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§ 1. Introduction

Let t be a positive integer and let Qt be the group of order 4t given by

Qt = {x9y: xl = y

the group generated by two elements x and y with the relations x* = y2 and xyx — y,
that is, <2ί is the subgroup of the unit sphere S3 in the quaternion field H generated
by the two elements

x = exp(πι/0 and y=j;

and β1=Z4 and Qt for ί = 2m~1 (m^2) is the generalized quaternion group
which is denoted by Hm in [4].

Then, Qt acts on the unit sphere S4/l+3 in the quaternion (n -f l)-space Hn+l

by the diagonal action, and we have the quotient manifold

S4n+3/Qt of dimension 4n + 3.

Some partial results on the reduced K-ring K(S4n+3/Qt) of this manifold are
obtained by [4], D. Pitt [14], T. Mormann [13] and K. Kojima. In this paper,
we shall determine completely the additive structure of K(S*n+3/Qt).

Consider the complex representations α0, ai and b1 of Qt given by

i if MS odd,
I , f v /O -1\

1 if t is even, ^ iW—\j Q y »

and the elements

(1.1) otj = £(0f-l), 0! = ξ(6ι-2) in K(S4n+3IQt) (cf. (3.3)),

where ξ is the natural ring homomorphism of the representation ring of Qt to
K(S4n+3/Qt). Furthermore, consider the following subgroups of Qt:

(1.2) GO = Qr generated by xq and y, Gί = Zq generated by x2r,

where t = rq, r = 2m~1, m^l and q is odd. Then, we have the ring homomor-
phisms
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i J : K(S4»+3/Qt) - > K(S4"+3/Qr),

i f : K(S4»+3/Qt) - > K(L2»+i(q)) (L*«"(q) = S4»+3/

induced from the natural projections i fc: S4n+3/Gk-+S4n+3/Qt. Let

(1.4) c:

be the complexification, where XO( ) is the reduced KO-ring and L$n+1(q) is the

(4n + 2)-skeleton of L2n+1(q).

Then, we have the following

THEOREM 1.5. (i) The ring K(S4n+3/Qt) is generated by the elements α t

when t = l9 ccί and β± when t is odd^.3, α0, <Xj and βί when t is even, respectively,

where αf and β± are the ones in (1.1).
(ii) Put t = rq where r = 2m~l, wgr l and q is odd. Then, the ring iso-

morphism

can be defined by

π0 = f*

by using i* in (1.3) 0nd ί/zβ monomorphism c in (1.4). Further, for the gener-

ators α, and J?! in K(S4n+3/Qt) or K(S4n+3/Qr), there hold the equalities

ί a? + 3a? + 4aj + σ i/ ί is odd,
π(af) = a,, π^J =

I j5x + σ if t is even,

where σ is the real restriction of the stable class η — l of the canonical complex

line bundle η over LQn+l(q) and it generates the ring KO(L$n+1(q)).

Consider the following integers u(i) and elements (5f and όίί in K(S4n+3/Qr)
with r = 2m~1 (m^2), where α,- and β± are the ones in (1.1) for t — r and

For i = 2s + d^N/ = min{r, n} with 0^s<ra and 0^ί/<2s, put

n' = 2n + 1 if n is odd, = 2n if n is even,

n' = 2sα; + fr;, 0 ̂  t; < 2s;

ιι(l) = 2» -1+2βί, ^!=^ if z = l;

ιι(i) = 2»- -2+β/., (5, = Jί(s) + Σf=ι l^-Dί

if / = 2s, 1 = s < m



The additive structure of K(S4n+3/Qt) 509

(1.6) K+ι + 1 for2d^b's+l9

a's+1 ίoτ2d>bf

s+ί9

+ Σ£22(2t-1)α(ί)-W( y + l--') if / =

δι=α1-2ΣΓ=ι3J8WΠΓ-.3

+ι (2+/KO).

Then, the additive structure of K(S4n+3/Qr) is given by the following theorem
where Zfc<x> denotes the cyclic group of order k generated by x :

THEOREM 1.7. Let r = 2m~1, m^2 and N' = min{r, n}. Then, we have

), B»(m) = Σ£ι Z«(i)<ίι> ,

where Bn(m) is the subring of K(S4n+3/Qr) generated by βl9 which is isomorphic

to the subring of KO(Ln'(2m)) generated by σ by sending βί to σ.

We notice that the additive structure of X(S4n+3/β1) = K(L2M+1(4)) is deter-

mined in [10, Th. A].

For the reduced KO-group KO(Lln+ί(q)) (q: odd) in Theorem 1.5 (ii), it is
sufficient to determine its additive structure in case when q is a power of an odd

prime (cf. (6.1)).
Let p be an odd prime and r ̂  1, and consider the elements

(1.8) σ'(s) = Σ?iso)(X/(2/+ 1)) ^ ίn

where q(s) = (ps— 1)/2 and σ is the one given in Theorem 1.5 (ii). (σ'(s) is well
defined as an integral polynomial in σ because the order of σ f is a power of p by
[9, Th. 1.1 (ii) and Prop. 2.11 (ii)].) Furthermore, consider the following integers

t(2i) and elements σ(s, k) in KO(Lg(pr)), where θ5Ξs<r, 0<^k<ps(p-l)/2 and
i = q(s) + k + 1 ̂  [N/2] (N = min {p'~ 1, n}) :

f s + l if 2k+l<bs9*(2)=/r +1+δ , αs=H
L if

(1.9)

, fc) = if bs^2k+l<bs+ps-l or

σk+1σ/(,s) otherwise.

Then, we have the following
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THEOREM 1.10. Let p be an odd prime and r^l. Then the additive struc-

ture of KO(L$(pr)) is given by

ί(20<σ(5, fc)>,

where N = mm{pr-l9 n}9 i = (ps + 2/c+l)/2 and Q^k<ps(p-l)/2.

We prepare some results on the complex representation rings R(Qt) and
R(Gk) for Qt and the subgroups Gk given in (1.2) in §2. In §3, we define the
elements αf (ί = 0, 1, 2) and βj (j e Z) of K(S4n+2>IQ^) and study the homomorphism
if: K(S*n+*IQt)-+K(S*n+*IGk} of (1.3) in Proposition 3.10. In §4, we first deter-
mine the order of K(S4n+3/Qt) by using the Atiyah-Hirzebruch spectral sequence,
and prove Theorem 1.5 in Theorem 4.7 by using the known results on c in (1.4)
given in [9, Prop. 2.11] and the ones obtained in §3.

In §5, we study the subring Bn(ni) of K(S4n+3/Qr) (r = 2m~l, w^2) generated

by /?! using the ring monomorphism / : Bn(m)-*KO(L$(2rJ) of Lemma 5.10 and

the additive structure of KO(Lζ'(2r)) given in [5, Th. 1.9], and prove Theorem
1.7 by showing some relations in K(54w+3/βr). Theorem 1.10 is proved in §6 by

using the additive structure of K(Lg(/?r)) given in [11, Th. 1.7] and the complex-

ification c: KO^K which is monomorphic for Lg(pr)

§2. The complex representation ring R(Qt)

Let t be a positive integer and let Qt be the subgroup of order 4t of the unit

sphere S3 in the quaternion field H generated by the two elements

x = exp (πί/t) and y = j.

Consider the complex representations α£ (i = 0, 1, 2) and bj O'eZ) of Qt

given by

»<<*>-(?;,
, .(-I)'-1/ i f/ iβodd, * jOO=(? (~n

1V

Uω = l l °
[ (—I)1"1 if ί is even,

Then, we see easily the following

PROPOSITION 2.2 (cf. [3, §47.15, Example 2]). The complex represen-

tation ring R(Qt) of Qt is a free Z-module generated by 1, at (i = 0, 1, 2) and bj
(i^j<t), and the multiplicative structure is given as follows:
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α0 if I is odd,
a2

l i f t is even,

Let

(2.3) αf = fl,-l(i = 0, 1,2) and βj = bj-2(jεZ)

be the elements in the reduced representation ring R(Qt). Then, we have

PROPOSITION 2.4 (cf. [4, Prop. 3.3]). The reduced representation ring
R(Qt) is a free Z-module generated by αf (i = 0, 1, 2) and βj (l^j<t)9 and the
multiplicative structure is given as follows:

α0 — 2αj ift is odd,

— 2αj // / is even,

T/iβsβ s/iow ί/iαί ίhe ring R(Qt) is generated by oq i/ί = l, α x αnJ jSt i f t is odd ̂ 3,
and a0, ax and β\ if t is even.

The following lemmas are well known :

LEMMA 2.5 (cf. [7, Ch. 13, Th. 3.1]). R(S*) is the polynomial ring Z[£],

where ζ is given by

LEMMA 2.6 (cf. [1, §8]). #(Zk) is the truncated polynomial ring Z[μ]/
<μfc — 1>, where μ is given by zi-»exp (2πi/k)for the generator z ofZk and <μfc — 1>
means the ideal of Z[μ] generated by μk — l.

Consider the following three subgroups Gk of Qt, where

t = rq, r = 2m~x, m ̂  1 and q is odd:

GO = 6r generated by xq and j,
(2.7)

G! = Zq generated by x2r, G2 = Z2r generated by xq.

Then the inclusion ifc: Gkcβ, induces the ring homomorphism

(2.8) :i
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by the restriction of representations of Qt to Gk. By the definitions (2.1) and (2.3),
Proposition 2.4 and Lemma 2.6, we see easily the following

PROPOSITION 2.9. (i) ij}(a,) = af (ί=0, 1, 2),

= aι

'o(ft) = βι if* is even.

(ii) i?(a|) = 0, if(β) = μ/+/r ί-2.

(iii) ij(a0) = 0, ΐj(a|) = /ι'-l(i = l,2), ίjίft) = μ' + ,r'-2.

§ 3. Some elements in K(S4n+3/Qt)

Assume that a topological group G acts freely on a topological space X.
Then, the natural projection

p:X - >X/G

defines the ring homomorphism

(3.1) ξ:R(G) - >K(X/G)

as follows (cf. [7, Ch. 12, 5.4]): For an n-dimensional representation ω of G,
ξ(ω) is the complex n-plane bundle induced from the principal G-bundle p: X^>
X/G by the group homomorphism ω: G-»GL(rc, C). Furthermore, if H is a
subgroup of G, then the inclusion / : HaG and the natural projections p': X-+
X/H, i: X/H-+X/G induce the commutative diagram

-i-> K(XJG)

(3.2) f*| J;*

R(H) -L+ K(X/H) .

Now, Qt acts on the unit sphere S4/I+3 in the quaternion (n + l)-space Hn+1

by the diagonal action

4(4ι, ,4n+ι) = (44ι, > 44Λ+ι) for

Then the natural projection S4n+3-+S4n+3/Qt defines the ring homomorphism

ξ:R(Qt) - >K(S4»+*/Qt)

of (3.1), and by using the same letter, we define the elements

(3.3) «! = ««!> (i = 0, 1, 2), βf=ξ(βj).(je.Z) in
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where αt , βj E R(Qt) are the ones given in (2.3).
The K-ήng K(HPn) of the quaternion projective space HPn = S4n+3/S3 is

given by

(3.4) (cf. [15, Th. 3.12]) K(HPΛ) = Z[v]/<V+1>,

where v = λ — 2 and λ is the canonical complex plane bundle over HP".

For the ring homomorphism ξ : R(S3)-^K(HPn) of (3.1), by the definition of
ζ in Lemma 2.5 and v in (3.4), we see easily the following

LEMMA 3.5 (cf. [7, Ch. 13, Th. 3.1]). ξ(ζ-2) = v.

LEMMA 3.6 (cf. [4, Lemma 4.4]). π*(v) = βί9

where π*: K(HPn)-+K(S4n+3/Qt) is the homomorphism induced from the natural
projection π: S4n+3/Qt-+HP".

PROOF. We can prove the desired equality by (3.2), (2.1), (3.3) and Lemmas
2.5-6 in the same way as the proof of Lemma 4.4 in [4]. q. e. d.

The K-ήng K(Ln(k)) of the standard lens space Ln(k) = S2n+l/Zk mod fe is

given by

(3.7) (N. Mahammed [12]) K(L»(k)) = Z[σ]/<σ-+1, (σ + l)fc -1>,

where σ = η — l and η is the canonical complex line bundle over Ln(k).

For ξ: £(Zk)-»K(L«(/c)) of (3.1), we have

LEMMA 3.8. ξ(μ — ΐ) = ιy -1.

PROOF. Since the first Chern class of η generates H2(Ln(k)) = Zfc, we have
the desired equality by the definition of η in Lemma 2.6 (cf. [1, §2 and Appendix,
(3)]). q.e.d.

Let ik: S
4n+3/Gk-*S4n+3/Qt be the natural projection induced from the in-

clusion ik: Gkc:Qt for the subgroup Gk (/c = 0, 1, 2) in (2.7). Then the induced
homomorphism

(3.9) i f : K(S4"+3IQt) > K(S4^3/Gk)

satisfies the following

PROPOSITION 3.10. The equalities in Proposition 2.9 hold by replacing
oίi and βj with αt and βj in (3.3) and μ with η in (3.7) when fc = l, 2.

PROOF. By using (3.2), Proposition 2.9, (3.3), (2.6) and Lemma 3.8, we

obtain the desired equalities in each case. q. e. d.
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§ 4. Proof of Theorem 1.5

The cohomology group of the quotient manifold X = S4n+3/Qt is given as
follows :

(4.1) (cf. [2, Ch. XII, §7]) H4i(X; Z) = Z4t

H4i+2(X; Z) = Z4 (ί: odd), = Z2®Z2 (ί: even) i /Ogi^n,

H2i+1(X; Z) = 0 i/ 0^ι^2n, //°(*; Z) = H4n+*(X; Z) = Z.

By (4.1) and the Atiyah-Hirzebruch spectral sequence for K(X), we have

LEMMA 4.2. #£(S4"+3/ρf) = 24n+2t"9

where %A denotes the order of a group A.

We prepare two lemmas for the proof of Theorem 1.5. Put

t = rq, where r = 2m~1, m^l and q is an odd integer.

Then, we have the following

LEMMA 4.3. ig: K(S4n+3/Qt)-+K(S4n+3/Qr) is epimorphic, where iξ is the
homomorphism in (3.9) for G0 = βr.

PROOF. By Proposition 3.10, iS(αl) = αί (i = 0, 1) and ι'o(βι) = βι hold. On
the other hand, the ring K(S4n+3/Qr) is generated by α0, αx and βl by [4, Th. 1.1].
Thus, we have the desired result. q. e. d.

Consider the homomorphism

(4.4) ξ:K(Qt) - > £(S4"+3/6r)

of (3.1) for the natural projection S4n+3-»S4n+3/βf, and set

R = Imξ.

Then, concerning with the homomorphism

in (3.9) for Gί=Zq, we have the following

LEMMA 4.5. i*(R) = Im (c: KO(L2^(q)) -

where c is the complexification and L$(q) is the Ik-skeleton of Lk(q).

PROOF. By (3.3) and Proposition 3.10, we have the equalities

-i)\ ϊ*(α/) = 0 (/=0, 1, 2)
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while the ring κb(L$n+l(q)) is generated by r(ηl-\) (i^l), where r: K-+KO
is the real restriction and is epimorphic for L%n+1(q) (q: odd), (cf. [9, Prop. 2.11]).
Therefore, we obtain the desired result by the first half of Proposition 2.4.

q.e.d.

Now, we consider the ring homomorphism

(4.6) π = π0®π1 : Λ( = Im ξ) - > K(S^IQr}®KO(L^(q})

given by π0 = iξ\R and πί = c-Hiflfl),

where z* is the one in Lemma 4.3 and πl is defined by the above lemma since the
complexification c in that place is monomorphic for odd q (cf. [9, Prop. 2.11]).

THEOREM 4.7. (i) ξ in (4.4) is an epimorphism and R = K(S4n+3/Qt).
(ii) Let t — rq, r = 2m~1, m ^ l and q is odd. Then π in (4.6) is a ring

isomorphism

PROOF. In (4.6), π0 is epimorphic by (3.3) and the proof .of Lemma 4.3, and
so is π t by Lemma 4.5. On the other hand, by Lemma 4.2 and [9, Prop. 2.11],

%K(S4n+3/Qr) = 2<"I+3>«+2 and %KO(L%n+ί(q)) = qn.

Therefore π in (4.6) is also epimorphic since q is odd, and we see the theorem
because #R^#K(S4n+3/Qt) = 2(m+Vn+2qn by Lemma 4.2. q.e.d.

REMARK 4.8. By the definition of π in (4.6), Proposition 3.10 and the proof
of Lemma 4.5, we have the following equalities for π in the above theorem:

π(α.) =a,(i = 0, 1,2),

l) if t is odd,

π(βi) = βι + r(ηl ~ 1) if t is even.

REMARK 4.9. By (3.3) and Theorem 4.7 (i), the relations in Proposition 2.4

hold in K(S4n+3/Qt) and so the ring K(S4n+3/Qt) is generated by α t ι/ί=l, α t

and jβj if t is odd^l, and α0, a^ and β^ if t is even.

Combining Theorem 4.7 (ii) with the above remarks, we complete the proof

of Theorem 1.5.
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§5. The group K(S4n+*/Qr) (r = 2m~l)

In this section, we shall determine the additive structure of K(S4n+3/Qr) for
r = 2m~1 with m^2 by giving an additive base. In case m = l, K(S4n+3/Q1) =
K(L2n+ί(4)) and its additive structure is given in [10, Th. A]. The results in
case m = 2 is given in [4, Th. 1.2]. For m = 3, T. Mormann [13] and Kazuyoshi
Kojima have determined its additive structure.

Let m^2 and, in addition to the elements αf and βj in K(S4"+3/Qr) of (3.3),
define β(s) in K(S4n+3/Qr)(r = 2m-^ inductively as follows:

(5.1) J»(0) = A, β(s) = β(s-l)2

Then, we have the relations in K(S4n+3/Qr) given by the following lemmas.

LEMMA 5.2. β2s = β(s) + (-l)2*'1

PROOF. By noticing Remark 4.9, we can show α00(l) = — 4α0, α00(s) =
0 (s^2) and the equality in the lemma inductively using the relations in Prop-
osition 2.4. q. e. d.

LEMMA 5.3. β,^ - β, = Σ?=ι2 {(2 + βJβW ΠΓ=Λι (2+β(t))} .

PROOF. In R(Qr), the relation b2i.i=bibi,ί-bl for i = 2s~l (s^l) holds by
Proposition 2.2, and so we have

Therefore, by (2.3), Lemma 5.2 and the relation (2 + /?1)α0 = 0 in Proposition 2.4,
we have

q e.d.

LEMMA 5.4 (2 + ̂ )a0 = 0, (2 + β^ = β^i - βl9

ιί+1 = 0.

PROOF. The first two follow from Proposition 2.4 and Remark 4.9. The
third one is shown as follows :

ft. - (- I)r/2α0) (by Lemma 5.2)

= (2 + 000, = 2(0r_1-00 (by Proposition 2.4).

The last one follows from (3.4) and Lemma 3.6. q. e. d.

LEMMA 5.5. Let P(x) be a polynomial in x with
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P(x) = ax 4- higher terms, where a is a positive integer,

and B(n, P) (/t^O) be the ring generated by x with the two relations xn+l = 0 and
P(x) = 0. Then, $B(n, P) = an.

PROOF. We can prove the equality inductively by noticing that B(0, P) = 0
and by showing that

(*) Ker(pn : B(n, P) - > B(n - 1, P)) = Z/x»>

for the natural ring epimorphism pn given by pn(x) = x.
If pn(y) = 0 for y. e 5(rc, P), then y = Qjix)*" 4- Q2(x)P(x) for some polynomials

Qi by definition, which shows that y = kxn in JB(n, P) for some k e Z. On the other

hand, αxn = P(x)xn"1=0 in £(/?, P) by definition. Conversely, if fcx"=0 (feeZ)
in B(n, P), then fcx'll = Λ1(x)xn+1 + R2(x)P(x) = α/c'x" for some polynomials Rt

and some k' eZ, which shows that /c = 0 mod α. Thus we see (*). q.e.d.

LEMMA 5.6. Let B"(m) be the subring of K(S4n+3/Qr) (r = 2m~1) generated

by βi. Then

«B»(m) £

PROOF. Since β(s) = 22sβ1 + higher terms by (5.1), we see that the polynomial
P'(βι) in βl given by the right hand side in Lemma 5.3 is 2m(2m~2 — l)βl+ higher
terms. Consider the polynomial P(βι) in βί given by

P(βj = (2 + βt)β(m-l) - 2P'(βJ = 4rβl + higher terms.

Then, by the definitions of B(n, P) and β"(m), the equality in Lemma 5.3 and the
last two ones in Lemma 5.4 show that a ring epimorphism B(n, P)->J5/l(m) is
defined by sending the generator x to βΛ. Thus we see the lemma by the above

lemma. q.e.d.

For a given integer n, put

(5.7) n' = 2n 4- 1 if n is odd, = 2n if n is even,

and consider the ring monomorphism

c': KO(La'(2r)) - > K(L2n+1(2r)) (r = 21"-1

given by c' = c3 if n is odd, = c0 if n is even, where c3 = c and c0 are the ones defined
in [5, Prop. 5.3] by modifying the complexification c. Furthermore, consider the
ring homomorphism

+3/Qr) - > X(L2"+1(2r)) in (3.9).

Then, by [5, Proof of Cor. 5.16] and Proposition 3.10, we have
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(5.8) c'(σ) = η + η-1-2 = iϊ(βl),

where σ is the real restriction of σ — η — 1 in (3.7). Therefore, we can define the

ring epimorphism

(5.9) /= c'-M*: B"(m) - > R»'(m) with f(βj = σ,

where Bn(m) is the subring of K(S4n+3/Qr) generated by βv and Rn'(m) is the one

of KO(Ln'(2r)) generated by σ.

LEMMA 5.10. / is a ring isomorphism, %B"(tn) = (4r)n and /(/?(s)) = σ(s),

where σ(s) e KO(Ln'(2r)) is the element defined in [5, (1.6) J by σ(0) = σ and σ(s) =

PROOF. We notice that %Rn\m) = (%KU(L"'(2r)))/2 = (4r)n by [5, (1.4),

Th. 1.9 and Cor. 4.12]. Thus /is isomorphic by Lemma 5.6. Since /(/?ι) = σ,

we see the desired equality by (5.1) and the definition of σ(s). q. e. d.

LEMMA 5.11. 2»+lβ(m-2) = 0 in K(S4n+3/Qr) (r = 2w~1 ̂ 4).

PROOF. 2M+1σ(m-2) = 0 in KO(L"'(2r)) for r = 2m~1^4 by [5, Lemma

6.9(i)]. Thus, the desired result follows from Lemma 5.10. q.e.d.

LEMMA 5.12. The following relations hold in K(S4n+3/Qr) (r = 2w~1^2):

(i) 2"+1α0 = 0.

(ii) 2H+X = 2«^{Σsm=ι3 β(s) ΠΓ=Λι (2 + β(t))} -

PROOF, (i) follows from the relations a0/?! = -2a0 and ^ϊ+1=0 in Lemma

5.4.

(ii) 0 = αι£ϊ+1 = βl(βr-ι-βό-laιβl

= (Σ?=o (-l)<2 ί/JΓ<)(Λ-ι-/»ι) + (-l)"+12"+1αι

by Lemmas 5.3-4 and 5.11. q.e.d.

Let ιι(ί), α t and (5f be the integers and the elements in K(S4n+3/Qr) (r = 2m~1 ̂

defined in (1.6). Then, we have the following

LEMMA 5.13. (i) 2"+% = 0.

(ii) The subring Bn(nί) in Lemma 5.6 is given by

B"(m) = ΣJίli ZuW<δi> (N' = min {/-, «}).
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PROOF, (i) follows from the definition of 6ίl in (1.6) and Lemma 5.12 (ii).

(ii) By the additive structure of KO(Ln'(2r)) given in [5, Th. 1.9], where 2κ =
σ(ra — 1) for the stable class K of the non trivial real line bundle over Ln'(2r),
and by the definition (1.6) and Lemma 5.10, we see immediately that

(5.14) K"'(m) = Σ£ι ZM(0<.σi> and f(δύ = σ,

for the isomorphism / : Bn(m) ̂  Rn'(m) in (5.9). Thus (ii) holds. q. e. d.

We are ready to prove Theorem 1.7.

PROOF OF THEOREM 1.7. The group K(S4n+3/Qr) is generated additively
by α0, α x and Bn(m) in Lemma 5.6 by Remark 4.9 and Lemmas 5.2-4. On the
other hand, 2n+12n+ί(^Bn(m)) = 22n+2(4rY = ̂ K(S4n+3IQr) by Lemmas 4.10 and
4.2. These together with Lemmas 5.12 (i) and 5.13 complete the proof of

Theorem 1.7. q. e. d.

§6. An additive base of KO(Lζ(q)) for odd q

In this section, we give an explicit additive base of the group KO(L$(q)) for

odd q, where Lg(<?) is the 2n-skeleton of the standard lens space Ln(q) = S2n+1/
Zqmoά q. For this purpose, it is sufficient to study the case q = pr (p: odd prime,
r^l), because the following fact is known (cf. [6, Prop. 2.2]):

(6.1) Let q = Y[pvp(q) be the prime power decomposition of q and

πp: L8(pv^) - >L»0(q)

be the natural projection. Then we have the isomorphism

φ π* : KO(L»0(q» Sί Φp|β AO(Lg(/»"<«>)) with π*(σ) = σ,

where σ is the real restriction ofσ = η — l in (3.7).

In the rest of this section, let p be an odd prime and r ̂  1.

To study the group KO(L$(pr))9 consider the elements

(6.2) σ = ιy-l = σ(0), σ(5) = ̂ s-l = (l + σ>>s-l (Ogs^r), σ(r) = 0,

in K(Lg(pr))> where η is the one in (3.7). Further, consider the elements

σ'(s) e KO(L%(pr)) and σ(s, k) e KO(Lξ(pr))

defined in (1.8-9). Then, we have the following three lemmas.

LEMMA 6.3. For the complexification c: KO(Lg(pr)) -> K(Lζ(pr))9 the
following equalities hold:
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(i) cσ = σ*l

(ii) cσ'(s) =

(in) c(σ'(s-t

where σ and σ(s) are the elements in (6.2) and q(s) = (ps — 1)/2.

PROOF, (i) is proved in [9, (2.12)].

(ii) By (i) and (1.8), we see that

.1)) Σ?^ -(^'X

y + i))(2f }) σJ (by [8, Lemma (3.7)])

= Σf-Ό1 W = ((l + σ)* -l)/σ = σ(j)/σ.

This implies (ii).
(iii) follows immediately from (i), (ii) and the definition g(s) = (ps — 1)/2.

q. e. d.

LEMMA 6.4. For the elements σ(s, k) in (1.9), we

cσ(s, fc) = σ(5, 2fc+l)/(l4

σ(s, ί/) e £(Lg(pr)) is ί/ίβ element defined in [1.1, (1.6)].

PROOF. By Lemma 6.3 (iii) and the definition of σ(s, rf) in [11, (1.6)], we
see easily the desired equality. q. e. d.

LEMMA 6.5. (i) σr(s)=ΣJ~o M^ wίίΛ fc«(β) = 1> αnίί σσ'(r) = m

(ii) For 0^5 <r, 0 ̂  /c < ps(^ - 1)/2 and ί = 0(s)+ k + l^[ΛΓ/2] w/ίft JV =
r — 1, n}9 and the integer t(2ϊ) defined in (1.6), we have

σ(Sy k) = Σj=ι ljάj w i f A /, Ξ 1 mod/?, and ί(2ΐ)σ(s, fe) = 0 m KO(Lg(/?Γ)).

PROOF. We see the first half of (i) by (1.8), and it implies that of (ii) by (1.9)
since άs in (1.9) is positive by definition. We have c(σσ'(r)) = σσ(r)/(l + σ)9(r)+1 = 0
by Lemma 6.3 (i), (ii) and (6.2), which implies σσ'(r) = 0 since c in Lemma 6.3 is
monomorphic. Since ί(2z>(s, 2/c+l)=0 in K(Lg(pr)) by [11, Th. 1.7], Lemma
6.4 implies the second half of (ii). q. e. d.

Now, we are ready to prove Theorem 1.10.
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PROOF OF THEOREM 1.10. By [9, Prop. 2.11 (i)], we have the following

(6.6) The ring KO(Lg(pr)) w generated by σ satisfying a[n/2]+1=0, and

This and Lemma 6.5 imply that KO(L^(pr)) is generated additively by σ(s, k) in

(1.6) and is Σi=yι23 Zf(2/)σ(s, fe) (ι = q(s) + k + ΐ), because we have Y[^t(2ϊ) =
pK«/2] by a routine calculation. Thus, we complete the proof of Theorem 1.10.

q.e.d.
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