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Introduction

Amayo [2] proved that several classes of finitely generated Lie algebras are

ascendantly coalescent, where a class X of Lie algebras is ascendantly coalescent

if in any Lie algebra the join of any pair of ascendant X-subalgebras is always

an ascendant X-subalgebra. On the other hand, Togo [10] introduced the

concept of weakly ascendant subalgebras of Lie algebras generalizing that of

ascendant subalgebras. It might be hopeless to search classes X such that in

any Lie algebra the join of any pair of weakly ascendant 3£-subalgebras is always

a weakly ascendant £-subalgebra, for there exists a Lie algebra in which the

join of a certain pair of 1-dimensional weak subideals is not a weakly ascendant

subalgebra and is non-abelian simple (cf. [4, Example 5.1]). However, in the

recent papers [5] and [6] the author presented various classes of Lie algebras

in which the join of any pair, or any family, of weak subideals (resp. subideals)

is always a weak subideal (resp. a subideal). In this paper we shall investigate

the class £(wasc) (resp. £(asc)) of Lie algebras in which the join of any pair of

weakly ascendant subalgebras (resp. ascendant subalgebras) is always a weakly

ascendant subalgebra (resp. an ascendant subalgebra), and the class £°°(wasc)

(resp. £°°(asc)) of Lie algebras in which the join of any family of weakly as-

cendant subalgebras (resp. ascendant subalgebras) is always a weakly ascendant

subalgebra (resp. an ascendant subalgebra).

Section 2 is devoted to investigating general properties of weakly ascendant

subalgebras of Lie algebras. We shall show as generalizations of [2, Theorem 2.5]

and [10, Theorem 4] that if H wascL then HjHL e udft n E(<" )9l (Theorem 2.2

(1)) and that if HwascL and H/HsLe& then H<ωL (Theorem 2.2 (2)). Fur-

thermore, we shall show that if # < " L , K<σL and [H, K]<^H then H + K<σpL

(Theorem 2.5).

In Section 3 we shall show that various classes are subclasses of 2(A) or

£°°(J), where A is any one of the relations wasc and asc. For example, the class

ϊ)(wasc)2I, which contains all hypercentral-by-abelian Lie algebras, is a subclass

of £(wasc), and the classes D(wasc)(g Π ^ l ^ and T)(wasc)©(wasc) are subclasses

of £°°(wasc) (Theorem 3.9). The class I>(asc)2l n E(<] )9I, which contains all

hypercentral-by-abelian Lie algebras, is a subclass of £(asc), and the classes

T)(asc)(gn2li)DE(<=3)5I and D(asc)((S n ®), the latter of which contains all
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hypercentral-by-finitely-generated-simple Lie algebras, are subclasses of £°°(asc)

(Theorem 3.10).

In Section 4 we shall first improve [6, Theorem 7] in Theorem 4.1. Secondly

we shall show that various classes are subclasses of £(asc) or fi°°(asc) over any field

of characteristic zero. For example, over any field of characteristic zero the

classes 9l(& n Min-si) and 9l(Qΰι n (£**) are subclasses of £(asc), and the classes

9l(Min-si Π Max-si) and 9l(Max-si Π (51 Π (£#]) are subclasses of £°°(asc) (Theorem

4.3).

In Section 5 we shall show that 2CO(A)<2(A)<2(®-A)9 2co(A)$2O0(A) and

200(A)^2((S-A), where A is any one of the relations wasc and asc (Theorem 5.1).

The author wishes to express his thanks to Professor S. Togo for his valuable

comments in preparing this paper.

1.

Throughout this paper we always consider not necessarily finite-dimensional

Lie algebras over a field I of arbitrary characteristic unless otherwise specified,

and mostly follow [3] for the use of notations and terminology.

Let H be a subalgebra of a Lie algebra L. For an ordinal σ, if is a σ-step

weakly ascendant subalgebra (resp. a σ-step ascendant subalgebra) of L, denoted

by H<σL (resp. if < ] σ L), if there exists an ascending chain (Ha)a^σ of subspaces

(resp. subalgebras) of L such that

(1) H0 = H and Hσ = L,

(2) [#α+i> H]^H« (resp. ifα<i Ha+ί) for any ordinal α < σ ,

(3) Hλ = \JΛ<λ Ha for any limit ordinal λ < σ.

Then the chain (Ha)a^σ is called a weakly ascending series (resp. an ascending

series) from H to L. H is a weakly ascendant subalgebra (resp. an ascendant

subalgebra) of L, denoted by H wasc L (resp. H asc L), if H <σL (resp. H <3σ L)

for some ordinal σ. If H wasc L (resp. H asc L), then there exists the least

ordinal μ such that H <μL (resp. H < i μ L). We call such an ordinal μ the

weakly ascendant index (resp. the ascendant index) of H in L and denote it

by wasc(L: H) (resp. asc(L: H)). if is a weak subideal (resp. a subideal) of L,

denoted by H wsi L (resp. H si L), if H wasc L (resp. if asc L) with wasc(L:

H)<ω (resp. asc(L: H)<ώ).

Let ^ be one of the relations wasc and asc. We introduce the classes

SOtiOd), 9JΪ204) and SOΪOd) of Lie algebras L as follows:

Le 901^) if and only if A(L: H) < 1 whenever HAL;

Le W12(A) if and only if A(L: if) < 2 whenever HAL;

LΈ Wl(A) if and only if A(L: H) < ω whenever HAL
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In [11] SOt̂ asc) and SPΐ(asc) are denoted by 9JΓ and SOί respectively.
We need the closure operation i defined as follows: For a class X of Lie

algebras, X is i-closed if and only if H si L e X implies HeX. Analogously the
closure operation ι(Δ) is defined as follows: For a class X of Lie algebras, X
is i(J)-closed if and only if H A LeX implies HeX. In [2] i(asc) is denoted by
ί. It is clear that the closure operations I and ι(A) are unary operations in the
sense of [8, p. 5]. Hence for any class X of Lie algebras the largest i-closed
(resp. i(J)-closed) subclass of X is well defined and denoted by X1 (resp. 3EI(d))
Then we can easily see that for a Lie algebra L, LeX1 (resp. 3£I(J)) if and only
if H si L (resp. HAL) implies H e l In particular, (51 is defined in [3, p. 66].

LEMMA 1.1. (1) S1*"*) = (51 < <0ί(asc).
(2) © I n έ ^ = δ n B ^ .

PROOF. (1) It suffices to show that Φ1 <9M(asc). Let Le& and H ascL.
There exists a strictly ascending series (Ha)a^σ from H to L. Assume that σ
is an infinite ordinal. Then we can find a limit ordinal λ and a finite ordinal n
such that σ = λ + n. Since Hλ^an Hλ+n = L e©1, we have Hλe0ΰ, so that Hλ = Ha

for some α<λ. This is a contradiction. Hence we have σ<ω and HsiL.
Therefore we obtain L e 9W(asc).

(2) Let L e © ! n E9I. Then by (1) every ascendant 9I-subalgebra of L is
finite-dimensional. Using [3, Corollary 9.3.6 (c)] we have Le% n E2Ϊ. Hence
(S1 Π έ$I< 5 Π E2I. The converse inclusion is trivial.

Let A be one of the relations wasc and asc. In [5] the family of sub-
algebras (resp. subideals) of a Lie algebra Lis denoted by yL(<) (resp. yL(si)).
We similarly denote by yL(A) the family of subalgebras H of L such that HAL.
Then we define the classes 2(A), 2CO(A) and Ά^iA) of Lie algebras Las follows:

L e £04) if and only if <iί, K} e SfL(Δ) whenever H, Ke ^L(A);

L e fi°°(J) if and only if (Hλ: λ e Λ> e &>L{A) whenever {Hλ: λ e A] c ^ L ( J ) ;

L e £«,(J) if and only if n λ e / 1 i f λ e ^ L ( J ) whenever {Hλ: λeΛ}^STL(Δ).

In [5] the classes, defined by replacing A with si in the above definitions, are
denoted by £, £°°, 2^ respectively.

We need the following

LEMMA 1.2. If HAL and KAL, then HnKAL and

Δ(L:H[\K)< max {A(L: H), A(L: K)} .

PROOF. Here we only prove the lemma for the case that A is wasc, since
for the other case it can be proved similarly. Let σ=max{wasc(L: H),
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wasc(L: K)}. Then there are weakly ascending series (ffα)α<;σ from H to L and

(KΛ)a^σ from K to L. It is not hard to show that (Ha Π Ka)a^σ is a weakly

ascending series from H f]K to L. Therefore we have H (]K wasc L with

wasc(L: if f]K)<σ.

For any Lie algebra L, we can regard ^ L ( < ) as a lattice by introducing
the usual lattice structure in it. Then by Lemma 1.2, ^L{A) is a sublattice
(resp. a complete sublattice) of SfL{<) if and only if Ls2{A) (resp. 2°°(A) Π
fi^/d)). So it seems to be interesting to search subclasses of 2(A) or 2CO(A) n
Qn(A). On the other hand, we denote by 3fL((&-A) the family of ©-subalgebras
if of a Lie algebra L such that HAL. Then we define the class £(©-/d) of
Lie algebras L as follows:

L e £(©-J) if and only if <if, X> e ^L(©-^) whenever H,Ke ^L(©-Λ).
Over a field of characteristic zero, it is not known whether the class © is as-
cendantly coalescent, equivalently £(©-asc) = Ό. But over a field of character-
istic p>0, it is known that the class © is not ascendantly coalescent and that
g Π 519^2^ £(©-asc) (cf. [3, Lemma 3.1.1]). It also seems to be interesting to
search subclasses of £(©-Λ). For this purpose we define the class 2*(A)
(resp. 2*((5-A)) of Lie algebras as the largest i(J)-closed subclass of 2(A)
(resp. 2(&-A)) such that for any Lie algebra L, if if, K e &>L(A) (resp. #>L(<S-A))
and J = (H9 K>e2*(A) (resp. 2*(®-A)), then JeS?L(A). Then we have the
following result, which supplements [5, Theorem 2.6].

LEMMA 1.3. (1) 912*(A) < 2(A).
(2)

PROOF. By replacing wsi with A in the proof of [5, Theorem 2.6], we
can prove (1). (2) is proved similarly.

As a relationship between 2(A) (resp. 2*(A)) and 2(0δ-A) (resp. £*(©-J)),
we have

LEMMA 1.4. (1) &w n £(©-4) < £(2l) <
(2) © !^) n £*(©-Λ) < β (j)

PROOF. (1) is trivial. ©«J> n £*(©-^l) is an i(J)-closed subclass of 2(A)
by (1). If H, Ke^L(A) and J=(H9 K} e© 1^) n £*(©-^), then Je#>L(A)
as if, Ke©. It follows that ©!^> n £*(©-^l)<£*(J). Clearly we have
β%d) <£*(©- J).

We denote by Max-wasc (resp. Min-wasc) the class of Lie algebras satisfying
the maximal (resp. minimal) condition for weakly ascendant subalgebras.

We characterize the class £°°(^) in the following proposition corresponding
to [6, Theorem 1].
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PROPOSITION 1.5. Let A be one of the relations wasc and asc. Then we

have

2(A) n (£%d) Max-J) = £°°0d).

In particular,

<31(&*(A) n Max-Λ) < 2™(A).

PROOF. AS in the proof of [5, Lemma 3.3], we can prove that for an £(Λ)-

algebra L, Le fi°°(J) if and only if yL(A) is closed under the formation of unions

of ascending (well-ordered) chains. By using this result and replacing si with

A in the proof of [6, Theorem 1], we can prove the first half of the proposition.

The latter half is immediately deduced from the first half and Lemma 1.3 (1).

A Lie algebra L lies in the class E(<I)$Ϊ (resp. E(O)2Γ) if L has an ascending

ideal series (resp. a descending ideal series) with abelian factors. [10, Theorem 1]

states that if L eέ(<ι)2I then e^
7

L(wasc) = ty
7

L(asc). Therefore we obtain

LEMMA 1.6. (1) If H is any one of the symbols yfl2 and Wl, then

ϊ(asc) n έ(<i)2I<ϊ(wasc).

(2) IfX is any one of the symbols ml9 2, £°° and £«,, then

£(asc) n έ(<i)2l = £(wasc) Π έ(<ι)9I.

Concerning ascendant subalgebras of Lie algebras we know many properties

enough to investigate their joins. However, very little are known concerning

weakly ascendant subalgebras of Lie algebras. In this section we shall

investigate general properties of weakly ascendant subalgebras of Lie algebras.

As in the proof of [2, Lemma 2.1], we can easily show the following

LEMMA 2.1. Let H wasc L, let X be a finite subset of L and let Xl9 X2>

be finite subsets of H. Then there exists an integer n = n(X9 Xu X29..-)>0

such that [X, Xl9 X2,...9 ZM] c H.

We remark that the statements of [2, Corollaries 2.2 and 2.3] also hold for

weakly ascendant subalgebras instead of ascendant subalgebras.

Let A and B be subspaces of a Lie algebra L. Recall that the permutiser

PΛ(B) of B in A is defined as the largest subspace of A permuting with B (cf.

[3, p. 34]). On the other hand, in [2, p. 28] the largest β-invariant subspace

of A is denoted by AB. Particularly if A<L9 then AL is called the core of A in
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L and is usually denoted by CoreL (A). Furthermore, by [2, Lemma 5.2 (1)] we
see that if A<L then AB<a PA(B)<L. Next we consider the case that A is a
subalgebra of L and B is an ̂ -invariant subspace of L containing A. Then we
define

Especially, in [2, p. 7] ̂ 4sL is called the semi-core of A with respect to L. It is
clear that AB o ^4sβ <i A.

[2, Theorem 2.5] states that if HascL then H/HLeLR9l n ESI, where E2I is
the class of Lie algebras having a descending $I-series. On the other hand,
[10, Theorem 4] states that if iίwascL and # e © then H<ωL. We can
generalize both statements in the following

THEOREM 2.2. (1) If H wasc L, then HjHL e LRSR n fe(<ι )8l.

(2) // HwascL and H/HsLe(5, then H<ω L and so # ω < i L.

PROOF. (1) Without loss of generality we may assume that H L =0. Set
F = {F: F< Hand Fe(S} and T=WF e < rF

ω . Clearly T is a subspace off/.
Let xeL and F e J . There is a finite subset X of H such that F = <Z>. By
Lemma 2.1 we can find an integer n = n(x9 X)>0 such that [x,nJf]ci/. Set
F(x) = (X, [x,π Z]>. Then we have F(x) e F and [x,π F] sF(x). It follows that

[x, Fω] c F(χ)«> c T.

Hence we have T<ι L, so that T=0 as HL = 0. Therefore we obtain HeLRffi.
Next we shall show that i]ΓeE(<ι)9l. Let (Mα)α^σ be a weakly ascending

series from H to L. For each ordinal α<:σ, set Ha=HsMct. Then it is not hard
to see that

H0 = H and Hσ = HsL9

Ha+ί < i/α<i H for any ordinal α < σ,

i/λ = r\Λ<λHa for any limit ordinal λ < σ.

For any ordinal α<σ,

IHl Mα + 1 ] s [M α + 1 , 2 i f j s [Mα, JΪJ s if

and so Hl<HΛ+1. Hence we have

HJHa+ j e 21 for any ordinal α < σ.

For each non-zero ordinal β<ω9 set Hσ+β = (HsL)β<a H. Then
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[L, Hσ+ω] s nm^o [L, (HsL)m+2l £ ΓWo lH9m+1 HsL] s (#sL)<° = H σ + ω .
Hence we have Hσ+ω<HL, so that # σ + ω = 0 . Therefore (Ha)a^σ+ω is a
descending ideal series of H with abelian factors. Thus we obtain iί GE(<I)2I.

(2) Since H/HsLe(δ9 we can find a (δ-subalgebra F of H such that H =
F+H s L. Let xeL. Then by the proof of (1), there exists an integer n = n(x, F) >
0 such that [x, „ F] c H. It follows that

Hence we have H<ωL. Using [4, Lemma 2.10] we obtain ϋΓωo L.

Let if wascL and assume that H/HsLe®. Then we can easily see that
H/HsL e Rflt and #//ίL e R91.

Recall that the set of left Engel elements of a Lie algebra L is denoted by e(L).

COROLLARY 2.3. Lei L be a locally finite, non-abelian simple Lie algebra.
Then we have

<#: iίwascL and H#L> = <e(L)>.

PROOF. Let H be a proper weakly ascendant subalgebra of L. Then by
Theorem 2.2 (1) we have HeLRflt. Let xeL and yeH. By Lemma 2.1 there
exists an integer n = n(x, y)>0 such that [ x , j ] e i ί . Hence we have
<[*>/i)0> ^>egriR9 il=gn9 il. Therefore [x,w + my]=0 for some integer m>0.
It follows that y e e(L). Hence H^ e(L) and therefore

<#: HwascL and H^L>< <e(L)>.

The converse inclusion is clear from [10, Lemma 5].

Next we consider under what conditions joins of pairs of weakly ascendant
subalgebras are weakly ascendant. A key lemma for this purpose is the following

LEMMA 2.4. Let H<f>L, K<>σL and J = (H,K}. Assume that there
exists a weakly ascending series (Ha)a^p from H to L such that HΛ is K-
invariant for any a<ρ. Then we have J<σpL.

PROOF. Let (Kβ)β<tσ be a weakly ascending series from K to L. For
each pair (β, α) of ordinals β<σ and α<p, we define the subspace J()Jjα) of L by

J(β,a) ^ ^ α + (#α+l Π Kβ) + K,

where we put Hp + ί=L. Then it is easy to see that

•/«>.«)£ Λo,«+i) = Λσ,«) for any ordinal α < p,
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J(o,λ) = ^ Λ < A J(o,a) for any limit ordinal λ < p .
Let α < p . Then for any β<σ, J(β>a)^J(β+ίta) and

Moreover, for any limit ordinal μ<σ, J(μ,a) = \Jβ<μJ(β,ay Hence (J(β,a)) is a
weakly ascending series from J to L. Therefore we obtain J<σpL.

Now we can prove the second main theorem of this section, which is useful
to search subclasses of fi(wasc).

THEOREM 2.5. Let H<f>L9 K<*L and J = (H,K}. If [if, K]^H, then
J<°f>L.

PROOF. Let (Ha)a^p be a weakly ascending series from H to L. Then
(H%)a£P is a n ascending chain of subspaces of L. Evidently we have

Hξ = H and H* = L.

Let α < p . By induction on n we show that

It is trivial for n=0. Let n>0 and suppose that the result is true for n —1.
By Jacobi identity, since [H, K] c jf9 we have

KHa+Un K], H] s [[H.+!,,- ! K], H, X] + [[H«+1, „-! X],

s [fff, K]+H* = H*.

Therefore we have

[#f+ 1, 5 ] = Σ B S o [[i3.+i,» K], i ϊ ] £ Jϊf.

On the other hand, we can easily see that for any limit ordinal λ<p

Hence (Hξ)a^p is a weakly ascending series from H to L all of whose terms are
IC-invariant. By Lemma 2.4 we obtain J<σpL.

It is not known whether the statement of Theorem 2.5 holds for ascendant
subalgebras instead of weakly ascendant subalgebras. However, Amayo [2]
shows that if HascL, Kasc L and K/Hκ n X e ® then Hκ + KascL. We shall
show that the analogous result holds for weakly ascendant subalgebras.



Joins of weakly ascendant subalgebras of Lie algebras 341

Let H and K be weakly ascendant subalgebras of a Lie algebra L, and let

p be a weakly ascending series from H to L. For each ordinal
set Na = (Ha)κ and Pα = PHχ(

κ) τ h e n we have

LEMMA 2.6. (1) For any ordinal α < p ,

(2) // K/Hκ n Ke (5, then for any limit ordinal λ<ρ

PROOF. (1) Let α < p. Then we have

We use Jacobi identity to see that

It follows that [P α + 1 , # * ] + # * is a K-invariant subspace of Ha. Therefore
we have [Pα + 1 9 H x ] £ivα. It is clear that NacPα.

(2) Suppose that K/ifκ n K e ® . Then there exists a finite subset 7of K
such that J£ = <7>+M where M=Hκf)K. Let A be any limit ordinal <p,
and let x e P λ . By Lemma 2.1 we can find an integer n = n(x, 7)>0 such that
[x,n 7 ]^X. By simple induction on i we have [x,f Y~]^Pλ + K (ΐ>0). Since
[x5i 7] is finite-dimensional, there are finitely many elements Xy + ĵ y {l<j<m^
spanning [x,f 7], where x^ePx and y^eK (0<i<n). Here we may assume
that mo = l, x O i=x and ^ O i=0. Let F be the subspace of L spanned by {xί7:
0<ΐ<n, l<7<m f } and G be the one spanned by [x,n 7] and {j^ : 0<i<n,
l<^j<mi}. Then F and G are finite-dimensional subspaces of P λ and K re-
spectively. Moreover, we have

x e F and xγ s F + Gy.

Since xι7 e [x, f 7] 4- G, we have

[xι7, 7] c χy + G

y e F + Gy.

It follows that [F, 7] £ F + Gγ. Hence we have

Fγ s F + Gy £ F + X.

By using [3, Lemma 2.2.3], we have

ΓFM, X] £ F x = (F y ) M <Ξ (F + K)M c FM 4. X5

that is, FM permutes with K. Since F is a finite-dimensional subspace of Hλ,
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there exists an ordinal α<λ such that F^Ha. Then we have FM^Ha9 so that

xeFM^Pa. Hence Pλ^yja<λPa. The converse inclusion is clear, and Pλ =

The following result corresponds to [2, Lemma 6.5].

PROPOSITION 2.7. Let H<J>L and K<σL, and assume that KjHκ[\Ke<&.

Then we have Hκ<f>+1 L and Hκ + K<σ^+ί^L.

PROOF. Let (Ha\^p be a weakly ascending series from H to L, and let

Na = (Ha)κ and Pa = PHgt(K) (α<p). First we shall construct a weakly ascending

series (Mα)α^p + 1 from Hκ to L such that [Mα, X ] g M α for all α < p + 1 . We

define the terms Mα as follows: For each non-limit ordinal α < p + l,

Na i f p + l # α < ω

Np if α = p + l < ω

# « _ ! if α > ω;

and for each limit ordinal α < p + 1 ,

Then we have [Mα, X] c Mα for all α < p + 1 . It is clear that M o = Hκ and M p + x =

L. Let α < p -f 1. Obviously Mα c Mα + x. If α is not a limit ordinal, then [Mα + x,

Hκ]^Ma by Lemma 2.6 (1). Suppose that α is a limit ordinal. Then by using

Lemma 2.6 we have

[ M α + 1 , Hκ-\ c [Pβ, H J = w^<β [P^, H J £ W ^ N ^ = Mα.

Furthermore, we can easily see that MΛ—\Jβ<aNβ = \Jβ<aMβ. Therefore

(Mα)α^p + 1 is a weakly ascending series from Hκ to L all of whose terms are

X-invariant. Thus we have Hκ <" + 1 L, so that Hκ + K<σ^+1^L by Lemma 2.4.

3.

Throughout this section we always denote by A any one of the relations

wasc and asc. The purpose of this section is to search subclasses of 2((5-A),

2(A), £°°(zd) or £°°(^) n £oo(^) We begin by showing two propositions which

present subclasses of £*(ffi-Λ) or fi*(J).

PROPOSITION 3.1. (1) ΪH^wasc) < £*(wasc).

(2) SKiCasc) < £*(©-asc) and (51 n a»i(asc) < £*(asc).

PROOF. Clearly we have i(A)<mi(A) = mi(A)<2(A). Let H, KeS?L(A)
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and assume that ./ = <#, KyeSR^A). Then # < j J as HAJ. Hence H is
K-invariant. In case that A is wasc, by Theorem 2.5 we have J wasc L. In
case that A is asc, if H, K e (5 then by [2, Lemma 6.5] we have J asc L. It follows
that

< £*(wasc) and SR^asc) < £*(©-asc).

By Lemmas 1.1 (1) and 1.4 (2) we have

(51 n SMiίasc) < £*(asc).

In [5] we considered the classes 9I0 and $XX of metabelian Lie algebras,
which are defined as follows: For a Lie algebra L, Le(H1 if and only if either
Le% or LeW with dim(L/L2)=l; Le2ί 0 if and only if either Le2I, or
L 6 9I1\9I with L/L2 acting on L2 as scalar multiplications. By using [5, Prop-
osition 2.8], it is easy to show that Wl^A) n έ(<i)9I = ̂ l0.

PROPOSITION 3.2. (1) ^R(wasc) n ̂  < ΪR2(wasc) n £*(wasc).
(2) 9K(asc) Π 9ίi < 9Jί2(asc) n £*((5-asc) and g Π ^x < £*(asc).

PROOF. Using [5, Lemma 2.9] we see that for any J e {m{A) n

yχ/1) = {H:H<J2 or H = J} = {H: H^2J}.

Hence it is not hard to see that

3M n α o = m(A) n sii < an2(^) n

Let H,Ke#>L(A) and assume that J = <H, X>e9K(J) nSIi, H < J and
If J<£91 then by (*) J = (H, K}<J2e% a contradiction. Therefore we have
Je2l, so that [if, K] = 0. In case that A is wasc, by Theorem 2.5 we have
JwascL. In case that A is asc, if H, Ke(5 then by [2, Lemma 6.5] we have
J asc L. Thus we obtain

9Jl(wasc) Π 9lt < £*(wasc) and 9K(asc) n 9j1 < £*(©-asc).

It then follows from Lemma 1.4 (2) that

©Kasc) n 9M(asc) n 9i l < £*(asc).

By using Lemma 1.1, we can immediately show that

ff Π « ! = © 1 ( a s c ) Π 2R(asc) n Hi.

We should note that g n « ! < 2K(Λ) n ai^
For subalgebras H and X of a Lie algebra L, the circle product f/oX of H

and X is defined as HoK=lH, K]HUK. We have the following two lemmas
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corresponding to [5, Lemma 2.4].
LEMMA 3.3. Let H wascL, XwascL and / = < # , K). Then the following

conditions are equivalent:
(1) JwascL, (2) <H*>wascL, (3) HoK wasc L.

PROOF. Since HoK^ <H*>o J, it suffices to show that (3) implies (1).
Suppose that HoKw&scL. By using Theorem 2.5 we have <HK> =HoK +
H wasc L, so that J=<H*> + K wasc L.

LEMMA 3.4. Let Hasc L, XascL and J = (H, K}.
(1) Assume that Ke(δ. 77ιen JascL if and only if (Hκ} &sc L.
(2) Assume that H, Xe(5. 77ien JascL ί/αnd 0n/}> i/ HoKascL.

PROOF. (1) The 'only if' part is trivial as {HK}^J. If <#*>ascL,
then by [2, Lemma 6.5] we have

j = <#*> + K = <HK>K + X asc L.

(2) The 'only if part is trivial as HoK*=z J. If HOKSLSCL, then by [2,
Lemma 6.5] we have

<#*> = HoK + H = (HoK)H 4- H asc L.

It follows from (1) that J asc L.

Now we denote by T)(A) (resp. D((5-J)) the class of Lie algebras L such
that HAL whenever H<L (resp. H e © and H<L). We should remark that
the class T>(Δ) coincides with the class of Lie algebras satisfying the idealiser
condition, that is, that L e D(Λ) if and only if H<L implies H<IL(H). However,
for convenience' sake we use the notations D(wasc) and ϊ>(asc) separately. On
the other hand, owing to [2, Theorem 4.6 and Corollary 4.7] we have I>((5-asc) =
(5Ϊ<L91, where ©r is the class of Gruenberg Lie algebras, that is, Lie algebras L
such that <x> asc L for any xeL. Therefore we see that

3 < D(asc) = T)(wasc)

< t)(©-asc) = ©r

< L91 < D(©-wasc) < (E,

where 3 is *he c l a s s °f hypercentral Lie algebras and (£ is the class of Engel Lie
algebras.

PROPOSITION 3.5. (1) D(wasc)2I < £(wasc).
(2) D(asc)2I < £(©-asc) and D(asc)9I n E(<J)2I < £(asc).

PROOF, Let LeD(J)9I and H, K e Sfh(A). Then we have HoK Δ L2 since
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HoK^L2 e T)(A). It follows that HoK A L. In case tbat A is wasc, by Lemma
3*3 we have </f, K} wasc L. In case that A is asc, if H, K e © then by Lemma
3.4 we have <#, K} asc L. Therefore we obtain

< fi(wasc) n £(©-asc).

It then follows from Lemma 1.6 (2) that D(J)9l n E(O)2I < £(asc).

We here define the class S(J) of Lie algebras L as follows:
Le <Z(A) if and only if HAL implies that H = 0 or H = L.

Then the class <Z(A) is a proper subclass of Wl^A). Owing to [7] (or
[2, Theorem 3.8]), we see that the class S(asc) coincides with the class of simple
Lie algebras, denoted by S in [5]. By Corollary 2.3 a locally finite, non-abelian
simple Lie algebra L lies in S(wasc) if and only if e(L) = 0. Hence we have

S(wasc) < S(asc) = ©.

The class S(wasc) is not so large, but is non-trivial. In fact, let f be a formal
real field and let S be a 3-dimensional simple Lie algebra over! with basis {x, y, z]
such that

[x, y\ = z, [y, z] = x, [z, x] ..== y.

Then we can prove that S e S(wasc) and so e(S)=0 (cf. [5, Example 4.3]).

THEOREM 3.6. (1) T>(wasc)S(wasc) < fi°°(wasc).
(2) D(asc)S < £(©-asc) and D(asc)(© n .S) < £°°(asc).

PROOF. Let Leΐ)(A)<5(A). Then there exists a £>(J)-ideal / of L such
that LI I e <5(A). Let H,Ke &>L(Δ) and J = (H, K>. If A is asc, then we assume
that H, X e S . First we shall show that JAL. Since (H+I)/I A L\leS(4
we have H + / = L or H<I. Similarly K+I = L or K<L If H + / = L, then by
modular law

J = j n ( # + / ) = # + ( J n J ) .

Since / e D(J), we have <(J n /)H> = J Π / ί̂ L. It then follows from Lemma 3.3
or 3.4 that JAL. The case K+I = L is similar. Finally if H<I and K<I9

then J<Ie T>(A) and so J J L. Therefore we have

X>(wasc)®(wasc) < £(wasc)

and

D(asc)S = D(asc)S(asc) < £(©-asc).

Since X>(wasc)<£°°(wasc) and β(wasc) < Max-wasc, by Proposition 1.5 we have

£>(wasc)S(wasc) <, fi
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Next we prove that D(asc)(© n S) < £°°(asc). Let L e X>(asc)(© n <S).
Then there exists a D(asc)-ideal J of L such that Ljl e © Π S. Let H, Ke yL(asc)
and J = <H, K). We shall show that JascL. Clearly H+I=L or H<I, and
K+I = L oτ K<I. If H + I = L, then by the above argument we have J =
( J Π /) and J Π / asc L. Moreover,

H/(J Πl)Hf\H = H/H Π / £ L//e (5.

Using [2, Lemma 6.5] we have JascL. The case K + J = L is similar. Finally
if H<I and K</, then J</e£>(asc) and so JascL. Therefore we have Le
£(asc). Since S = S(asc)<Max-asc, by Proposition 1.5 we have Le£°°(asc).
Thus we obtain

D(asc)(©nS)<£°°(asc).

As a consequence of Theorem 3.6 we see that the Lie algebra constructed
in [5, Example 4.3] is an £°°(/d)-algebra. We can present the other type of

s in the following

THEOREM 3.7. (1) D(wasc)(g n 2*i) < £°°(wasc).
(2) D(asc)(g n Six) < £(©-asc) and D(asc)(5 n 9Iχ) Π έ(<ι)9l < £°°(asc).

PROOF. Let L G D(^)(2f n 2Ii). Then there exists a £>(/l)-ideal / of L such
that L//6gnSli. Let H, KeyL(Δ) and J = (H,K>. If A is asc, then we
assume that if, Ke©. We shall show that JΔL. If L/Ie% then it is trivial
from Proposition 3.5. Hence we suppose that L/I e 9I1\3l. It is clear that

(H + /)// A L/I with A(L/I: (//+/)//) < ω.

By using [5, Lemma 2.9], we have

(H + I)/I <(L2 + I)/I or H + I = L.

If H + / = L, then it is easy to see that

j = iί + ( jn/) and <(jn/)"> = J n IAL.

Therefore by Lemma 3.3 or 3.4 we have J A L. If (/ί+/)//<(L2+/)// and
(X+/)// < (L2+/)//, then we have

This implies that HoK<P<L Hence we have HoKAL, so that JΔL by
Lemma 3.3 or 3.4. Therefore we obtain

SIi)^ £(wasc) n £(©-asc;.
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It now follows from Proposition 1.5 that

D(wasc)(g Π Sli) < £°°(wasc).

By Lemma 1.6 (2) we have

n ^ i ) ίl E ( O ) 2 1 < £°°(asc).

By the proof of Theorem 5.1 (3) below, we have Sl^fl^Cd), so that

QooiA). Therefore it seems that the class Q^A) is not large enough to present

many interesting subclasses of £°°(Λ) n fioo(^) However, we can prove

LEMMA 3.8. Min-Λ < £«(/!).

PROOF. Let LeMin-A and {Hλ: λeA}^#>L(A). Set J = Γ\λeΛHλ. We

must show that JeSfL(A). Assume, to the contrary, that JφSfL{A). Let the

elements of A be well ordered, that is, Λ = {α: oc<ρ} for some ordinal p. Then

we construct the descending chain (Ja)a^p of subalgebras of L as follows:

Jo = L, J α = Γ\β<ΛHβ ( 0 < α < p ) .

Since Jp=J^^L(A), there exists the least ordinal μ < p such that

Evidently μ > 0 . If μ is not a limit ordinal, theiί by Lemma 1.2

a contradiction. Hence μ is a limit ordinal. It follows that Jμ = Γ\a<μJΛ.

Since LeMin-A and {Ja: cc<μ}^6^L(A), we can find an ordinal λ<μ such that

Jx< Ja for all α < μ . Then we have Jμ = JλeS?L(A). This is also a contradiction.

Therefore we have J e yL(A)9 so that L e fi^Od).

We now set about showing the main theorems of this section.

THEOREM 3.9. (1) The following are subclasses of fi((5-wasc):

L91, D((5-wasc).

(2) The following are subclasses of £(wasc):

Π 910

(3) The following are subclasses of £°°(wasc):

2*i, 3 ( 5 0 210, DίwascXδnS

3<3(wasc), D(wasc)S(wasc), 9l(Max-<ι

(4) The following are subclasses of £°°(wasc) n fl^C
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9Jϊ2(asc) Π έ(<ι)SI, <5 ίl

( 5 Π 9l)S(wasc), (g Π 9t)(Min-o n Max-<i Π

PROOF. (1) is trivial

(2) By Proposition 3.5 (1) we have

391 < T)(wasc)9T < fi(wasc).

By Propositions 3.1 (1) and 3.2 (1) we have

^ ( w a s c ) < £*(wasc) and 9ϊt(wasc) n Sίi < £*(wasc).

It then follows from Lemma 1.3 (1) that

919IO < flKDΪ^wasc) < £(wasc)

and

0l(9Jl(wasc) Π «!> < £(wasc).

(3) By Theorem 3.7 (1) we have

« i < 3 ( S Π 910 < D(wasc)(5 n-βfO < £°°(wasc).

By Theorem 3.6 (1) we have

3<S(wasc) < D(wasc)S(wasc) < £°°(wasc).

It is immediately deduced from Propositions 1.5 and 3.1 (1) that

9t(Max-o nSOiiίwasc)) < £°°(wasc).

(4) By Theorem 3.10 (4) below, we have $0t2(asc) < £°°(asc) Π £oo(asc).

It follows from Lemma 1.6 (2) that

sDΪ2(asc) n έ(o)3l < fi^ίwasc) n ^ ( w a s c ) .

Using [3, Proposition 8.5.1] we have Min-wasc n T)(wasc) = g Π 91. Therefore

by (3) and Lemma 3.8 we obtain

3r n (^210 = Min-wasc n T>(wasc)(gίΊ 91

< £°°(wasc) n flooίwasc)

and

( 5 Π 9l)S(wasc) < (g n 91) (Min-<i Π Max-<3 n

== Min-wasc n 9l(Max-<]
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< fi°°(wasc) Π £oo(wasc).

THEOREM 3.10. (1) The following are subclasses of £(©-asc):

(5r, t>(asc)2t, D(asc) (g Π M^, 3®, D(asc)S,

9l(aK(asc) n «l,),

(2) The following are subclasses of

X>(asc)2I n

n a»i(asc)) f (gf n

(3) The following are subclasses of £°°(asc):

3 ( ® n S ) , Φ(a

9l(Max-<3 n & n SRiίasc)), ( 5 D 91)(Max-<i n SW^asc)).

(4) The following are subclasses of £°°(asc) D

(5 Π 9l)S, (5 ΓΊ 9l)(Min-<a Π Max-<a n SK^asc)).

PROOF. (1) Since (5r=T)(C5-asc), we have ©r < £((5-asc). By Proposition

3.5 (2) and Theorem 3.7 (2), we have

< £(©-asc) and D(asc)(δ Π ̂ ίx) < £((5-asc).

Moreover, by Theorem 3.6 (2) we have

3 S < t)(asc)S < £(C5-asc).

By Propositions 3.1 (2) and 3.2 (2), we have

SK^asc) < £*(©-asc) and 5DZ(asc) Π 2lx < £*((5-asc).

It then follows from Lemma 1.3 (2) that

SlίDϊ^asc) < £(©-asc) and 9ϊ(9Jl(asc) n Sίij ^ £((S-asc).

(2) Since every hypercentral Lie algebra has an ascending $I-series all of

whose terms are characteristic ideals, it is easy to see that 3$ί^έ(<])21. Hence

by Proposition 3.5 (2) we have

T>(asc)2I n έ(<])2ί < £(asc).
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By Theorem 3.9 (2) and Lemma 1.6 (2), we have

9t2I0 ^ £(wasc) n E21 < fi(asc).

It is directly deduced from Proposition 3.1 (2) and Lemma 1.3 (1) that

9l(& n SW^asc)) < £(asc).

Using [5, Theorem 2.7 (2)], we can easily show that

( 5 n ^aJtiCasc) <<0ί(asc) n (SRSR^asc)) < £(asc).

(3) By Theorem 3.7 (2) we have

2*i < 3 ( S Π Sli) < £(asc)(g n 910 Π E H ) 2 1 < fi°°(asc).

By Theorem 3.6 (2) we have

3(© ΓΊ ®) < D(asc)(© n δ ) < £°°(asc).

Using Proposition 1.5 we can deduce from (2) that

9l(Max-<α D & Π ^ ( a s c ) ) < fi°°(asc)

and

(g Π 9t)(Max-<i Π iOliίasc)) < £°°(asc).

(4) By using [6, Proposition 11], we have

9M2(asc) < »l(asc) ΓΊ £°° Π 2^ < £°°(asc) n £oo(asc).

It is easily deduced from (3) and Lemma 3.8 that

S n ( » « ! ) = Min-asc n D(asc)(5 n 2Ii) ΓΊ E(<α)9ί

< £°°(asc) n ϋ j a s c )

and

( 5 Π .91)© < ( 5 Π 9l)(Min-<3 n Max-α Π SW^asc))

= Min-asc n (gn.9l)(M ax-<3..n9Wi(asc)) ,-

^ f i ^ a s c ) n fijasc).

4.

In this section we shall mainly consider Lie algebras over a field of char-

acteristic zero to search more interesting subclasses of £(05-asc), £(asc), £°°(asc)

or £°°(asc) n £oo(asc).
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In [6, Theorem 7] we proved that over any field of characteristic zero,

(S n (£°°Max-si) < £°°. We shall first improve this result in the following theorem,

which corresponds to [8, Theorem 3.25] and characterizes the class fl00 over a

field of characteristic zero.

THEOREM 4.1. Over any field of characteristic zero,

£°°Max-si = £°°.

PROOF. Let L e £°°Max-si. Then there exists an £°°-ideal I of L such

that L//eMax-si. Let HλsiL(λeΛ) and J=(Hλ: λeΛ>. Set ^" = {T: T<J

and T si L}. First we show that & has a maximal element. To do this we use

Zorn's lemma. Let {Tα: oceA} be a totally ordered subset of J" and set T=

^ΛeΛ Ta. Since Ljl e Max-si, we can find a /? e A such that for all α e ,4

Then we have Γ+ / = Tβ + /, so that

τ = r n (τ>

Since Tα n / si / e £°° for all α 6 A, we have Tn / si L. By using [3, Lemma 2.1.4]

we have T si L, so that Γ e J , Therefore by Zorn's lemma ^" has a maximal

element. Owing to [1, Theorem 1.2], we have J s i L . Thus we obtain Le£°°.

This completes the proof.

Let X be a class of Lie algebras. In [3] X is said to be subjunctive if in

any Lie algebra the join of any pair of X-subideals is always a subideal. We

analogously say that X is ascendantly subjunctive if in any Lie algebra the join

of any pair of ascendant X-subalgebras is always an ascendant subalgebra. Then

we have the following

LEMMA 4.2. // X is an i(asc)-cJosed class of Lie algebras such that (5 n X

is ascendantly subjunctive, then

LX < £*((S-asc) and (51 n X < £*(asc).

PROOF. Let H, Ke^L((5-asc) and J = (H, K}. If LGLX, then there

exists an 3E-subalgebra of L containing J. Since X is i(asc)-closed, we have

H, KeOΰ ΓίX. Therefore we obtain J asc L as (5 Π X is ascendantly subjunctive.

Hence Lϊ<£((5-asc). Similarly if JELX then J a s c L . Since the class hX is

i(asc)-closed, we have LX e £*((5-asc). It now follows from Lemmas 1.1 (1)

and 1.4 (2) that (51 Π X = & n L*<£*(asc).

In view of Lemma 4.2 it is effective for the purpose of giving subclasses of



352 Masanobu HONDA

£(©-asc) or £(asc) to search ascendantly subjunctive subclasses of ©. However,

it does not seem to be easy to do this. Over fields of characteristic p>0 there

is no hope of success (cf. [3, Lemma 3.1.1]). Hence we must restrict ourselves

to fields of characteristic zero. Then by using results of [2] and [3], we have

the following classes as ascendantly subjunctive subclasses of ©:

© Π Min-o, (S1 n (£*, © Π Max-asc Π <£*,

where (£* is the class of Lie algebras L such that L = <e(L)>.

For convenience' sake, we define the left-normed products of classes X

and 9) recursively by

Then we have the following result as the main theorem of this section.

THEOREM 4.3. Over any field of characteristic zero, we have

(1) The following are subclasses of £*(©-asc):

LMin-si, L ( © ' Π C* 1), L(Max-asc ΓΊ C* 1 ) .

(2) The following are subclasses of £*(asc):

Min-si ΓΊ Max-si, ©* Π Min-si, © J Π CE*1.

(3) The following are subclasses of £(©-asc):

9l(LMin-si), 9l(L(®1 n e*1)), «(L(Max-asc n G*1)).

(4) The following are subclasses of fi(asc):

Min-si, β 1 , 5R(©! Π Min-si), S f t ί © 1 ^ * 1 ) -

(5) The following are subclasses of £°°(asc):

Max-asc, 9ί(Min-si Π Max-si), 9t(Max-si Π © ! Π (£*0

(6) The following are subclasses of £°°(asc) Π fi^ίasc):

(Min-si Π SOΪ2(
asc)) Ή (Min-si Π Max-si),

( 5 Π 91) -n (Min-si Π Max-si) (n > 0).

PROOF. (1) Let X be one of the following classes:

Min-si, & n (δ*1, Max-asc Π (£* !.

By [9] we have Min-si=Min-asc<9K(asc). On the other hand, by Lemma 1.1 (1)
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and [11, Theorem 2.1 (2)] we have & U Max-asc ^SOΐ(asc). Hence X is i(asc)-

closed. Using [3, Theorem 3.2.5] or [2, Corollary 6.3 or 6.4], we can easily

see that the class © Π X is ascendantly subjunctive. It then follows from Lemma

4.2 that

L3E < £*(©-asc) and & n X < fi*(asc). (*)

By the first one of (*), (1) is proved.

(2) By the second one of (*), we have

(51 Π Min-si < £*(asc) and (51 Π (E*1 < £*(asc).

Since Min-si <S0t(asc), the class Min-si Π Max-si is i(asc)-closed. Let H,Ke

^L(asc) and J = <#, K}. If L e Min-si Π Max-si, then H, K e Min-o Π Max-<i.

By [3, Theorem 3.2.5] the class Min-<i n Max-<i is ascendantly coalescent.

Hence we have JascL. It follows that Min-si Π Max-si <£(asc). Similarly

if J e Min-si Π Max-si then J asc L. Thus we obtain

Min-si Π Max-si < £*(asc).

(3) is directly deduced from (1) and Lemma 1.3 (2).

(4) By [6, Corollary 5] we have Min-si n & < £. It follows that

Min-si U (51 < 9W(asc) Π fl < fi(asc).

By (2) and Lemma 1.3 (1) we have

9t(© ! Π Min-si) < fi(asc) and 9l(& Π G*1) < fi(asc).

(5) Using [6, Corollary 5] we have

Max-asc < ΪR(asc) Π fi < fi(asc).

It then follows from Proposition 1.5 that

Max-asc < fi°°(asc).

By (2) and Proposition 1.5 we have

9i(Min-si Π Max-si) < fi°°(asc).

and

9l(Max-si fl & Π G*1) < £°°(asc).

(6) By [6, Proposition 11] we have SR 2( a s c)^£°°- Since the class Min-si

is {E, I, Q}-closed, by Theorem 4.1 we can easily show that for any integer n > 0
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(Min-si Π S0fl2(
asc)) •« (Min-si Π Max-si)

= Min-si Π (90ϊ2(
a s c) Ή Max-si)

< Min-si Π £°°

and

( 5 Π 9t) Λ (Min-si Π Max-si)

= Min-si n (51 •„ Max-si)

<> Min-si Π £°°.

Since Min-si <90ί(asc), by Lemma 3.8 we obtain

Min-si n £°° < £°°(asc) Π ^ ( a s c ) .

It is not hard to see that over any field of characteristic zero

& ΓΊ £°°(asc) = (S1 ίl Max-asc,

that is, with respect to (S1 the class £°°(asc) coincides with the class of Lie algebras

satisfying the maximal condition for ascendant subalgebras.

Finally we should note that

® < (S*1 < <£„,.

(See the examples described in [3, p. 340].)

5.

In this section we shall first distinguish between the classes

2ao(A) and £oo(^)» where A is any one of the relations wasc and asc, and secondly

present an example of Lie algebras L such that L e £*(©-asc) Π £°°(asc) Π ^ ( a s c )

and L ^ Min-si.

THEOREM 5.1. Let A be one of the relations wasc and asc.

(1) £%d) < £(J) over any field of characteristic p > 0 .

(2) 2(A) < £(©-J) over any field.

(3) £°°0d) $ 2n(A) over any field.

(4) £ooG4) $• £((5-/4) over any field of characteristic p>0.

PROOF. (1) Let I be a field of characteristic p > 0 and A the (additive)

abelian group of type /?°°. Let X be an abelian Lie algebra over I with basis

{xa: a e A}. For each be A, define δ(b) e Der (X) by
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Set Y=<<5(b): b e ^ > < D e r ( Z ) and construct the split extension L=X+Y of

X by Y, which is the Lie algebra constructed in [5, Example 4.2]. Then we

have L e 2I2 n St as was proved there. Moreover, [5, Remark to Example 4.2]

states that L does not satisfy the idealiser condition, that is, L ^ D ( J ) . By

Proposition 3.5 we have Le2(A). However, since L e g t < ( 5 r < D ( © - J ) , we

have L e T>((δ-A)\Ί)(A)9 so that L <£ £%d). Therefore (1) is proved.

(2) Let L be the Lie algebra constructed in the proof of [3, Lemma 2.1.11],

that is, let L be the split extension of the abelian ideal C = A(&B by the

9t2"
subalgebra J with A and B spanned respectively by {a(P): Pet?} and {b(P):

P e ^ } , where Sf is the set of all infinite sequences P = ( p 0 , pl9...) of integers,

and with J spanned by {xm9 yn, zm>n: m, neZ}. Then the following conditions

are satisfied:

(a) a(P) = (-l)ra(P') and &(P) = (- l ) r 6(P') for any P, P'eSf such that

by a finite number, r, of transpositions P can be transformed into P'

(b) α(P) = b(P)=0 if by a finite number of transpositions P cannot be

transformed into any element of the subset &~ of $f consisting of the strictly

increasing sequences;

(c) For any P e Sf and any m, neZ

Om, * J = [>m> yn~\ = 0, [xm, yj = zm>π,

[α(P), x J = ft(m, P), [b(P), x j = 0,

where (m, P) = (m, pθ9 pl9...) if P = (p0, Pi,--)-

By the proof of [3, Lemma 2.1.11] we see that

H<i3 L, iC <i 3 L, J = {H, K}, IL(J) «= J and J L = L,

where i/ = <xm: me Z} and X = <j;m: me Z}. Hence J is neither an ascendant

nor a descendant subalgebra of L. It follows that L £ fi(asc). Since L e 5ί9l2 ^ $l3>

by Lemma 1.6 (2) we have L<£ £(^ί).

Next we shall show that Le£((5-Λ). Let meZ. We denote by $~m the

subset of F consisting of the sequences which involve m as terms. Set

Then we have Cm <i L and

[Xm, L] = [Xm, A] + [XM, K] £ C

Hence we can easily show that

[ x m , i + 1 L ] c : C m
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It follows that

By (b) we see that for any P e «̂ *m and any n e Z

Therefore we have <x£> e 21. Similarly we have <>>£> e SI. It is clear that

Hence L is the sum of abelian ideals. This implies that Le J5t<©r. Therefore
we have L e £(©-A), so that £(J) < £(©-Λ).

(3) Let A be an abelian Lie algebra with basis {α,-: ieZ}. Define xe
Όeτ(A) by aix = ai^ί (ieZ)9 and construct the split extension L = A + (x} of
A by <x>. Then it is clear that L e 9Ilβ Hence by Theorems 3.9 (3) and 3.10 (3)
we have L e £°°(/d). For each n e Z , set An = <a£: f < n>. Then we have

so that <̂ 4Λ, x) <iω L for any n e Z . But it is not hard to show that

Hence L^fi^asc) and therefore L^Ά^A) by Lemma 1.6 (2). Thus we obtain

(4) Owing to [3, Lemma 3.1.1], we see that over any field of characteristic
p>0

By Lemma 3.8 we have 3ί^£oo(/0 Therefore (4) is proved.

REMARK. By using the result shown in the proof of Theorem 5.1 (2), we
can easily see that there exists a Lie algebra having a serial (resp. weakly serial [4])
subalgebra which is neither ascendant (resp. weakly ascendant) nor descendant
(resp. weakly descendant [4]). In fact, let L be the Lie algebra constructed
in the proof of [3, Lemma 2.1.11]. Then L is an abelian-by-nilpotent Lie algebra
having a subalgebra J which is neither ascendant nor descendant in L. On the
other hand, by the proof of Theorem 5.1 (2) L is a Fitting algebra. It follows
that L is locally nilpotent. Using [3, Proposition 13.2.4], we see that every
subalgebra of L is a serial subalgebra of L. In particular, J is a serial
subalgebra of L. Since J is not ascendant in L and L is solvable, J is not also a
weakly ascendant subalgebra of L by [10, Theorem 1], Since J is not descendant
in L and L is abelian-by-nilpotent, J is not also a weakly descendant subalgebra
of L by [4, Theorem 4.2].
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Finally we shall construct a Lie algebra which lies in the class £*(©-asc) Π

50ϊ2(asc) and which does not satisfy the minimal condition for subideals.

EXAMPLE 5.2. Let I be a field of characteristic zero. We regard the group Z

of integers as a subgroup of the additive group of I. Let W= iΓz be a generalized

Witt algebra (cf. [3, p. 206]), that is, Wbc a. Lie algebra over ϊ with basis {wf.

i e Z} such that

Oi> Wj] = (i -j)wi+J (i, jeZ).

Then by [3, Theorem 10.3.1] we have We S. Furthermore, it is clear that

W= <w_2, w_ l 5 w l 5 w2>.

Hence we have We © Π <3.

Let A be a vector space over ϊ with basis {αf: ίe Z}. Under the linear map

wf t-^cii (ί e Z), we regard A as the underlying vector space W. Then A is a W~

module with respect to the adjoint action of W. Consider A as an abelian Lie

algebra and construct the split extension L = A+ W oϊ A by W. Since every sub-

space of A is a subideal of L, L does not satisfy the minimal condition for subideals.

By Theorem 3.6 (2) we have

6 ) < £°°(asc).

Moreover, we can prove that L e SO f̂asc)* so that L e £°°(asc) Π Sί^asc) by Theorem

3.10 (4). To do this it is sufficient to show that

^L(asc) = {H: H<A or H = L} = {H: H < 3 2 L } .

Clearly we have {H: H < A or H = L} c {if: H o 2 L} c ^L(asc). Let H e <^L(asc)

and assume that H£A. Then

0 Φ (H + A)IA asc LjA ^ ^ e S = S(asc)

and so H + A=L. Hence we can find an h e H such that vv0 = h mod A. For any

integer i Φ 0, by Lemma 2.1 there exists an integer n = n(z)>0 such that

It follows that αt e H. Therefore we have

{di'.OφieZ} ^ H and L= H + <αo>.

Hence we can find a keH and a n α e ! such that fc = w 1 + α α 0 . Then we have

[w2, fc] = [w2, w j - αOo, w2] = w3 + 2αα2.

By induction on j it is easy to show that
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[w29jk] = Ul)wJ+2 mod Σ ^ i <βι> 0*>l)

By Lemma 2.1 there exists an integer m>0 such that [w2,wfe]eH. Since
Σi^i <#i> £#> we have (m!)wm+2 e iί, so that wm+2eH. It follows that

= [wm+2, α_m_2

Hence aoeH and therefore L=H + (aoy = H. Thus we obtain

or H=L} = {if: if<α2L}

Finally we shall show that L e £*((5-asc). Let ϊ denote the class SIu(L)
of Lie algebras over f, where (L) is the smallest class containing L. Obviously
ϊ<fi((δ-asc). Since c^L(asc) = {H: #<Λί or # = L}, the class X is i(asc)-closed.
Let M be any Lie algebra over I and let H, K e ^M((5-asc). Assume that J =
<if, K}eX, H<J and K < J. If J £ 91, then J is embedded in A, a contradiction.
Hence we have Je9I. By using [2, Lemma 6.5] we have JascM. It follows
that X ̂  £*(©-asc). Therefore we obtain L e fl*(©-asc).
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