 i}\right)=\alpha_{0}, \quad i_{0}^{*}\left(\beta_{2 i+1}\right)=\alpha_{1}+\alpha_{2} & \text { if } t \text { is odd } \\ i_{0}^{*}\left(\beta_{i}\right)=\beta_{i} & \text { if } t \text { is even } .\end{cases}
$$

(ii) $i_{1}^{*}\left(\alpha_{i}\right)=0, \quad i_{1}^{*}\left(\beta_{i}\right)=\mu^{i}+\mu^{-i}-2$.
(iii) $i_{2}^{*}\left(\alpha_{0}\right)=0, \quad i_{2}^{*}\left(\alpha_{i}\right)=\mu^{r}-1(i=1,2), \quad i_{2}^{*}\left(\beta_{i}\right)=\mu^{i}+\mu^{-i}-2$.

§3. Some elements in $\tilde{K}\left(S^{4 n+3} / Q_{t}\right)$

Assume that a topological group G acts freely on a topological space X. Then, the natural projection

$$
p: X \longrightarrow X / G
$$

defines the ring homomorphism

$$
\begin{equation*}
\xi: \tilde{R}(G) \longrightarrow \tilde{K}(X / G) \tag{3.1}
\end{equation*}
$$

as follows (cf. [7, Ch. 12, 5.4]): For an n-dimensional representation ω of G, $\xi(\omega)$ is the complex n-plane bundle induced from the principal G-bundle $p: X \rightarrow$ X / G by the group homomorphism $\omega: G \rightarrow G L(n, C)$. Furthermore, if H is a subgroup of G, then the inclusion $i: H \subset G$ and the natural projections $p^{\prime}: X \rightarrow$ $X / H, i: X / H \rightarrow X / G$ induce the commutative diagram

Now, Q_{t} acts on the unit sphere $S^{4 n+3}$ in the quaternion $(n+1)$-space H^{n+1} by the diagonal action

$$
q\left(q_{1}, \ldots, q_{n+1}\right)=\left(q q_{1}, \ldots, q q_{n+1}\right) \quad \text { for } \quad q \in Q_{t} \subset S^{3}, q_{i} \in H
$$

Then the natural projection $S^{4 n+3} \rightarrow S^{4 n+3} / Q_{t}$ defines the ring homomorphism

$$
\xi: \widetilde{R}\left(Q_{t}\right) \longrightarrow \tilde{K}\left(S^{4 n+3} / Q_{t}\right)
$$

of (3.1), and by using the same letter, we define the elements

$$
\begin{equation*}
\alpha_{1}=\xi\left(\alpha_{1}\right)(i=0,1,2), \quad \beta_{j}=\xi\left(\beta_{j}\right)(j \in Z) \quad \text { in } \tilde{K}\left(S^{4 n+3} / Q_{t}\right), \tag{3.3}
\end{equation*}
$$

where $\alpha_{i}, \beta_{j} \in \tilde{R}\left(Q_{t}\right)$ are the ones given in (2.3).
The K-ring $K\left(H P^{n}\right)$ of the quaternion projective space $H P^{n}=S^{4 n+3} / S^{3}$ is given by
(3.4) (cf. [15, Th. 3.12]) $K\left(H P^{n}\right)=Z[v] /\left\langle v^{n+1}\right\rangle$,
where $v=\lambda-2$ and λ is the canonical complex plane bundle over $H P^{n}$.
For the ring homomorphism $\xi: \tilde{R}\left(S^{3}\right) \rightarrow \tilde{K}\left(H P^{n}\right)$ of (3.1), by the definition of ζ in Lemma 2.5 and v in (3.4), we see easily the following

Lemma 3.5 (cf. [7, Ch. 13, Th. 3.1]). $\quad \xi(\zeta-2)=v$.
Lemma 3.6 (cf. [4, Lemma 4.4]). $\pi^{*}(v)=\beta_{1}$, where $\pi^{*}: \tilde{K}\left(H P^{n}\right) \rightarrow \tilde{K}\left(S^{4 n+3} / Q_{t}\right)$ is the homomorphism induced from the natural projection $\pi: S^{4 n+3} / Q_{t} \rightarrow H P^{n}$.

Proof. We can prove the desired equality by (3.2), (2.1), (3.3) and Lemmas 2.5-6 in the same way as the proof of Lemma 4.4 in [4].
q.e.d.

The K-ring $K\left(L^{n}(k)\right)$ of the standard lens space $L^{n}(k)=S^{2 n+1} / Z_{k} \bmod k$ is given by
(3.7) (N. Mahammed [12]) $K\left(L^{n}(k)\right)=Z[\sigma] /\left\langle\sigma^{n+1},(\sigma+1)^{k}-1\right\rangle$, where $\sigma=\eta-1$ and η is the canonical complex line bundle over $L^{n}(k)$.

For $\xi: \tilde{R}\left(Z_{k}\right) \rightarrow \tilde{K}\left(L^{n}(k)\right)$ of (3.1), we have
Lemma 3.8. $\quad \xi(\mu-1)=\eta-1$.
Proof. Since the first Chern class of η generates $H^{2}\left(L^{n}(k)\right)=Z_{k}$, we have the desired equality by the definition of η in Lemma 2.6 (cf. [1, $\S 2$ and Appendix, (3)]).
q.e.d.

Let $i_{k}: S^{4 n+3} / G_{k} \rightarrow S^{4 n+3} / Q_{t}$ be the natural projection induced from the inclusion $i_{k}: G_{k} \subset Q_{t}$ for the subgroup $G_{k}(k=0,1,2)$ in (2.7). Then the induced homomorphism

$$
\begin{equation*}
i_{k}^{*}: \tilde{K}\left(S^{4 n+3} / Q_{t}\right) \longrightarrow \tilde{K}\left(S^{4 n+3} / G_{k}\right) \tag{3.9}
\end{equation*}
$$

satisfies the following
Proposition 3.10. The equalities in Proposition 2.9 hold by replacing α_{i} and β_{j} with α_{i} and β_{j} in (3.3) and μ with η in (3.7) when $k=1,2$.

Proof. By using (3.2), Proposition 2.9, (3.3), (2.6) and Lemma 3.8, we obtain the desired equalities in each case. q.e.d.

§4. Proof of Theorem 1.5

The cohomology group of the quotient manifold $X=S^{4 n+3} / Q_{t}$ is given as follows:
(4.1) (cf. [2, Ch. XII, §7]) $\quad H^{4 i}(X ; Z)=Z_{4 t} \quad$ if $0<i \leqq n$,

$$
\begin{aligned}
& H^{4 i+2}(X ; Z)=Z_{4}(t: \text { odd }),=Z_{2} \oplus Z_{2}(t: \text { even }) \quad \text { if } 0 \leqq i \leqq n, \\
& H^{2 i+1}(X ; Z)=0 \quad \text { if } 0 \leqq i \leqq 2 n, \quad H^{0}(X ; Z)=H^{4 n+3}(X ; Z)=Z .
\end{aligned}
$$

By (4.1) and the Atiyah-Hirzebruch spectral sequence for $K(X)$, we have
Lemma 4.2. $\# \tilde{K}\left(S^{4 n+3} / Q_{t}\right)=2^{4 n+2} t^{n}$, where $\# A$ denotes the order of a group A.

We prepare two lemmas for the proof of Theorem 1.5. Put $t=r q$, where $r=2^{m-1}, m \geqq 1$ and q is an odd integer.

Then, we have the following
Lemma 4.3. $i_{0}^{*}: \tilde{K}\left(S^{4 n+3} / Q_{t}\right) \rightarrow \tilde{K}\left(S^{4 n+3} / Q_{r}\right)$ is epimorphic, where i_{0}^{*} is the homomorphism in (3.9) for $G_{0}=Q_{r}$.

Proof. By Proposition 3.10, $i_{0}^{*}\left(\alpha_{i}\right)=\alpha_{i}(i=0,1)$ and $i_{0}^{*}\left(\beta_{1}\right)=\beta_{1}$ hold. On the other hand, the ring $\tilde{K}\left(S^{4 n+3} / Q_{r}\right)$ is generated by α_{0}, α_{1} and β_{1} by [4, Th. 1.1]. Thus, we have the desired result.

Consider the homomorphism

$$
\begin{equation*}
\xi: \tilde{R}\left(Q_{t}\right) \longrightarrow \tilde{K}\left(S^{4 n+3} / Q_{t}\right) \tag{4.4}
\end{equation*}
$$

of (3.1) for the natural projection $S^{4 n+3} \rightarrow S^{4 n+3} / Q_{t}$, and set

$$
R=\operatorname{Im} \xi .
$$

Then, concerning with the homomorphism

$$
i_{1}^{*}: \tilde{K}\left(S^{4 n+3} / Q_{t}\right) \longrightarrow \tilde{K}\left(L^{2 n+1}(q)\right) \quad\left(L^{2 n+1}(q)=S^{4 n+3} / Z_{q}\right)
$$

in (3.9) for $G_{1}=Z_{q}$, we have the following
Lemma 4.5. $\quad i_{1}^{*}(R)=\widetilde{\operatorname{Im}}\left(c: \widetilde{K O}\left(L_{0}^{2 n+1}(q)\right) \rightarrow \widetilde{K}\left(L_{0}^{2 n+1}(q)\right)=\widetilde{K}\left(L^{2 n+1}(q)\right)\right)$, where c is the complexification and $L_{0}^{k}(q)$ is the $2 k$-skeleton of $L^{k}(q)$.

Proof. By (3.3) and Proposition 3.10, we have the equalities

$$
i_{1}^{*}\left(\beta_{i}\right)=\eta^{i}+\eta^{-i}-2=c\left(r\left(\eta^{i}-1\right)\right), \quad i_{1}^{*}\left(\alpha_{j}\right)=0(j=0,1,2) ;
$$

while the ring $\widetilde{K O}\left(L_{0}^{2 n+1}(q)\right)$ is generated by $r\left(\eta^{i}-1\right)(i \geqq 1)$, where $r: \widetilde{K} \rightarrow \widetilde{K O}$ is the real restriction and is epimorphic for $L_{0}^{2 n+1}(q)$ (q : odd), (cf. [9, Prop. 2.11]). Therefore, we obtain the desired result by the first half of Proposition 2.4.
q.e.d.

Now, we consider the ring homomorphism

$$
\begin{align*}
\pi= & \pi_{0} \oplus \pi_{1}: R(=\operatorname{Im} \xi) \longrightarrow \widetilde{K}\left(S^{4 n+3} / Q_{r}\right) \oplus \widetilde{K O}\left(L_{0}^{2 n+1}(q)\right) \tag{4.6}\\
& \text { given by } \pi_{0}=i_{0}^{*} \mid R \text { and } \pi_{1}=c^{-1} \circ\left(i_{1}^{*} \mid R\right)
\end{align*}
$$

where i_{0}^{*} is the one in Lemma 4.3 and π_{1} is defined by the above lemma since the complexification c in that place is monomorphic for odd q (cf. [9, Prop. 2.11]).

Theorem 4.7. (i) ξ in (4.4) is an epimorphism and $R=\tilde{K}\left(S^{4 n+3} / Q_{t}\right)$.
(ii) Let $t=r q, r=2^{m-1}, m \geqq 1$ and q is odd. Then π in (4.6) is a ring isomorphism

$$
\pi=\pi_{0} \oplus \pi_{1}: \widetilde{K}\left(S^{4 n+3} / Q_{t}\right) \cong \widetilde{K}\left(S^{4 n+3} / Q_{r}\right) \oplus \widetilde{K O}\left(L_{0}^{2 n+1}(q)\right)
$$

Proof. In (4.6), π_{0} is epimorphic by (3.3) and the proof of Lemma 4.3, and so is π_{1} by Lemma 4.5. On the other hand, by Lemma 4.2 and [9, Prop. 2.11],

$$
\# \tilde{K}\left(S^{4 n+3} / Q_{r}\right)=2^{(m+3) n+2} \quad \text { and } \# \widetilde{K O}\left(L_{0}^{2 n+1}(q)\right)=q^{n} .
$$

Therefore π in (4.6) is also epimorphic since q is odd, and we see the theorem because $\# R \leqq \# \tilde{K}\left(S^{4 n+3} / Q_{t}\right)=2^{(m+3) n+2} q^{n}$ by Lemma 4.2.
q.e.d.

Remark 4.8. By the definition of π in (4.6), Proposition 3.10 and the proof of Lemma 4.5, we have the following equalities for π in the above theorem:

$$
\begin{array}{rlrl}
\pi\left(\alpha_{i}\right) & =\alpha_{i}(i=0,1,2), & \\
\left\{\left(\beta_{2 i}\right)\right. & =\alpha_{0}+r\left(\eta^{2 i}-1\right), & & \\
\pi\left(\beta_{2 i+1}\right) & =\alpha_{1}+\alpha_{2}+r\left(\eta^{2 i+1}-1\right) & & \text { if } t \text { is odd, } \\
\pi\left(\beta_{i}\right) & =\beta_{i}+r\left(\eta^{i}-1\right) & & \text { if } t \text { is even. } .
\end{array}
$$

Remark 4.9. By (3.3) and Theorem 4.7 (i), the relations in Proposition 2.4 hold in $\tilde{K}\left(S^{4 n+3} / Q_{t}\right)$ and so the ring $\tilde{K}\left(S^{4 n+3} / Q_{t}\right)$ is generated by α_{1} if $t=1, \alpha_{1}$ and β_{1} if t is odd $\geqq 3$, and α_{0}, α_{1} and β_{1} if t is even.

Combining Theorem 4.7 (ii) with the above remarks, we complete the proof of Theorem 1.5.

§ 5. The group $\tilde{K}\left(S^{4 n+3} / Q_{r}\right)\left(r=2^{m-1}\right)$

In this section, we shall determine the additive structure of $\tilde{K}\left(S^{4 n+3} / Q_{r}\right)$ for $r=2^{m-1}$ with $m \geqq 2$ by giving an additive base. In case $m=1, \tilde{K}\left(S^{4 n+3} / Q_{1}\right)=$ $\tilde{K}\left(L^{2 n+1}(4)\right)$ and its additive structure is given in [10, Th. A]. The results in case $m=2$ is given in [4, Th. 1.2]. For $m=3$, T. Mormann [13] and Kazuyoshi Kojima have determined its additive structure.

Let $m \geqq 2$ and, in addition to the elements α_{i} and β_{j} in $\widetilde{K}\left(S^{4 n+3} / Q_{r}\right)$ of (3.3), define $\beta(s)$ in $\tilde{K}\left(S^{4 n+3} / Q_{r}\right)\left(r=2^{m-1}\right)$ inductively as follows:

$$
\begin{equation*}
\beta(0)=\beta_{1}, \quad \beta(s)=\beta(s-1)^{2}+4 \beta(s-1) \quad(s \geqq 1) . \tag{5.1}
\end{equation*}
$$

Then, we have the relations in $\tilde{K}\left(S^{4 n+3} / Q_{r}\right)$ given by the following lemmas.
Lemma 5.2.

$$
\beta_{2^{s}}=\beta(s)+(-1)^{2^{s-1}} \alpha_{0} \quad(s \geqq 1) .
$$

Proof. By noticing Remark 4.9 , we can show $\alpha_{0} \beta(1)=-4 \alpha_{0}, \alpha_{0} \beta(s)=$ $0(s \geqq 2)$ and the equality in the lemma inductively using the relations in Proposition 2.4.

Lemma 5.3. $\quad \beta_{r-1}-\beta_{1}=\sum_{s=1}^{m-2}\left\{\left(2+\beta_{1}\right) \beta(s) \prod_{t=s+1}^{m-2}(2+\beta(t))\right\}$.
Proof. In $R\left(Q_{r}\right)$, the relation $b_{2 i-1}=b_{i} b_{i-1}-b_{1}$ for $i=2^{s-1}(s \geqq 1)$ holds by Proposition 2.2, and so we have

$$
b_{r-1}=b_{1}\left\{b_{2} \prod_{t=2}^{m-2} b_{2 t}-\sum_{s=1}^{m-2} \prod_{t=s+1}^{m-2} b_{2 t}\right\}=b_{1}+\sum_{s=1}^{m-2} b_{1}\left(b_{2^{s}}-2\right) \prod_{t=s+1}^{m-2} b_{2^{t}} .
$$

Therefore, by (2.3), Lemma 5.2 and the relation $\left(2+\beta_{1}\right) \alpha_{0}=0$ in Proposition 2.4, we have

$$
\begin{aligned}
\beta_{r-1}-\beta_{1} & =\sum_{s=1}^{m-2}\left(2+\beta_{1}\right)\left(\beta(s)+(-1)^{2 s-1} \alpha_{0}\right) \prod_{t=s+1}^{m-2}\left(\beta(t)+\alpha_{0}+2\right) \\
& =\sum_{s=1}^{m-2}\left(2+\beta_{1}\right) \beta(s) \prod_{t=s+1}^{m-2}(2+\beta(t)) .
\end{aligned}
$$

Lemma $5.4 \quad\left(2+\beta_{1}\right) \alpha_{0}=0, \quad\left(2+\beta_{1}\right) \alpha_{1}=\beta_{r-1}-\beta_{1}$,

$$
\left(2+\beta_{1}\right) \beta(m-1)=2\left(\beta_{r-1}-\beta_{1}\right), \quad \beta_{1}^{n+1}=0 .
$$

Proof. The first two follow from Proposition 2.4 and Remark 4.9. The third one is shown as follows:

$$
\begin{aligned}
\left(2+\beta_{1}\right) \beta(m-1) & =\left(2+\beta_{1}\right)\left(\beta_{r}-(-1)^{r / 2} \alpha_{0}\right) & & \text { (by Lemma 5.2) } \\
& =\left(2+\beta_{1}\right) \beta_{r}=2\left(\beta_{r-1}-\beta_{1}\right) & & \text { (by Proposition 2.4) }
\end{aligned}
$$

The last one follows from (3.4) and Lemma 3.6.
q.e.d.

Lemma 5.5. Let $P(x)$ be a polynomial in x with

$$
P(x)=a x+\text { higher terms, where } a \text { is a positive integer, }
$$

and $B(n, P)(n \geqq 0)$ be the ring generated by x with the two relations $x^{n+1}=0$ and $P(x)=0$. Then, $\# B(n, P)=a^{n}$.

Proof. We can prove the equality inductively by noticing that $B(0, P)=0$ and by showing that

$$
\begin{equation*}
\operatorname{Ker}\left(p_{n}: B(n, P) \longrightarrow B(n-1, P)\right)=Z_{a}\left\langle x^{n}\right\rangle \tag{*}
\end{equation*}
$$

for the natural ring epimorphism p_{n} given by $p_{n}(x)=x$.
If $p_{n}(y)=0$ for $y \in B(n, P)$, then $y=Q_{1}(x) x^{n}+Q_{2}(x) P(x)$ for some polynomials Q_{i} by definition, which shows that $y=k x^{n}$ in $B(n, P)$ for some $k \in Z$. On the other hand, $a x^{n}=P(x) x^{n-1}=0$ in $B(n, P)$ by definition. Conversely, if $k x^{n}=0(k \in Z)$ in $B(n, P)$, then $k x^{n}=R_{1}(x) x^{n+1}+R_{2}(x) P(x)=a k^{\prime} x^{n}$ for some polynomials R_{i} and some $k^{\prime} \in Z$, which shows that $k \equiv 0 \bmod a$. Thus we see (*). q.e.d.

Lemma 5.6. Let $B^{n}(m)$ be the subring of $\tilde{K}\left(S^{4 n+3} / Q_{r}\right)\left(r=2^{m-1}\right)$ generated by β_{1}. Then

$$
\# B^{n}(m) \leqq(4 r)^{n} .
$$

Proof. Since $\beta(s)=2^{2 s} \beta_{1}+$ higher terms by (5.1), we see that the polynomial $P^{\prime}\left(\beta_{1}\right)$ in β_{1} given by the right hand side in Lemma 5.3 is $2^{m}\left(2^{m-2}-1\right) \beta_{1}+$ higher terms. Consider the polynomial $P\left(\beta_{1}\right)$ in β_{1} given by

$$
P\left(\beta_{1}\right)=\left(2+\beta_{1}\right) \beta(m-1)-2 P^{\prime}\left(\beta_{1}\right)=4 r \beta_{1}+\text { higher terms } .
$$

Then, by the definitions of $B(n, P)$ and $B^{n}(m)$, the equality in Lemma 5.3 and the last two ones in Lemma 5.4 show that a ring epimorphism $B(n, P) \rightarrow B^{n}(m)$ is defined by sending the generator x to β_{1}. Thus we see the lemma by the above lemma.

For a given integer n, put

$$
\begin{equation*}
n^{\prime}=2 n+1 \quad \text { if } n \text { is odd, } \quad=2 n \quad \text { if } n \text { is even, } \tag{5.7}
\end{equation*}
$$

and consider the ring monomorphism

$$
c^{\prime}: \widetilde{K O}\left(L^{n^{\prime}}(2 r)\right) \longrightarrow \widetilde{K}\left(L^{2 n+1}(2 r)\right) \quad\left(r=2^{m-1}, m \geqq 2\right)
$$

given by $c^{\prime}=c_{3}$ if n is odd, $=c_{0}$ if n is even, where $c_{3}=c$ and c_{0} are the ones defined in [5, Prop. 5.3] by modifying the complexification c. Furthermore, consider the ring homomorphism

$$
i_{2}^{*}: \tilde{K}\left(S^{4 n+3} / Q_{r}\right) \longrightarrow \tilde{K}\left(L^{2 n+1}(2 r)\right) \quad \text { in (3.9). }
$$

Then, by [5, Proof of Cor. 5.16] and Proposition 3.10, we have

$$
\begin{equation*}
c^{\prime}(\bar{\sigma})=\eta+\eta^{-1}-2=i_{2}^{*}\left(\beta_{1}\right), \tag{5.8}
\end{equation*}
$$

where $\bar{\sigma}$ is the real restriction of $\sigma=\eta-1$ in (3.7). Therefore, we can define the ring epimorphism

$$
\begin{equation*}
f=c^{\prime-1} \circ i_{2}^{*}: B^{n}(m) \longrightarrow R^{n^{\prime}}(m) \text { with } f\left(\beta_{1}\right)=\bar{\sigma}, \tag{5.9}
\end{equation*}
$$

where $B^{n}(m)$ is the subring of $\widetilde{K}\left(S^{4 n+3} / Q_{r}\right)$ generated by β_{1} and $R^{n^{\prime}}(m)$ is the one of $\widetilde{K O}\left(L^{n^{\prime}}(2 r)\right)$ generated by $\bar{\sigma}$.

Lemma 5.10. f is a ring isomorphism, $\# B^{n}(m)=(4 r)^{n}$ and $f(\beta(s))=\bar{\sigma}(s)$, where $\bar{\sigma}(s) \in \widetilde{K O}\left(L^{n^{\prime}}(2 r)\right)$ is the element defined in $[5,(1.6)]$ by $\bar{\sigma}(0)=\bar{\sigma}$ and $\bar{\sigma}(s)=$ $\bar{\sigma}(s-1)^{2}+4 \bar{\sigma}(s-1)(s \geqq 1)$.

Proof. We notice that $\# R^{n^{\prime}}(m)=\left(\# \widetilde{K O}\left(L^{n^{\prime}}(2 r)\right)\right) / 2=(4 r)^{n}$ by $[5$, (1.4), Th. 1.9 and Cor. 4.12]. Thus f is isomorphic by Lemma 5.6. Since $f\left(\beta_{1}\right)=\bar{\sigma}$, we see the desired equality by (5.1) and the definition of $\sigma(s)$.
q.e.d.

Lemma 5.11. $\quad 2^{n+1} \beta(m-2)=0 \quad$ in $\tilde{K}\left(S^{4 n+3} / Q_{r}\right) \quad\left(r=2^{m-1} \geqq 4\right)$.
Proof. $2^{n+1} \bar{\sigma}(m-2)=0$ in $\widetilde{K O}\left(L^{n^{\prime}}(2 r)\right)$ for $r=2^{m-1} \geqq 4$ by [5, Lemma 6.9(i)]. Thus, the desired result follows from Lemma 5.10.
q.e.d.

Lemma 5.12. The following relations hold in $\tilde{K}\left(S^{4 n+3} / Q_{r}\right)\left(r=2^{m-1} \geqq 2\right)$:
(i) $2^{n+1} \alpha_{0}=0$.
(ii) $2^{n+1} \alpha_{1}=2^{n+2}\left\{\sum_{s=1}^{m-3} \beta(s) \prod_{t=s+1}^{m-3}(2+\beta(t))\right\}$.

Proof. (i) follows from the relations $\alpha_{0} \beta_{1}=-2 \alpha_{0}$ and $\beta_{1}^{n+1}=0$ in Lemma 5.4.
(ii) $0=\alpha_{1} \beta_{1}^{n+1}=\beta_{1}^{n}\left(\beta_{r-1}-\beta_{1}\right)-2 \alpha_{1} \beta_{1}^{n}$
$=\left(\sum_{i=0}^{n}(-1)^{i} 2^{i} \beta_{1}^{n-i}\right)\left(\beta_{r-1}-\beta_{1}\right)+(-1)^{n+1} 2^{n+1} \alpha_{1}$
$=(-1)^{n} 2^{n+1} \sum_{s=1}^{m-2} \beta(s) \prod_{t=s+1}^{m-2}(2+\beta(t))+(-1)^{n+1} 2^{n+1} \alpha_{1}$
$=(-1)^{n} 2^{n+2} \sum_{s=1}^{m-3} \beta(s) \prod_{t=s+1}^{m-3}(2+\beta(t))+(-1)^{n+1} 2^{n+1} \alpha_{1}$,
by Lemmas 5.3-4 and 5.11.
q.e.d.

Let $u(i), \bar{\alpha}_{1}$ and δ_{i} be the integers and the elements in $\widetilde{K}\left(S^{4 n+3} / Q_{r}\right)\left(r=2^{m-1} \geqq 2\right)$ defined in (1.6). Then, we have the following

Lemma 5.13. (i) $2^{n+1} \bar{\alpha}_{1}=0$.
(ii) The subring $B^{n}(m)$ in Lemma 5.6 is given by

$$
B^{n}(m)=\sum_{i=1}^{N^{\prime}} Z_{u(i)}\left\langle\delta_{i}\right\rangle\left(N^{\prime}=\min \{r, n\}\right) .
$$

Proof. (i) follows from the definition of $\bar{\alpha}_{1}$ in (1.6) and Lemma 5.12 (ii).
(ii) By the additive structure of $\widetilde{K O}\left(L^{n^{\prime}}(2 r)\right)$ given in [5, Th. 1.9], where $2 \kappa=$ $\bar{\sigma}(m-1)$ for the stable class κ of the non trivial real line bundle over $L^{n^{\prime}}(2 r)$, and by the definition (1.6) and Lemma 5.10, we see immediately that

$$
\begin{equation*}
R^{n^{\prime}}(m)=\sum_{i=1}^{N^{\prime}} Z_{u(i)}\left\langle\bar{\sigma}_{i}\right\rangle \text { and } f\left(\delta_{i}\right)=\bar{\sigma}_{i} \tag{5.14}
\end{equation*}
$$

for the isomorphism $f: B^{n}(m) \cong R^{n^{\prime}}(m)$ in (5.9). Thus (ii) holds.
q.e.d.

We are ready to prove Theorem 1.7.
Proof of Theorem 1.7. The group $\tilde{K}\left(S^{4 n+3} / Q_{r}\right)$ is generated additively by $\alpha_{0}, \bar{\alpha}_{1}$ and $B^{n}(m)$ in Lemma 5.6 by Remark 4.9 and Lemmas 5.2-4. On the other hand, $2^{n+1} 2^{n+1}\left(\# B^{n}(m)\right)=2^{2 n+2}(4 r)^{n}=\# \tilde{K}\left(S^{4 n+3} / Q_{r}\right)$ by Lemmas 4.10 and 4.2. These together with Lemmas 5.12 (i) and 5.13 complete the proof of Theorem 1.7. q.e.d.

§6. An additive base of $\widetilde{K O}\left(L_{0}^{n}(q)\right)$ for odd q

In this section, we give an explicit additive base of the group $\widetilde{K O}\left(L_{0}^{n}(q)\right)$ for odd q, where $L_{0}^{n}(q)$ is the $2 n$-skeleton of the standard lens space $L^{n}(q)=S^{2 n+1} /$ $Z_{q} \bmod q$. For this purpose, it is sufficient to study the case $q=p^{r}$ (p : odd prime, $r \geqq 1$), because the following fact is known (cf. [6, Prop. 2.2]):
(6.1) Let $q=\prod^{v_{p(q)}}$ be the prime power decomposition of q and

$$
\pi_{p}: L_{0}^{n}\left(p^{v_{p}(q)}\right) \longrightarrow L_{0}^{n}(q)
$$

be the natural projection. Then we have the isomorphism

$$
\oplus \pi_{p}^{*}: \widetilde{K O}\left(L_{0}^{n}(q)\right) \cong \oplus_{p \mid q} \widetilde{K O}\left(L_{0}^{n}\left(p^{v_{p}(q)}\right)\right) \quad \text { with } \pi_{p}^{*}(\bar{\sigma})=\bar{\sigma},
$$

where $\bar{\sigma}$ is the real restriction of $\sigma=\eta-1$ in (3.7).
In the rest of this section, let p be an odd prime and $r \geqq 1$.
To study the group $\widetilde{K O}\left(L_{0}^{n}\left(p^{r}\right)\right)$, consider the elements

$$
\begin{equation*}
\sigma=\eta-1=\sigma(0), \quad \sigma(s)=\eta^{p^{s}}-1=(1+\sigma)^{p^{s}}-1(0 \leqq s \leqq r), \quad \sigma(r)=0 \tag{6.2}
\end{equation*}
$$

in $\tilde{K}\left(L_{0}^{n}\left(p^{r}\right)\right)$, where η is the one in (3.7). Further, consider the elements

$$
\bar{\sigma}^{\prime}(s) \in K O\left(L_{0}^{n}\left(p^{r}\right)\right) \quad \text { and } \quad \bar{\sigma}(s, k) \in \widetilde{K O}\left(L_{0}^{n}\left(p^{r}\right)\right)
$$

defined in (1.8-9). Then, we have the following three lemmas.
Lemma 6.3. For the complexification $c: K O\left(L_{0}^{n}\left(p^{r}\right)\right) \rightarrow K\left(L_{0}^{n}\left(p^{r}\right)\right)$, the following equalities hold:
(i) $c \bar{\sigma}=\sigma^{2} /(1+\sigma)$,
(ii) $c \bar{\sigma}^{\prime}(s)=\sigma(s) / \sigma(1+\sigma)^{q(s)}$,
(iii) $c\left(\bar{\sigma}^{\prime}(s-t)^{p t} \bar{\sigma}^{q(t)+k+1}\right)=\sigma(s-t)^{p^{t}} \sigma^{2 k+1} /(1+\sigma)^{q(s)+k+1}$,
where σ and $\sigma(s)$ are the elements in (6.2) and $q(s)=\left(p^{s}-1\right) / 2$.
Proof. (i) is proved in [9, (2.12)].
(ii) By (i) and (1.8), we see that

$$
\begin{aligned}
\left(c \bar{\sigma}^{\prime}(s)\right)(1+\sigma)^{q(s)} & =\sum_{i=0}^{q(s)}\left(p^{s} /(2 i+1)\right) \sum_{k=0}^{q(s)-i}\binom{q(s)+i}{2 i}\binom{q(s)-i}{k} \sigma^{2 i+k} \\
& =\sum_{j=0}^{2 q(s)}\left\{\sum_{i=0}^{j}\left(p^{s} /(2 i+1)\right)\binom{q(s)+i}{2 i}\binom{q(s)-i}{j-2 i}\right\} \sigma^{j} \\
& =\sum_{j=0}^{2 q(s)}\left(p^{s} /(j+1)\right) \sum_{i=0}^{j}\binom{q(s)+i}{j}\binom{j+1}{2 i+1} \sigma^{j} \\
& =\sum_{j=0}^{2 q(s)}\left(p^{s} /(j+1)\right)\binom{(q(s)}{j} \sigma^{j}(\text { by }[8, \text { Lemma (3.7)]) } \\
& =\sum_{j=0}^{p s-1}\binom{p s+1}{j} \sigma^{j}=\left((1+\sigma)^{p^{s}}-1\right) / \sigma=\sigma(s) / \sigma .
\end{aligned}
$$

This implies (ii).
(iii) follows immediately from (i), (ii) and the definition $q(s)=\left(p^{s}-1\right) / 2$.

Lemma 6.4. For the elements $\overline{\boldsymbol{\sigma}}(s, k)$ in (1.9), we have

$$
c \bar{\sigma}(s, k)=\sigma(s, 2 k+1) /(1+\sigma)^{q(s)+k+1},
$$

where $\sigma(s, d) \in \tilde{K}\left(L_{0}^{n}\left(p^{r}\right)\right)$ is the element defined in $[11,(1.6)]$.
Proof. By Lemma 6.3 (iii) and the definition of $\sigma(s, d)$ in [11, (1.6)], we see easily the desired equality.
q.e.d.

LEMMA 6.5. (i) $\bar{\sigma}^{\prime}(s)=\sum_{j=0}^{q(s)} k_{j} \bar{\sigma}^{j}$ with $k_{q(s)}=1$, and $\bar{\sigma} \bar{\sigma}^{\prime}(r)=0$ in $\widetilde{K O}\left(L_{0}^{n}\left(p^{r}\right)\right)$.
(ii) For $0 \leqq s<r, 0 \leqq k<p^{s}(p-1) / 2$ and $i=q(s)+k+1 \leqq[N / 2]$ with $N=\min$ $\left\{p^{r}-1, n\right\}$, and the integer $t(2 i)$ defined in (1.6), we have

$$
\bar{\sigma}(s, k)=\sum_{j=1}^{i} l_{j} \bar{\sigma}^{j} \text { with } l_{i} \equiv 1 \bmod p, \text { and } t(2 i) \bar{\sigma}(s, k)=0 \quad \text { in } \widetilde{K_{O}}\left(L_{0}^{n}\left(p^{r}\right)\right) .
$$

Proof. We see the first half of (i) by (1.8), and it implies that of (ii) by (1.9) since \bar{a}_{s} in (1.9) is positive by definition. We have $c\left(\bar{\sigma} \bar{\sigma}^{\prime}(r)\right)=\sigma \sigma(r) /(1+\sigma)^{q(r)+1}=0$ by Lemma 6.3 (i), (ii) and (6.2), which implies $\bar{\sigma} \bar{\sigma}^{\prime}(r)=0$ since c in Lemma 6.3 is monomorphic. Since $t(2 i) \sigma(s, 2 k+1)=0$ in $\tilde{K}\left(L_{0}^{n}\left(p^{r}\right)\right)$ by [11, Th. 1.7], Lemma 6.4 implies the second half of (ii).
q.e.d.

Now, we are ready to prove Theorem 1.10.

Proof of Theorem 1.10. By [9, Prop. 2.11 (i)], we have the following (6.6) The ring $\widetilde{K O}\left(L_{0}^{n}\left(p^{r}\right)\right)$ is generated by $\bar{\sigma}$ satisfying $\bar{\sigma}^{[n / 2]+1}=0$, and $\# \widetilde{\boldsymbol{K} \boldsymbol{O}}\left(L_{0}^{n}\left(p^{r}\right)\right)=p^{r[n / 2]}$.
This and Lemma 6.5 imply that $\widetilde{K O}\left(L_{0}^{n}\left(p^{r}\right)\right)$ is generated additively by $\bar{\sigma}(s, k)$ in (1.6) and is $\sum_{i=1}^{[N / 2]} Z_{t(2 i)} \bar{\sigma}(s, k)(i=q(s)+k+1)$, because we have $\prod_{i=1}^{[N / 2]} t(2 i)=$ $p^{r[n / 2]}$ by a routine calculation. Thus, we complete the proof of Theorem 1.10.
q.e.d.

References

[1] M. F. Atiyah: Characters and cohomology of finite groups, Publ. Math. Inst. HES, 9 (1964), 23-64.
[2] H. Cartan and S. Eilenberg: Homological Algebras, Princeton Math. Series 19, Princeton Univ. Press, 1956.
[3] C. W. Curtis and I. Reiners: Representation Theory of Finite Groups and Associative Algebras, Pure and Appl. Math. XI, Interscience Publ., 1966.
[4] K. Fujii: On the K-ring of $S^{4 n+3} / H_{m}$, Hiroshima Math. J., 3 (1973), 251-265.
[5] -, T. Kobayashi, K. Shimomura and M. Sugawara: KO-groups of lens spaces modulo powers of two, Hiroshima Math. J., 8 (1978), 469-489.
[6] , and M. Sugawara: Stable homotopy types of stunted lens spaces, Mem. Fac. Sci. Kochi Univ. (Math.), 3 (1982), 21-27.
[7] D. Husemoller: Fibre Bundles, McGrow-Hill Book Co., 1966.
[8] T. Kambe: The structure of K_{A}-rings of the lens space and their applications, J. Math. Soc. Japan, 18 (1966), 135-146.
[9] T. Kawaguchi and M. Sugawara: K - and KO-rings of the lens space $L^{n}\left(p^{2}\right)$ for odd prime p, Hiroshima Math. J., 1 (1971), 273-286.
[10] T. Kobayashi and M. Sugawara: K_{A}-ring of lens spaces $L^{n}(4)$, Hiroshima Math. J., 1 (1971), 253-271.
[11] , S. Murakami and M. Sugawara: Note on J-groups of lens spaces, Hiroshima Math. J., 7 (1977), 387-409.
[12] N. Mahammed: A propos de la K-théorie des espaces lenticulaires, C. R. Acad. Sci. Paris, Sér. A, 271 (1970), 639-642.
[13] T. Mormann: Topologie Sphärisher Raumformen, Dissertation, Universität Dortmund, 1978.
[14] D. Pitt: Free actions of generalized quaternion groups on spheres, Proc. London Math. Soc. (3), 26 (1973), 1-18.
[15] B. J. Sanderson: Immersions and embeddings of projective spaces, Proc. London Math. Soc. (3), 14 (1964), 137-153.

> Department of Mathematics, Faculty of Education, Miyazaki University
> and
> Department of Mathematics, Faculty of Science, Hiroshima University

