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1. Introduction

We consider a real n-dimensional system of differential equations

(1.1) -^- = X(x,t)9 ίe[α,6]

and observe the problem of finding a solution of (1.1) which minimizes a real

functional

(1.2) "M = (0M)*0M

locally, where g[x] is a real m-dimensional functional and A* is the transpose of

a matrix A.

In [1] H. T. Banks and G. M. Groome, Jr. proposed an iterative procedure

of finding a solution to the above problem for a linear #[x] by the use of the

quasilinearization of the differential system (1.1) and obtained a condition for

r[x] to have a local minimum at a point of attraction of the iterative procedure.

In [12] M. Urabe proposed the Newton iterative procedure and the generalized

Newton one. The latter is simpler than that proposed by Banks and Groome.

In [9] H. Shintani and Y. Hayashi studied the same problem for several types of

g[x] and conditions for a local minimum of (1.2). It is worthwhile to note the

work [8], though it is dissimilar to the above works.

In all the above-mentioned works except [8], the original problem is reduced

to the following boundary value problem :

(1.3) -̂ = *(x, 0, *e[α,6]

with the boundary condition

where Φ(jc)(0 is the fundamental matrix of the differential system
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with Φ(x)(to) = I (I: the unit matrix), t0 is some point in [α, fe] and g'(x) is the first
Frechet derivative of g\_x~\. For obtaining approximate solutions this reduction
is very powerful.

In [4] M. Fujii observed a posteriori error estimation of an approximate
solution by using finite Chebyshev series for the original problem and gave a
numerical example. In the above-mentioned boundary value problem, the
boundary condition includes Φ(x^(t). But in general only its approximation can
be obtained. He found the following fact: In order to estimate an error bound
of the approximate solution directly by making use of the method proposed in

[3], the knowledge of the exact fundamental matrix Φ(Λr)(0 is required. Thus
some manipulations are necessary. However, in his case the error bound obtained
was somewhat of an overestimate.

In a posteriori error estimation a fundamental matrix plays an important
role. In many practical applications exact fundamental matrices and their
inverses are not available, so that the estimates are not applicable if the approxi-
mate fundamental matrices and their approximate inverses are not so accurate.
In [6] Y. Hayashi gave a posteriori error estimates of the approximate solutions

in terms of the approximate fundamental matrices and their approximate inverses.
In this paper we still treat a posteriori error estimation of the approximate

solution and the local minimality of the exact solution corresponding to the ap-

proximate one. A numerical example is given.
In Section 2 we state the original problem of the least squares type for

ordinary differential equations and give preparatory descriptions. In Section 3
it is shown that the problem given in Section 2 is reduced to a special boundary
value problem under the assumption that a certain matrix is positive definite.
We also propose a condition for a local minimum in terms of error bounds of
the approximate solution and the approximate fundamental matrix. In Section 4
we obtain a theorem which is an improvement of the results in [6, Theorem 8]
for saving time. In Section 5 we give a numerical example in which the same
problem as in [4] is treated by using finite Chebyshev series.

Computations in this paper have been carried out by the use of FACOM
M-200 at Kyushu University and OKITAC 50/10 at Toyama University.

2. Preliminaries

2.1. The problem of the least squares type

Let Rn be a real n-space with any norm || || and let || ||# denote the dual
norm of || ||. For any kx n real matrix B (fcrgn), let ||B|| be the natural norm
induced by the norm || ||. Then by [2, pp. 42-43] it holds that
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\\e*\\ = |MI* for eeR".

Let C[J] be the Banach space of all real n- vector functions x(f) continuous
on the interval /=[«, fc] with the norm ||x||c = supfejx(ί)ll and let M[J] be the
Banach space of all real n x n matrix functions A(f) continuous on J with the norm
Mll c = supίeJ MίOII The identity operator and the unit matrix are denoted
by the same symbol /. The sum F + G and the product FG of two operators
F and G are defined in the usual manner.

For two Banach spaces X and 7, we denote by L(X, Y) the set of all bounded
linear operators from X into 7 and we abbreviate L(X, X) by L(X). For F: Da
X-+L(X, 7) let F(x) be an element of L(X, 7) associated with xeD. When
F: DaX-*Yis Frechet differentiable at xeD, we denote by F'(x) the Frechet
derivative of F at x.

Let A = (aί9 α2,..., απ)eM[J] and heC[f]. Then for any ΓeL(C[J]),
we define TAeM[f] by

TA = (Tal9Ta2,...9TaJ,

and for a bilinear operator N from C\_J~] into C[J], we define N[h, A] by

N[h, A] = (Nlh, Λl], JV[A, fl2],..., JV[Λ, flj).

For 7;.eL(C[J])(/ = l, 2,..., n), let 7eL(C[J], M[J]) be the operator defined by

Let Ω' be a domain in the ίx-space intercepted by two hyperplanes t = a and
t = b such that the cross sections #α and Rb at t = a and ί = fe make an open set in
each hyperplane. Put Ω = Ra U Ωf U Rb and let D0 be the domain of C[J] defined by

DO = {x e C[J] I (ί, x(ί)) e Ω for all teJ}.

Let us consider the system of differential equations

//v
(2.1) -^-= X(x, 0 for ίeJ

α/

and the problem of finding a solution which minimizes the functional

(2.2) ι?[x] = (flf.[x])* [̂x]

locally, where x and X(x9 t) are real n-vectors, X(x, t) is continuous in Ω and twice
continuously differentiable with respect to x in Ω9 and g:'D0-*Rmis twice continu-
ously Frechet differentiable in D0. We assume that (2.1) has at least one solution
inD0.

For any fixed t0 e J let x(ί, c) be a solution of (2. 1) on J such that x(ί0, c) = c,

and let
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Δ0 = {ceRn\x(t,

Let q: A0->Rm and s: AQ^R1 be defined by

(2.3) qlc]=gtx(t,cy]9

(2.4) s[c] = (<z[c])*4[c]/2

respectively, and let AaA0 be a convex domain. Then for any c, c + eeA, by
[9, Lemma 3] it holds that

(2.5) s[c + e] = s[c] + s'(φ

where

(2.6) 5'(φ = (ί[c])V(Φ,

(2.7)

(2.8)

(2.9) </"(Φ* = 0"(x(ί, c)) [xc(ί, c)e, xc(f, φ] + g'(x(ί, c)) [xcβ(r,

xc and xcc are the first and the second Frechet derivatives of x(ί, c) with respect
to c respectively.

From the assumption on X(x, t) it follows that xc(t, c) is the fundamental
matrix of the system

(2.10) -g- = X^t, c), t)y

satisfying xc(tθ9 c) = 7, and that xcc(t, c) is the solution of the system

(2.11) •-<* = XM*> c)9 t)zee + Xxx(x(t, c\ i) [xc(ί, φ, xc(ί, φ]

satisfying xcc(ί0> 0 = 0, where Xx and XXJC are the first and the second Frechet
derivatives of X(x, t) with respect to x respectively.

If s[c] attains a local minimum at teΔ, as is well known, it holds that
s7(£) = 0. Conversely a sufficient condition under which the solution t of s'(c) = 0
minimizes s[c] locally is given by the following [7, Theorem 5].

THEOREM 1. Let ten be a solution of s'(c) = 0 and suppose there exists a
positive constant α such that

(2.12). s"(c)ee ^ α||e||2 /or βH

s[c] attains a local minimum at c = c.
In many practical applications the solution c of 5r(c) = 0 and the solution

x(t, c) of (2.1) can not be obtained exactly. We can obtain only its approximation.
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Therefore in the next section, using x(0)eC[J] and Z(0>eM[J] which are ap-
proximations of x(ί, c) and xc(t, t) respectively, we establish a theorem assuring
that x(ί, c) is a solution of (2.1) minimizing (2.2) locally.

2.2. Positive definite matrices

A matrix A e L(Rn) is called positive definite if

(2.13) e*Ae > 0 for all e e Rn (e Φ 0) .

We have

LEMMA 1. Let A, BeL(Rn) and suppose there exists a positive number α
such that

(2.14) ΛBe^oφUJMI for eeRn,

(2.15) α > \\A-B\\.

Then A is positive definite.

PROOF. For any e e Rn (e^O), by (2.14) and (2.15) it follows that

e*Ae = e*Be + e*(A-B)e

Hence by (2.13) A is positive definite.

Since

(2.16) e*Be = e*(B + B*)e/2 for all eεR",

we have the following

COROLLARY 1. Let μ be the least eigenvalue of (B + B*)/2 and suppose

(2.17) μ> \\A-B\\i,

where || ||2 is the spectral norm. Then A is positive definite.
For any symmetric CeL(Rn), since ||C|| ̂  ||C||2, we have the following
COROLLARY 2. Let A and B be symmetric and suppose that for the least

eigenvalue v of B

(2.18) v > \\A-B\\.

Then A is positive definite.
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3. The local minimality

3.1. The boundary value problem of the least squares type

Let

D = {xeD0\x(t0)eA}.

For x e D, let Φ(jc)(0 be the fundamental matrix of the system

t), t)y

with Φ(je)(f0) = / and let U be a domain in M[J~\ including

£/o = {Φ(x) e M[J] \χeD, Φ(jc)(f0) = /} -

Let/: D x U-+R" be defined by

(3.1) /[ιι] = (<7'(x)Z)*<7[>] for u = (x, Z)eD x C7.

Substituting (2.3) and (2.8) into (2.6), for u = (x(t, c), xc(ί, c)) we have

(3.2) s'(φ = (0[x(ί, c)])* '̂(jc(ί, c)) [jcc(ί, c)e]

The solution x = x(ί, ^) of (2.1) with c such that sr(ί) = 0 and the fundamental
matrix Z = xc(t, c) of (2. 1 0) are a solution of the following boundary value problem :

( dx vi-- = X(χ,

(3.3) dZ
dt

fW = o

= Xx(x(t),t)Z9

for u = (x, Z)eZ) x ί/.

Conversely let ώ=(*,2) be a solution of (3.3). If we put c = Λ(ί0), then s/(c) = 0.

Let X2: D x C/-*L(C[J], M[JΓ]) and E: M[J] x M[J]^L(C[J]) be defined by

(3.4) *2(ιι)Λ = Xxx(x(t\ 0 [A(0, Z(ί)] for u - (x, Z) e D x I/, /ι 6 C[J],

(3.5) £(P, β)Λ = Γ P(t)Q(s)h(s)ds for P, βeM[J], ΛeC[J]
Jίo

respectively. Let xcc = xcc(t, c) be the solution of (2.11) satisfying xcc(ί0? c) = 0.

Then we have
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(3.6) xccee = \ xc(t)xc(sΓ1Xxx(x(s)9 s) [xc(s)e, xc(s}e\ds
Jto

= E(xc, x~l)X2(u) [_xce]e for all e e R",

where x = x(f, c), xc = xc(t, c) and M=(X, xc).
For any u=(x, Z)eDx U, /ιeC[J] and P, ρ, FeM[J], let us define

fx: Dx 17->L(C[7], Λ") and/z: Dx U->L(M[J], #") by

(3.7) /»/ι = (g'(x)Z)*g'(x)h + (g"(x) [Λ,

(3.8) Λ(«)K=to'(jc)K)*^M

and /2 : D x V x M[J] x M[J]-^L(C[J], tf") by

(3.9) /2(u, P, Q) = /,(u

Then substituting (2.3), (2.8) and (2.9) into (2.2), by (3.6)-(3.9), we see that

(3.10) s»(c)ee = e*(g'(x)xc)*g'(x)xee + (0M)* {^/r(x) [xce, xc]

= e*{fx(u)xc

= e*f2(u, xc,χ-*)xce for all eeJR M ,

where x = x(ί, c), xc — xc(t, c) and M = (X, xc).
For the solution w = (£, Z) of (3.3), if the matrix f2(ύ, 2, 2-1)2 is positive

definite, then from (3.2), (3.10) and Theorem 1, £ is a solution of (2.1) minimizing

(2.2) locally.

3.2. A condition for a local minimum

Let M=(X, 2) be the solution of the problem (3.3) and let w<0> = (x<°), Z<°))e
D x U be an approximation of ύ. Furthermore suppose the error bounds

(3.11) l l*-x ( 0 ) L£v, ||2-Z«» ||C g σ

are given. Put

(3.12) Dv = {xeC[J] | ||x-x(0)||c ^ v} c D,

(3.13) C/σ = {ZeM[J] | ||Z-Z<°>||C g σ} c 17.

), /0eL(C[J], R") and /!eL(M[J], ΛM) be
operators which are independent of u = (x, Z) e D x 17 and which approximate

XJXO, 0, *2(κ)> /*(") and Λ(«) in D x C/ respectively. Let Φ(ί) be the funda-
mental matrix of the system

(3.14) = A(t)y
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satisfying Φ(f0) = /. We denote by Φf(t) the inverse matrix of Φ(t).
Let Φ(ί)eM[J] and ^7eM[J] be matrices that approximate Φ(t) and

Φj(ί) respectively. We define I2 e L(C[J]) by

(3.15) Z2 = /o +

From now on, we write £($, <?/) as E for simplicity. Put

(3.16) rι(t) = $j(t) - / + (' $j(s)A(s)ds9
Jto

(3.17) p = max (ft - ί0, ί0 - a) .

Then we have the following

LEMMA 2. Suppose (3.11) /ίoWs. TTίeπ it follows that

(3.18) ||£(2, 2-1) - £||c g /? l s

where β1 is a positive number such that

(3.19) p{β2 exp(pμ3) + ̂ (expCpμj)-!)/^} g )?!

and β2, βί, 1*3 are non-negative numbers such that

(3.20) I l 2 - * l l e + l l * l l e l k i l l e s / i 2 ,

(3.21) llίllcllί/LII^ΛίO, 0 - /4(0llc ^ ̂ 3>

(3.22) 11 (̂̂ (0, OIL ̂  Λ

Proof. Put

(3.23) ψ(t, s) = 2(ί)2(s)- 1 - Φ(ί)Φ/(s) ,

where 2(s)~' satisfies

(3.24) Z(s)-1 -I + (S 2(τ)-ιχx(*(τ), τ)dτ = 0.
JfO

Since by (3. 16)

(3.25) $j(s) - I + (' $j(τ)X^(τ)9 τ)dτ

), τ) -
fO

it follows that

(3.26) φ(t, s) = 2(ί) - Φ(0 - KOrjίs)

)( τ) + ί(ί)^/(τ)(^(i(τ), τ) - A(τ))}dτ.



Numerical solutions to problems of the least squares type 485

From (3.20)-(3.22), it follows that

(3.27) \\φ(t, s)|| g \\2-$\\c + \\$\\c\\rι\\c + {\\φ(t, τ)|| \\Xx(x(τ), τ)||c

By GronwalΓs inequality, we have

(3.28) \\φ(t, s)|| g β2 exp(p/i3) + β3

Since

E(2, Z-')Λ - £Λ = (' φ(ί, s)Λ(s)ds for AeC[J],
Jro

by (3.28) and (3.19) we have (3.18).

REMARK. Let μ5 and μί be non-negative constants respectively such that

\\Xxx(x(t), t)-Xxx(x^(t), OUc ^ Aί5 for all xeDv,

(\\xxx(x«>\t), oi ic + μs)v + n W'ω, o - 4(oιιt ^ μ.
Then ||X,(ά(0, 0~4(OL and \\Xx(x(t\ i)\\e can be evaluated by

\\Xx(x(ί\ t)-A(t)\\c ^ μlt \\Xx(x(t), OIL ̂

Furthermore by (3.11), we have

Let ^9 be a positive constant such that

(3.29) μ20+\\EYlμ2i +(II

where /?ι, μ2o> A*2i an^ μ* are non-negative constants such that

(3.30) \\E(2,2-^-E\\c ^β,,

(3.31) ||/»-/0||gμ20 for all u e ί > v x l / , ,

(3.32) IIΛ(«)-/ι l l^/*2i for all xeD v x £/ff,

(3.33) ||.y2(tt)- y||ς ^ μ4 for all u e Dv x Ua.

Then, for the local minimality, we have the following

THEOREM 2. Suppose (3.11) holds for the approximate solution u(0) =
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(jc<°>, Z<°>) e D x U of (3.3) and that there exists a constant α such that

(3.34) e*I2Z<°)i? ^ oφlUNI /or α / / ee£",

(3.35) α1 = | |Z 2 | |σ+ /?(||Z(°)||c + σ ) < α .

Then £ is α solution of (2.1) w/π'c/ϊ minimizes (2.2) locally.

PROOF. By (3.32), (3.30) and (3.33) we have

(3.36)

and by (3.31), (3.36) and (3.29) we see that

(3.37) ||/2(ώ, z, Z-0-/2II ^ IIΛ(ώ)-/oll +

Furthermore by (3.11) and (3.37) it follows that

(3.38) ||/2(ώ, Z, Z-^Z-

By (3.10) we see that

(3.39) s"(ί)ee = e*f2(ύ, Z, Z~l)Ze

= β*Z2Z<°)β 4- e*(/2(ώ, Z, Z-1)2-/2Z<°Oe for all eεR".

By (3.38), (3.34), (3.35) and Lemma 1 we have

s"(t)ee > 0 for all e e Rn (e ± 0)

and the conclusion of the theorem follows from Theorem 1 .

For any real symmetric matrix B, we denote by λmin(B) the least eigenvalue
of B. By Corollary 1 to Lemma 1 we have the following

COROLLARY 1. Suppose the assumptions of Theorem 2 hold with \\ \\ and

(3.34) replaced by || ||2 and

(3.40) A m i n (

respectively. Then the conclusion of Theorem 2 is valid.
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By Corollary 2 to Lemma 1, we have the following

COROLLARY 2. Let /o=Λ(w(0)), /ι=/2O
(0)) and .Y=X2(tι<°>), and suppose

the assumptions of Theorem 2 hold with (3.34) replaced by

(3.41) Am

Then the conclusion of Theorem 2 is valid.

In particular we consider the case X(x9 t) = A(f)x and 0M = £[*;] — d, where

,4(OeM[.7], £eL(C|V], Rm) and d is a constant m-vector. In this case the
theorem yields the following

COROLLARY 3. Let /0[ ] = (£[Z(0)])*£[ ] and suppose the following in-
equality holds:

^min(/o[Z(0)]) > Polk + (l|Z<°)||c + σ)μ20.

Then jc is a solution of(2.Γ) which minimizes (2.2) in D.

4. A posteriori error bounds of w ( 0 > = (Λ:(O), Z(0>)

Let C![J] be the space of all real n-yector functions continuously differenti-
able on J with the norm || ||c and denote by MX[J] the space of all real nxn
matrix functions continuously differentiable on J. Let Pf 1[J] = C1[J] xM![J]
be the space with the norm

||w||w = maxQ^HΛIIc, q~λ\\V\\C) for w = (h,V)eWl[J~\

and put D1=(Dx U) n Wl[J~]9 where p and q are suitable positive numbers.
Let B = C[J] x M[J] xRnxMn be the Banach space with the norm

||φ||» = max(||r||c, ||P||C, ||d||, ||e||) for φ = (r, P, d,

where Mn is the space of n x n real matrices.
Let us define F: D^-^B by

for u = (x,Z)εDl.

Then the problem (3.3) is equivalent to that of finding the solution ueD 1 of

(4.2) Fu = 0.

Let A, Φ, Φj, Γ, /o, /i, I2

 an(i ^ ̂ e tne matrices and the operators defined
in Section 3 and put



488 Masatomo FUJII and Yuichi HAYASHI

(4.3) £ =

When det G^Q9 we define the operators S09 S2> ^4 and #o by

(4.4) S0 = $G~\ S2 = So/!, S4 = / - S0Ϊ2, #0 = S4£,

respectively. For any φ — (r, P, d, e)eB, let LjeL(J3, [̂J]) be the operator
defined by

(4.5) Ltφ = w,

where w=(Λ, V)eWl[_J~],

h = HOΓ - s2£p + S0d - s2^, v

Let j R l 9 Λ26L(C[J]) and the linear operator /: Wl[_J~]-*Rn be defined as
follows :

(4.6) R, h = $ (' ($',(s) + $,(s)A(Sy)h(s)ds + (I- $(t)$,(t))h(t) ,
Jto

(4.7) R2h = R,h + ί(θ(*/(ίo)- Wίo) for λ e C[J] ,

(4.8) /[w] = /0[ft] 4- /t[K] for w = w(Λ, F) e

For any w = (Λ, ^ePf^J] and weϋ 1, let L: l^^Jl^B and ,̂ ̂ 1? R2:
be the operators defined by

(4.9) Lw = - A(t)h, - A(t)V - Yh,

(4.10) Ru = u-LjFu,

respectively. Then it holds that

(4.11) Ku = R^u + K2u.

By (4.1), (4.9), (4.10) and (4.5) we have

(4.12) K,u = w1 ?

Γx(x) = Xx(x, 0 - A(t):

Since Φ;=-Φ7^(0, by (4.9), (4.10), (4.6) and (4.7), the integration by parts
yields

(4.13) K2u = w2,
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where w=(.x, Z)eDl, w2 = (A2K2)e

Λ 2 = 34K,x - 32Λ2Z, V2 =

Now we show the following theorem which is an improvement of the results
in the previous paper [6, Theorem 8].

THEOREMS. Let t/<0) = (x<°>, Z^eD1 be an approximate solution of
(4.2) and suppose there exist an operator L/5 a positive constant 6 and non-
negative constants η, K, KJ (y = 0, 1, 2, 3) such that

( i ) Lj is invertible;
(ii) D

(iii) K^

(4.14)

(4.15)

(4.16) p | |Sf 4 Λιllc

(4.17) \\EY\\cκ2

where μl9 μ2, μ4 are constants such that

(4.18) \\Xx(x(t\ t)-A(t)\\c £ μι for all x e D J n D,

(4.19) H/'(tO-/|| g / / 2 / o r e / / w e D J

(4.20) , ||X2(ιι)-y||c^jι4 for all

(iv) I l
(v) λ = ιy/(l-ιc)^ί.

Then the sequence w ( f c ) defined by w ( f c + 1 ) =M ( k ) — LjFM ( f c ) (fc = 0, 1,...) converges
to ύ e Dl as fc-»oσ. ίϊ is ίhe unique solution of (4.2) in DJ, αnt/

(4.21) | |ώ-«<*)L^ιc*λ (fc = 0, 1 ,...)•

The proof of this theorem is quite similar to that of [6, Theorem 8] and is

omitted.

REMARK 1. A sufficient condition for (i) is given in [6, Lemma 12].

REMARK 2. When the error bound λ(p, q) of w ( 0 ) can be obtained by apply-
ing Theorem 3, since

we have estimates
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(4.22) P-x<°>L ^ P%P, 9), I|2-Z ( 0 )llc

Therefore we can evaluate v and σ, the bounds of (3.11), as small as possible by

choosing the parameters p and q suitably.

5. A numerical illustration

5. 1 . Cheby shev-ser ies-approxima tions

In order to obtain an approximation to a solution of the boundary value

problem (3.3), we consider finite Cheby she v series

(5.1)

with undetermined coefficients α0, α l 9..., αN and B0, Bί9..., BN, where ίe[— 1,
1] and Tk(f) is the Chebyshev polynomial of degree k. For (5.1), corresponding

to (3.3), we are concerned with the equation

(5.2) ^ M^jvw _ p .(γ(v..d\ i\-7-(ι\\ ZN(ί0) =

)*0[**]=0, uN = (xN9ZN)eDxU,

where P^-! is the operator which expresses the truncation of a Chebyshev series
of the operand by discarding the terms of the order higher than AT —1. A finite
Chebyshev series uN(t) satisfying (5.2) is called an JV-th order Chebyshev-series-
approximation to a solution of the given boundary value problem (3.3). For
the details of numerical methods refer to [10] and [5].

Throughout this section, coefficients of the Chebyshev series of a function

b(t) are called Chebyshev coefficients of b(t) for simplicity.

5.2. A sample problem

Let us consider the differential equation

(5'3)

By the transformation

t = 2τ - 1,
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the equation (5.3) can be reduced to the following

Let X j = y and x2 = dy/dt. Then this is reduced to the system

dx**(5.4)

We consider the following least squares condition :

(5.5) 0[x] = (Qx(ίι)-dι, Q*(t2)-d2,...'9 βx(U-d*)*,

where Q = (l, 0), m = ll and ^ = 0.2(7-1)- 1 0 = 1, 2,..., m), that is, the func-
tional I;[Λ;] in (2.2) is given by

(5.6) ι?[x] = (0M)*<7M s Σ?=ι (xι(tj)-djY

and dj O' = l, 2,..., m) are shown in Table 1.

Table 1.

j 1 2 3 , 4 5 6 7 8 9 10 11

dj 0.83129 0.74012 0.66559 0.60372 0.55172 0.50764 0.47017 0.43862 0.41305 0.39476 0.38727

In the boundary value problem in Section 3, the functional /[M] in (3.1)
can be expressed as follows :

(5.7) /[«] = to'(x)Z)*flf[x] = Σ7-ι (<2Z(ί,.))*(Qx(f;)-c/,.).

In this example we take ί0=0. Thus

(5.8) ^ = ^ M Z E

with Z(ί0) = Z(0) = /, where X1[x] = XJC(x(ί), O
Now let w<°>=(x(0), Z(0)) be the approximate solution of this problem ob-

tained by numerical computation such that

= y 5o«y + Σ2-ι 5*^^(0 (z, 7 = 1, 2),

where ΛΓ=27. Then the Chebyshev coefficients of u(0> are shown in Table 3.
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5.3. Estimation of a posteriori error bounds

From now on, let the symbol || [| denote the Euclidean norm of vectors or
the Frobenius norm of matrices. In applications of Theorem 3, we take

as A(i) and Zt°> as $.
For u=(x, Z)eDl and w=(h, V)e Wl[J~\ we have

X2(u)h =
0 0

z,i 0

0 0

6z12 0
h,

fx(u)h = Σ?=ι

L(uW= Σ7-ι

We choose the operators Y, I, 10 and lt as follows :

/o=/*(«(0)), /ι=Λ(« ( 0>).

For simplicity put

v ίΨn <Pi2\ „ '/~Ψn'Ψi2\ „ / O 0
*= , Φ 7 = , c(/) -•(*/(/).

\φ 2 1 (p2 2y \^r 2 1 ^22; \ ι o

f l /^J, f l *£s,
^i(/, Λ ) = σ2(/, 5-) =

[0 /<,$-, [0 />,$-.

Then we have

(5.9)

(5.10) /,£y[ί] = Σ7-ι 6

Hence by (3.15), (4.3), (5.9) and (5.10) we can obtain G. Suppose that det
Then since

(5.11) SQ = $G-\

(5.12) 52£F = £0/^7 =

it follows that
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(5.13) ||S2£l!c ^ llSolU JΣ7-1 tj Joo'

where

bij(s) = fli/AnO) + a2Jφ2i(s), b2J(s) = aυψ12(s) + a2j\l/22(s)

O' = l, 2,...,m)

It also follows that

(5.14) ||£||c ^ maxtej (t ̂

(5.15)

By (4.4) we see that

Since tί2-j= —t} (j = l, 8,..., m), by some manipulations we have

(5.16) R0h = Γ H0ί(t, s)h(s)ds + Γ H02(ί, s)h(s)ds for ft e C[J] ,
Jo J-i

where for tk-ί<s^tk(k=7,8,...,m)

ί i -1

- 6 '

and for — tk^s< —tk-ί (k = 7, 8,..., m)

6 Γ" C(τ)(Σ7-ι
J-ti-ι

- 6

Hence it follows that

- l/2
(5.17)

l/200
_ t
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As is readily seen, it follows that

(5.18) IIAΊM-ΛίOllc ^ 6||x-jcco)||c ^ 6pδ = μlt

(5.19) IIΛ(w)-/oll ^ 11||Z-Z«»||C g ll<z<5 = μ20,

(5.20) IIΛ(w)-MI ^

(5.21) pμ20 + qμ2l

(5.22) ||X2(w)- Til, g

In (4.5) we take φ = Fu< °\ Then we see that

r = ̂ (°)(/) - Ar(*<°)(0, 0, ^ = ̂ zΓ(/) -α/ α/

*/ =/[«<0)], e = Z<°)(/0) - /•

Thus by (5.9H5.17) we have

'88.110421 ••• 85.460166-
(5.23) G=(

,85.460166- 105.72547-

(5.24) det G = 2012.0-5^0,

llfloL = 10.889, ||S0||C = 0.43829, ||S2£||e = 7.1237 x 10-5,

||£||c = 15.719, ||£y||c.= 353.06, ||S0||e||d|| = 1.1437 x 1Q-14,

||^2φe||c == 4.1676 x lO'29, ||r||c = 3.7950 x lO"13, ||P||C = 1.1686 x 1Q-'2,

\\$e\\c = 3.3179 x 10"13, ||S4||C = 15.342, ||S2||e = 0.065150,

H R j L = 1.3771 x lO'7, \\R2\\C = 1.3771 x lO"7.

Let η0 and ηί be the quantities such that

L + IISollcμ0ll

' = \\EY\\cη0 + \\P\\C + \\Φe\\c,

respectively.
Then for L,F «» =(/ι, K), by (4.5) we have

In this case, we obtain

(5.26) η0 = 4.1438 x lO"12, ηi = 1.4817 x lO'9.

If we put 77 = max (p"1 ί/o, q'^ηi), then we have
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(5.27) H l j F i i W L S i j .

Now we apply Theorem 3 to this problem summarize the results in Table 2.

From Table 2 we have the error estimates

ί ||$-jc«»||c ^ λ(1.0,372.0) = 4.1590 x 10~12,
(5.28)

I ||Z-Z<°>||C ^ ^(0.0028,1.0) = 1.4817 x 10~9.

REMARK. When we choose p=l, q = l and <5 = 10~4, form Table 2 we have

κ>\. Therefore it is impossible to obtain the error bounds.

5.4. A local minimum

For the quantities which are necessary for applying Theorem 2, we have the

following values:

||Φ||C = 43.480, ||Φ,||C = 63.376, ||Γl||c = 1.1280 x lO'11,

||£||c = 15.719, || Ύ\\c = 69.908, \\EY\\C = 353.06, ||/0 | | = 13.923,

HM = 1.4865 x 10-5, ||/2|| = 13.928, \\A\\e = 5.9058,

α = λm i n(C)'= 11.005.

In (3.11) we choose v and σ as follows:

(5.29) v = 10~5, σ = 10'5.

Then by Lemma 2 and (3.29)-(3.35), we have

p = 1.0, μΛ = μ4 = 6.0 x 10~5, μ20 = μ2ί = 1.1 x 10~4,

μ3 = 5.9059, β3 = 0.16534, β2 = 10~5, β^ = 10.255,

β = 0.12846, a! = 5.5857.

Since α>α l 5 by Corollary 2 to Theorem 2, the exact solution x in our example

is an isolated one which minimizes (5.6) in Dv.
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Table 2.

a=ιo-

P

q
μ,

μ2

/-**
Ko

Kl

K2

*3

K

V

*(p,q

1.0

1.0

6.0000 x

2.2000 x

6.0000 x

10~6

10-5

10-6

7.4976 xlO-5

2.6660 x

2.1217 x

7.4923 x

2.7409 x

1.4817X

)1.5235x

10-2

10-6

10-4

10-2

lo-9

10-9

1.0

372.0

6.0000 xlO'6

8.1840X

2.2320 x

3.6523 x

1.3597 x

5.4503 x

1.9755X

3.6603 x

4.1438 x

4.1590X

lo-3

ιo-3

lo-3

10°

10~5

lo-3

lo-3

lo-12

lo-12

0.0028

1.0

1.6800 xlO'8

6.1600X

6.0000 x

2.751 I x

1.0241 x

1.4887X

5.3939 x

1.5635X

1.4817 x

1.4817X

lo-8

to-6

lo-8

lo-5

lo-8

10~6

lo-5

lo-9

JO'9

0^ιo-4

1.0

1.0

6.0000 xlO-4

2.2000 xlO- 3

6.0000 xlO- 4

7.4976 xlO- 3

2.6660x10°

2.1217 x!0~6

7.4923 x 10-4

2.6667x10°

1.4817 xlO~ 9

Undetermined

1.0

372.0

6.0000 x lo-4

8.1840X10'1

2.2320 x

3.6523 x

1 3597 x

lo-1

lo-1

102

5.4503 x 10-6

1.9755X

3.6551 x

4.1438 x

6.5309 x

lo-3

lo-1

lo-12

ίo-12

0.0028

1.0

1.6800 xlO-6

6.1600 xlO- 6

6.0000 xlO-4

2.7511 xlO-6

1.0241 xlO-3

1.4887 xlO-8

5.3939 x 10-6

1.0295 xlO-3

1.481 7 xlO-9

1.4832 xlO-9

Table 3.

The Chebyshev coefficients of uw =(xw, Z(0))

n

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2!

22

1.111398193054442

-0.217631518410970

0.050660320523359

-0.004595698555427

0.002754838066751

0.000190936637394

0.000163023562428

0.000022137520758

0.000007443581263

0.000001030733805

0.000000257699672

0.000000035427113

0.000000008311300

0.000000001294288

0.000000000308834

0.000000000055105

0.000000000012537

0.000000000002308

0.000000000000484

0.000000000000088

0.000000000000017

0.000000000000003

0.000000000000001

-0.460598568498370

0.226760729208123

-0.025335531676430

0.024119447114688

0.002238659656131

0.002080742580677

0.000329293282189

0.000124459831539

0.000019367991581

0.000005362531333

0.000000814783088

0.000000208537885

0.000000035386592

0.000000009066686

0.000000001735100

0.000000000419346

0.000000000081955

0.000000000018154

0.000000000003472

0.000000000000723

0.000000000000137

0.000000000000028

0.000000000000005
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Table 3.

23
24
25
26
27

(Continued)

0.000000000000000
0.000000000000000
0.000000000000000

-0.000000000000000
0.000000000000000

0.000000000000001
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000

n

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

5.11

5.042456200446825
1.775770970216703

1.817191541478525
0.744168521784874
0.323585582416798
0.100533169018054
0.029124140848576
0.006947404231829
0.001562927105899
0.000314592693841
0.000063437214493
0.000012513040227
0.000002627589324
0.000000559146049
0.000000123256041
0.000000026609776
0.000000005691868
0.000000001175208
0.000000000238657
0.000000000047316
0.000000000009337
0.000000000001829
0.000000000000360
0.000000000000071
0.000000000000014
0.000000000000003
0.000000000000001
0.000000000000000

£«12

3.434548420592477
3.581548722704508
2.095483522794581
1.068491700814619
0.414304904052059
0.137165769344503
0.038068665990039
0.009361035436103
0.002053275820570
0.000422220416536
0.000083514625184
0.000016764952245
0.000003469191064
0.000000747607217
0.000000163192653
0.000000035504631
0.000000007547266
0.000000001565815
0.000000000316670
0.000000000062991
0.000000000012395
0.000000000002434
0.000000000000479
0.000000000000095
0.000000000000019
0.000000000000004
0.000000000000001
0.000000000000000

n «„« bn22

9.125101753868796
10.233282797850009
5.573559813435393

15.084749194958971
12.187808104518284
7.921651749549957
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Table 3.

3

4

5

6
7

8

9

10

11

12

13

14

15

16
17

18

19

20

21

22

23

24

25
26

27

(Continued)

2.964516631935914

1.108548682726151

0.375831972601526

0.103216992545608

0.026342282418620

0.005953333299996

0.001335448724235

0.000290664810865

0.000066704434377

0.000015377925877

0.000003642290604

0.000000840128613

0.000000191121470

0.000000041835338

0.000000008981692

0.000000001878256

0.000000000390031

0.000000000080245

0.000000000016565

0.000000000003413

0.000000000000705

0.000000000000145

0.000000000000030

0.000000000000006

0.000000000000001

3.805874013339966

1.510701544662247

0.491434780923489

0.139043851217208

0.034610789043020

0.007989355111768

0.001758375913897

0.000389387614119

0.000088083410223

0.000020558664724

0.000004822824687

0.000001120877079

0.000000253430404

0.000000055738159

0.000000011917900

0.000000002500454

0.000000000517784

0.000000000106784

0.000000000022000

0.000000000004541

0.000000000000937

0.000000000000193

0.000000000000039

0.000000000000008

0.000000000000002
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