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Introduction

Amayo [2] proved that several classes of finitely generated Lie algebras are
ascendantly coalescent, where a class X of Lie algebras is ascendantly coalescent
if in any Lie algebra the join of any pair of ascendant X-subalgebras is always
an ascendant X-subalgebra. On the other hand, T6g6é [10] introduced the
concept of weakly ascendant subalgebras of Lie algebras generalizing that of
ascendant subalgebras. It might be hopeless to search classes X such that in
any Lie algebra the join of any pair of weakly ascendant X-subalgebras is always
a weakly ascendant X-subalgebra, for there exists a Lie algebra in which the
join of a certain pair of 1-dimensional weak subideals is not a weakly ascendant
subalgebra and is non-abelian simple (cf. [4, Example 5.1]). However, in the
recent papers [5] and [6] the author presented various classes of Lie algebras
in which the join of any pair, or any family, of weak subideals (resp. subideals)
is always a weak subideal (resp. a subideal). In this paper we shall investigate
the class L(wasc) (resp. £(asc)) of Lie algebras in which the join of any pair of
weakly ascendant subalgebras (resp. ascendant subalgebras) is always a weakly
ascendant subalgebra (resp. an ascendant subalgebra), and the class 2*(wasc)
(resp. 8°(asc)) of Lie algebras in which the join of any family of weakly as-
cendant subalgebras (resp. ascendant subalgebras) is always a weakly ascendant
subalgebra (resp. an ascendant subalgebra).

Section 2 is devoted to investigating general properties of weakly ascendant
subalgebras of Lie algebras. We shall show as generalizations of [2, Theorem 2.5]
and [10, Theorem 4] that if H wasc L then H/H, € LR N E(<)U (Theorem 2.2
(1)) and that if Hwasc L and H/H,; € ® then H<®L (Theorem 2.2 (2)). Fur-
thermore, we shall show that if H<?L, K<°L and [H, K]=H then H+ K<°°L
(Theorem 2.5).

In Section 3 we shall show that various classes are subclasses of £(4) or
£%(4), where 4 is any one of the relations wasc and asc. For example, the class
D(wasc)2, which contains all hypercentral-by-abelian Lie algebras, is a subclass
of Q(wasc), and the classes D(wasc)(F n A;) and D(wasc)S(wasc) are subclasses
of 2*(wasc) (Theorem 3.9). The class D(asc) N E(<)A, which contains all
hypercentral-by-abelian Lie algebras, is a subclass of £(asc), and the classes
D(asc)(F N AY NE<)A and D(asc)(®G n S), the latter of which contains all
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hypercentral-by-finitely-generated-simple Lie algebras, are subclasses of £2*(asc)
(Theorem 3.10).

In Section 4 we shall first improve [6, Theorem 7] in Theorem 4.1. Secondly
we shall show that various classes are subclasses of £(asc) or £(asc) over any field
of characteristic zero. For example, over any field of characteristic zero the
classes Y®! n Min-si) and N(G! n €,!) are subclasses of L(asc), and the classes
N(Min-si N Max-si) and R(Max-si N ®! n €,!) are subclasses of L*(asc) (Theorem
4.3).

In Section 5 we shall show that 2°(4) < (4) < (®-4), 8°(4) £L2,(4) and
L (4)EL(®-4), where 4 is any one of the relations wasc and asc (Theorem 5.1).

The author wishes to express his thanks to Professor S. T6g6 for his valuable
comments in preparing this paper.

1.

Throughout this paper we always consider not necessarily finite-dimensional
Lie algebras over a field f of arbitrary characteristic unless otherwise specified,
and mostly follow [3] for the use of notations and terminology.

Let H be a subalgebra of a Lie algebra L. For an ordinal g, H is a o-step
weakly ascendant subalgebra (resp. a o-step ascendant subalgebra) of L, denoted
by H<°L (resp. H<1? L), if there exists an ascending chain (H,),<, of subspaces
(resp. subalgebras) of L such that

(1) Hy=H and H,=L,

2) [H,+., HI<H, (resp. H,<1 H,,,) for any ordinal a<a,

(3) H,=\U,<; H, for any limit ordinal A1<o.

Then the chain (H,),., is called a weakly ascending series (resp.an ascending
series) from H to L. H is a weakly ascendant subalgebra (resp.an ascendant
subalgebra) of L, denoted by H wasc L (resp. H asc L), if H<°L (resp. H<1° L)
for some ordinal ¢. If H wasc L (resp. H asc L), then there exists the least
ordinal u such that H<*L (resp. H<a*L). We call such an ordinal u the
weakly ascendant index (resp.the ascendant index) of H in L and denote it
by wasc(L: H) (resp. asc(L: H)). H is a weak subideal (resp. a subideal) of L,
denoted by H wsi L (resp. H si L), if H wasc L (resp. H asc L) with wasc(L:
H)<w (resp. asc(L: H)<w).

Let 4 be one of the relations wasc and asc.~ We introduce the classes
M;(4), M,(4) and M(4) of Lie algebras Las follows: '

Le M,(4) ifand onlyif A(L: H)<1 whenever HAL,;
Le M,(4) if and only if A(L: H) <2 whenever HAL;
LeM(4) ifand onlyif A(L: H)<ow whenever HAL.
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In [117 M, (asc) and Pi(asc) are denoted by I’ and M respectively.

We need the closure operation 1 defined as follows: For a class X of Lie
algebras, X is I-closed if and only if HsiL € X implies He X. Analogously the
closure operation 1(4) is defined as follows: For a class X of Lie algebras, X
is 1(4)-closed if and only if HA L€ X implies He X. In [2] 1(asc) is denoted by
f. It is clear that the closure operations 1 and 1(4) are unary operations in the
sense of [8, p. 5]. Hence for any class X of Lie algebras the largest 1-closed
(resp. 1(4)-closed) subclass of X is well defined and denoted by X' (resp. X(4).
Then we can easily see that for a Lie algebra L, L e X' (resp. X14) if and only
if HsiL (resp. HA L)implies He X. In particular, %! is defined in [3, p. 66].

Lemma 1.1. (1) Glese) = G < M(asc).
(2) ®'nEA = Fn el

Proor. (1) It suffices to show that ®!<M(asc). Let Le ®' and H asc L.
There exists a strictly ascending series (H,),<, from H to L. Assume that o
is an infinite ordinal. Then we can find a limit ordinal A and a finite ordinal n
such that 6=1+n. Since H;<"H,,.,=L e 6!, we have H, € ®, so that H,=H,
for some a<A. This is a contradiction. Hence we have oc<w and HsilL.
Therefore we obtain L € Wi(asc).

(2) Let Le®'nEA. Then by (1) every ascendant U-subalgebra of L is
finite-dimensional. Using [3, Corollary 9.3.6 (c)] we have Le § ne2. Hence
G NEA<SFNEA. The converse inclusion is trivial.

Let A4 be one of the relations wasc and asc. In [5] the family of sub-
algebras (resp. subideals) of a Lie algebra Lis denoted by (L) (resp. &(si)).
We similarly denote by &#;(4) the family of subalgebras H of L such that H 4 L.
Then we define the classes £(4), £°(4) and 2 (4) of Lie algebras Las follows:

L € &(4) if and only if (H, K) € &,(4) whenever H, K € &;(4);
L e 22(4) if and only if (H,: Ae A) € #(4) whenever {H,: A€ A} = % (4);
Leg,(4) if and only if N\, 4 H, € &#;(4) whenever {H,: e A} = &% (4).

In [5] the classes, defined by replacing 4 with si in the above definitions, are
denoted by £, £*, £ respectively.
We need the following

Lemma 1.2. If HAL and KAL, then HNnK AL and
A(L: Hn K) < max {4(L: H), A(L: K)}.

ProoF. Here we only prove the lemma for the case that 4 is wasc, since
for the other case it can be proved similarly. Let o=max{wasc(L: H),
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wasc(L: K)}. Then there are weakly ascending series (H,),<, from H to L and
(Ke<s from K to L. It is not hard to show that (H,nK,),c, is a weakly
ascending series from HNK to L. Therefore we have H n K wasc L with
wasc(L: HnK)<ao.

For any Lie algebra L, we can regard (<) as a lattice by introducing
the usual lattice structure in it. Then by Lemma 1.2, &;(4) is a sublattice
(resp. a complete sublattice) of &, (<) if and only if Le £(4) (resp. 2°(4) n
2.(4)). So it seems to be interesting to search subclasses of £(4) or 22°(4) n
2,(4). On the other hand, we denote by &, (®-4) the family of ®-subalgebras
H of a Lie algebra L such that HA L. Then we define the class 2(®-4) of
Lie algebras L as follows: .

L € 2(®-4) if and only if {H, K> € #(6-4) whenever H, K € &,(%-4).
Over a field of characteristic zero, it is not known whether the class ® is as-
cendantly coalescent, equivalently £(G-asc)=0. But over a field of character-
istic p>0, it is known that the class ® is not ascendantly coalescent and that
T N AN, £ (G-asc) (cf. [3, Lemma 3.1.1]). It also seems to be interesting to
search subclasses of £(®-4). For this purpose we define the class 2*(A)
(resp. 2*(®-4)) of Lie algebras as the largest 1(4)-closed subclass of £(4)
(resp. £(®-4)) such that for any Lie algebra L, if H, K € &;(4) (resp. £(6-4))
and J=(H, K) € £%(4) (resp. £*(®-4)), then Je & (4). Then we have the
following result, which supplements [S, Theorem 2.6].

LemMmA 1.3. (1) ML*(4) < L(4).
(2) NLX(G-4) < L(G-4).

Proor. By replacing wsi with 4 in the proof of [5, Theorem 2.6], we
can prove (1). (2) is proved similarly.

As a relationship between £(4) (resp. £*%(4)) and L(G-4) (resp. 2X(6-4)),
we have

LemMa 14, (1) G4 n 96-4) < 24) < AG-4).
(2) G 2XG-4) < 2*(4) < LHG-4).

ProoF. (1) is trivial. GYX4 n 2*(6-4) is an 1(4)-closed subclass of L2(4)
by (1). If H, Ke%(4) and J=(H, K)e G4 nL*¥(®-4), then Je L (4)
as H, Ke®. It follows that &Y nL¥(B-4)<L*(4). Clearly we have
2¥(4) < L¥(6-4).

We denote by Max-wasc (resp. Min-wasc) the class of Lie algebras satisfying
the maximal (resp. minimal) condition for weakly ascendant subalgebras.

We characterize the class £°(4) in the following proposition corresponding
to [6, Theorem 1].
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PROPOSITION 1.5. Let A be one of the relations wasc and asc. Then we
have

£(4) n (82(4) Max-4) = 22(4).
In particular,
N(L*(4) n Max-4) < 82(4).

PROOF. As in the proof of [5, Lemma 3.3], we can prove that for an 2(4)-
algebra L, Le £*(4) if and only if #;(4) is closed under the formation of unions
of ascending (well-ordered) chains. By using this result and replacing si with
4 in the proof of [6, Theorem 1], we can prove the first half of the proposition.
The latter half is immediately deduced from the first half and Lemma 1.3 (1).

A Lie algebra L lies in the class £(<1) (resp. E(<a)?0) if L has an ascending
ideal series (resp. a descending ideal series) with abelian factors. [10, Theorem 1]
states that if L € (<) then & (wasc)= S (asc). Therefore we obtain

LemMA 1.6. (1) If X is any one of the symbols M, and M, then
X(asc) N E(<=)A < X(wasc).
(2) If X is any one of the symbols M, 8, L2 and L, then
X(asc) n B(<)A = X(wasc) N E(<)U.

2.

Concerning ascendant subalgebras of Lie algebras we know many properties
enough to investigate their joins. However, very little are known concerning
weakly ascendant subalgebras of Lie algebras. In this section we shall
investigate general properties of weakly ascendant subalgebras of Lie algebras.

As in the proof of [2, Lemma 2.1], we can easily show the following

LEMMA 2.1. Let H wasc L, let X be a finite subset of L and let X, X,,...
be finite subsets of H. Then there exists an integer n=n(X, X, X,,...)>0
such that [X, X,, X,,..., X,] € H.

We remark that the statements of [2, Corollaries 2.2 and 2.3] also hold for
weakly ascendant subalgebras instead of ascendant subalgebras.

Let A and B be subspaces of a Lie algebra L. Recall that the permutiser
P,(B) of B in A is defined as the largest subspace of A permuting with B (cf.
[3, p. 34]). On the other hand, in [2, p. 28] the largest B-invariant subspace
of A is denoted by Ap. Particularly if A<L, then A, is called the core of A4 in
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L and is usually denoted by Core; (4). Furthermore, by [2, Lemma 5.2 (1)] we
see that if A<L then Ag<a P,(B)< L. Next we consider the case that A is a
subalgebra of L and B is an A-invariant subspace of L containing A. Then we
define

A = {ae€A: [a, B]c A}.

Especially, in [2, p. 7] A, is called the semi-core of A with respect to L. It is
clear that A<t A< A.

[2, Theorem 2.5] states that if H asc L then H/H; € LR9t N EA, where EU is
the class of Lie algebras having a descending -series. On the other hand,
[10, Theorem 4] states that if HwascL and He® then H<?L. We can
generalize both statements in the following

THEOREM 2.2. (1) If HwascL, then H/H; e LR N E(< ).
(2) If HwascL and H/H,; € ®, then H<® L and so H*< L.

Proor. (1) Without loss of generality we may assume that H; =0. Set
J={F:F< Hand Fe®} and T=\Up.,F®. Clearly T is a subspace of H.
Let xeL and FeZ . There is a finite subset X of H such that F={(X). By
Lemma 2.1 we can find an integer n=n(x, X)>0 such that [x,, X]<H. Set
F(x)=<{X, [x,,X])>. Then we have F(x)e J and [x,, F]< F(x). It follows that

[x, FPl]cs F(x)» = T.

Hence we have T<a L, so that T=0 as H; =0. Therefore we obtain H € LRR.

Next we shall show that Hek(<)U. Let (M,),, be a weakly ascending
series from H to L. For each ordinal <o, set H,=H,)_ . Then it is not hard
to see that

Hy=H and H,=H,,

H,,, < H,< H for any ordinal o < g,

H, = N,<; H, for any limit ordinal 1 < o.
For any ordinal a <o,

[HI, M,+1] s [Myy1,, H 1< M, Hl1< H
and so H2<H,,,. Hence we have

H,H,,,eUN forany ordinal a<o.

For each non-zero ordinal f<w, set H,,z=(H, )< H. Then
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[L, Hot 0] € Nmzo [L, (H)™2] € Nipzo [Hym+1 Holl € (Ho)® = Hotorr
Hence we have H,,,<H;, so that H,,,=0. Therefore (H,),c;+o» iS5 a
descending ideal series of H with abelian factors. Thus we obtain H e k(<a).

(2) Since H/H,; € ®, we can find a ®-subalgebra F of H such that H=
F+H,. LetxeL. Then by the proof of (1), there exists an integer n=n(x, F)>
0 such that [x,, F]= H. It follows that

[x,,H] € [x,,F] + H = H.
Hence we have H<®L. Using [4, Lemma 2.10] we obtain H* <1 L.

Let Hwasc L and assume that H/H,; € ®. Then we can easily see that
H/H; erM and H/H; e RN.
Recall that the set of left Engel elements of a Lie algebra L is denoted by e(L).

COROLLARY 2.3. Let L be a locally finite, non-abelian simple Lie algebra.
Then we have

(H: HwascL and H#L) = {e(L)).

Proor. Let H be a proper weakly ascendant subalgebra of L. Then by
Theorem 2.2 (1) we have HeLRR. Let xeL and ye H. By Lemma 2.1 there
exists an integer n=n(x, y)>0 such that [x,,yleH. Hence we have

%0y, D eFNRN=FNNRN. Therefore [x,,,,y]=0 for some integer m=>0.
It follows that y e e(L). Hence H < e(L) and therefore

{(H: Hwasc L and H#L )< {e(L)).
The converse inclusion is clear from [10, Lemma 5].

Next we consider under what conditions joins of pairs of weakly ascendant
subalgebras are weakly ascendant. A key lemma for this purpose is the following

LEmMMmA 2.4, Let H<’L, K<°L and J={H,K). Assume that there
exists a weakly ascending series (H,),c, from H to L such that H, is K-
invariant for any a<p. Then we have J<°’L.

Proor. Let (Kj)pe, be a weakly ascending series from K to L. For
each pair (B, ) of ordinals f< ¢ and a< p, we define the subspace J;,, of L by

J(ﬂ,a) = Ha + (H¢+1 n KB) + K,
where we put H,,;=L. Then it is easy to see that
J(o’o) = J and J(O,p) = L,

J(o,a) < J(0,¢+1) = J(a,a) fOI' any Ordinal o< P,
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Jo,5 = Ya<1J 0y for any limit ordinal 4 < p.
Let a<p. Then for any <0, J3,SJ(p+1,0 and
[J(ﬁ+1,¢)’ J1=[H,+(H,+1 N Kﬁ+l)+K’ H+K]
€SH,+[H, 1 NKpyy, K]+ K
SH,+H, 1 NKp) + K =Jg,.

Moreover, for any limit ordinal u<e, Jy, . =\Up<,J50. Hence (Jp,) is a
weakly ascending series from J to L. Therefore we obtain J <??L.

Now we can .prove the second main theorem of this section, which is useful
to search subclasses of 2(wasc). :

THEOREM 2.5. Let H<’L, K<°L and J=<(H, K>. If [H, K]<H, then
J<erL.

Proor. Let (H,),c, be a weakly ascending series from H to L. Then
(HX),<, is an ascending chain of subspaces of L. Evidently we have

Hf=H and HX=1L.
Let a<p. By induction on n we show that
[[H¢+1mK]3 H] c Hf (nZO)

It is trivial for n=0. Let n>0 and suppose that the result is true for n—1.
By Jacobi identity, since [H, K] < H, we have

[[Ha+19n K]’ H] = [[Ha+l’n—-1 K]’ H’ K] + [[Ha+1’ n-1 K]9 H]
c [HX, K] + HX = HX,
Therefore we have
[H§+1’ H] = ano [[Ha+lsn K]a H] < Hf'
On the other hand, we can easily see that for any limit ordinal A< p
Hf = Ua<l ng('

Hence (HX),<, is a weakly ascending series from H to L all of whose terms are
K-invariant. By Lemma 2.4 we obtain J<°?L.

It is not known whether the statement of Theorem 2.5 holds for ascendant
subalgebras instead of weakly ascendant subalgebras. However, Amayo [2]
shows that if Hasc L, Kasc Land K/Hx N Ke ® then Hy+KascL. We shall
show that the analogous result holds for weakly ascendant subalgebras.



Joins of weakly ascendant subalgebras of Lie algebras 341

Let H and K be weakly ascendant subalgebras of a Lie algebra L, and let
(H).<, be a weakly ascending series from H to L. For each ordinal a<p,
set N,=(H,)x and P,=Py (K). Then we have

LeMMA 2.6. (1) For any ordinal a<p,
[Pesr1, HK] € N, € P,
(2) If K/Hxn K e ®, then for any limit ordinal 1<p
Py =\Us<cs Py
ProoF. (1) Let a<p. Then we have
[Py+1, Hg] < [Huvy, H] = H,.
We use Jacobi identity to see that
[[Py+1, Hk], K] = [Py4y+K, Hg] + [Pysys Hg] S [Payy, Hi] + Hg.

It follows that [P,.,, Hx]+Hg is a K-invariant subspace of H, Therefore
we have [P,,, Hx]=N,. Itis clear that N,cP,.

(2) Suppose that K/Hyn Ke ®. Then there exists a finite subset Y of K
such that K=(Y)>+M where M=HynK. Let A be any limit ordinal< p,
and let xe P,. By Lemma 2.1 we can find an integer n=n(x, Y)>0 such that
[x,, YJ=K. By simple induction on i we have [x,; Y]J=P,+K (i>0). Since
[x,; Y] is finite-dimensional, there are finitely many elements x;;+ y;; (1<j<m;)
spanning [x,; Y], where x;;€ P, and y;;e K (0<i<n). Here we may assume
that my=1, Xxo; =x and yo;=0. Let F be the subspace of L spanned by {x;;:
0<i<n,1<j<m;} and G be the one spanned by [x,, Y] and {y;;: 0<i<n,
1<j<m;}. Then F and G are finite-dimensional subspaces of P; and K re-
spectively. Moreover, we have

xeF and xY < F + GY.
Since x;; € [x,; Y]+ G, we have
[x;;, Y] = xY + GY = F + G".
It follows that [F, Y] F+GY. Hence we have
FYcF+GYcF+ K.
By using [3, Lemma 2.2.3], we have
[FM,K] < FK = (FY)M < (F+K)M < FM + K,

that is, FM permutes with K. Since F is a finite-dimensional subspace of H,,
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there exists an ordinal «a<4 such that F< H,. Then we have F¥c H,, so that
xeFMcP,. Hence P,=\/,.; P,, The converse inclusion is clear, and P;=

The following result corresponds to [2, Lemma 6.5].

PROPOSITION 2.7. Let H<’L and K<°L, and assume that K/[Hx N Ke®.
Then we have Hy<P*1 L and Hy+K <@+,

Proor. Let (H,),c, be a weakly ascending series from H to L, and let
N,=(H)x and P,=Py (K) (¢<p). First we shall construct a weakly ascending
series (My),<,+1 from Hg to L such that [M,, K] M, for all a<p+1. We
define the terms M, as follows: For each non-limit ordinal a<p+1,

N, if p+l#ta<ow

M,=1{ N, if a=p+l<ow

N,_, if a>w;
and for each limit ordinal a<p+1,
Ma = Uﬂ<¢ Nﬁ.

Then we have [M,, K]= M, foralla<p+1. Itisclearthat Mo=Hgand M,, =
L. Leta<p+1. Obviously M,=M,,,. Ifaisnota limit ordinal, then [M,, ,,
Hyle M, by Lemma 2.6 (1). Suppose that o is a limit ordinal. Then by using
Lemma 2.6 we have

[M,,1, Hg] S [Py, Hy] = \Up<o [P, Hg] S \Ugeu Ng = M,,.

Furthermore, we can easily see that M,=\Uz.,Ny=\Ugc, M. Therefore
(Mp).<,+1 1s @ weakly ascending series from Hy to L all of whose terms are
K-invariant. Thus we have Hg <P*1L, so that Hy + K <°»*DL by Lemma 2.4.

3.

Throughout this section we always denote by 4 any one of the relations
wasc and asc. The purpose of this section is to search subclasses of L2(®-4),
£(4), 22°(4) or 22°(4)n L,(4). We begin by showing two propositions which
present subclasses of £*(®-4) or £*(4).

ProposITION 3.1. (1) M, (wasc) < L*(wasc).
(2) M, (asc) < L*(G-asc) and B! n M, (asc) < L*(asc).

Proor. Clearly we have 1(4)M,(4)=MM,(4)<L(4). Let H, Ke S (4)
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and assume that J=(H, K)eM,(4). Then H<J as HAJ. Hence H is
K-invariant. In case that 4 is wasc, by Theorem 2.5 we have J wasc L. In
case that 4 is asc, if H, K € ® then by [2, Lemma 6.5] we have J asc L. It follows
that

M, (wasc) < L8¥(wasc) and IM,(asc) < L*¥(G-asc).
By Lemmas 1.1 (1) and 1.4 (2) we have
6! n M, (asc) < L*(asc).

In [5] we considered the classes A, and A, of metabelian Lie algebras,
which are defined as follows: For a Lie algebra L, L €, if and only if either
LeU, or LeW? with dim(L/[?)=1; LeN, if and only if either Le, or
LeA,\A with L/L? acting on L? as scalar multiplications. By using [5, Prop-
osition 2.8], it is easy to show that IM,(4) n &(<)A = A,. '

PrROPOSITION 3.2. (1) M(wasc) N A, < M,(wasc) N L*(wasc).
2) M(asc)n A, < M,(asc) n L*(G-asc) and Fn A, < L*(asc).

ProoF. Using [5, Lemma 2.9] we see that for any J € (IR(4) n A )\A
&) ={H: H<J? or H=J} = {H: H<?J}. (*)
Hence it is not hard to see that
(AR NAy) = M) n Uy <My(4) n L(4).

Let H, K € #(4) and assume that J=C(H, K> e M(ANA,, H<J and K<J.
If J&A then by (x) J=(H, K)<J?e U, a contradiction. Therefore we have
JeU, so that [H, K]=0. In case that 4 is wasc, by Theorem 2.5 we have
Jwasc L. In case that 4 is asc, if H, Ke ® then by [2, Lemma 6.5] we have
Jasc L. Thus we obtain

M(wasc) N A, < L*(wasc) and ml(asc)‘n A, < L¥(G-asc).
It then follows from Lemma 1.4 (2) that
Glase)'n P(asc) N A, < L*(asc).
By using Lemma 1.1, we can immediately show that -
g n A = GEso n Mase) n A,.

We should note that. & n U, < M(4) n A,. _
For subalgebras H and K of a Lie algebra L, the circle product HoK of H
and K is defined as HoK=[H, KJ#'K, We have the following two lemmas
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corresponding to [5, Lemma 2.4].
LemMma 3.3. Let Hwasc L, Kwasc L and J=(H, K). Then the following

conditions are equivalent:
(1) JwascL, (2) (HX)wascL, (3) HoKwascL.

Proor. Since HoK < (HX) < J, it suffices to show that (3) implies (1).
Suppose that HoK wasc L. By using Theorem 2.5 we have (HX) =HoK+
H wasc L, so that J=(HX)+ K wasc L.

LEMMA 3.4. Let Hasc L, KascL and J={H, K).
(1) Assume that Ke®. Then JascL if and only if (HX) asc L.
(2) Assume that H, Ke ®. Then JascL if and only if HoK asc L.

ProoF. (1) The ‘only if’ part is trivial as <H )< J. If {(HX)ascL,
then by [2, Lemma 6.5] we have
J =<HXY + K = {HX); + K asc L.
(2) The ‘only if* part is trivial as HoK<a J. If HoK asc L, then by [2,
Lemma 6.5] we have
(HX) = HoK + H = (HoK)y + H asc L.
It follows from (1) that J asc L.

Now we denote by D(4) (resp. D(GB-4)) the class of Lie algebras L such
that H A L whenever H<L (resp. He® and H<L). We should remark that
the class D(4) coincides with the class of Lie algebras satisfying the idealiser
condition, that is, that L € D(4) if and only if H <L implies H<I;(H). However,
for convenience’ sake we use the notations D(wasc) and D(asc) separately. On
the other hand, owing to [2, Theorem 4.6 and Corollary 4.7] we have D(6-asc)=
Gr<LN, where Gr is the class of Gruenberg Lie algebras, that is, Lie algebras L
such that (x) asc L for any xe L. Therefore we see that

3 < D(asc) = D(wasc)
< D(G-asc) = Gr
< LI < D(G-wasc) < €,

where 3 is the class of hypercentral Lie algebras and € is the class of Engel Lie
algebras.

PropoOSITION 3.5. (1) D(wasc)U < L(wasc).
(2) D(asc)U < L(G-asc) and D(asc)WU N E(<)UA < L(asc).

PrROOF, Let Le D(4)U and H, K € &#(4). Then we have HoK 4 L? since
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HoK<LL?2e®(4). It follows that HoK A L. In case that 4 is wasc, by Lemma
3:3 we have (H, K) wasc L. In case that 4 is asc, if H, K € ® then by Lemma
3.4 we have {H, K) asc L. Therefore we obtain

D(AA < L(wasc) N ¥(G-asc).
It then follows from Lemma 1.6 (2) that D(4)UA n £(<)A < L(asc).

We here define the class ©(4) of Lie algebras L as follows:

L e &(4) if and only if H 4 L implies that H=0 or H=L.
Then the class ©&(4) is a proper subclass of M,(4). Owing to [7] (or
[2, Theorem 3.8]), we see that the class S(asc) coincides with the class of simple
Lie algebras, denoted by & in [5]. By Corollary 2.3 a locally finite, non-abelian
simple Lie algebra L lies in &(wasc) if and only if ¢(L)=0. Hence we have

S(wasc) < S(asc) = S.

The class S(wasc) is not so large, but is non-trivial. In fact, let f be a formal
real field and let S be a 3-dimensional simple Lie algebra over  with basis {x, y, z}
such that

[x, 1=z [yz]=x [z x]=y. _
Then we can prove that S € S(wasc) and so ¢(S)=0 (cf. [5, Example 4.3]).

THEOREM 3.6. (1) D(wasc)S(wasc) < L2(wasc).
2) D(asc)S < LG-asc) and D(asc)(® n S) < L2(asc).

ProOF. Let LeD(4)S(4). Then there exists a D(4)-ideal I of L such
that L/I e S(4). Let H, K € #;(4) and J={H, K). If 4is asc, then we assume
that H, Ke ®. First we shall show that JA L. Since (H+1)/I 4 L/I € S(4),
we have H+I=L or H<I. Similarly K+I=L or K<I. If H+I=L, then by
modular law

J=JnH+D)=H+Jn.

Since I € D(4), we have (JnI)H>=JnIAL. 1t then follows from Lemma 3.3
or 3.4 that JAL. The case K+I=L is similar. Finally if H<I and K<I,
then J<Ie®D(4) and so J 4 L. Therefore we have

D(wasc)S(wasc) < £(wasc)
and
D(asc)S = D(asc)S(asc) < L(G-asc).
Since D(wasc) < £2(wasc) and S(wasc) < Max-wasc, by Proposition 1.5 we have

D(wasc)S(wasc) < L2(wasc).
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Next we prove that D(asc)(®G nS) < L%(asc). Let L eD(asc)(® n S).
Then there exists a D(asc)-ideal I of Lsuchthat L/Ie®nS. Let H, K € &, (asc)
and J={H, K). We shall show that JascL. Clearly H+I=L or H<I, and
K+I=L or K<I. If H+I=L, then by the above argument we have J=H +
(JnI)and JnlIascL. Moreover,

HIUnDynH=HHNI=L/Ie6.

Using [2, Lemma 6.5] we have Jasc L. The case K+I=Lis similar. Finally
if HLI and K<I, then J<IeD(asc) and so Jasc L. Therefore we have L e
L(asc). Since S=S(asc)< Max-asc, by Proposition 1.5 we have L e £®(asc).
Thus we obtain

D(asc) (G n S) < L*(asc).

As a consequence of Theorem 3.6 we see that the Lie algebra constructed
in [5, Example 4.3] is an 2*(A4)-algebra. We can present the other type of
2%(4)-algebras in the following

THEOREM 3.7. (1) D(wasc)(F nA,) < L2(wasc).
(2) D(asc)(Fn A, < L®-asc) and D(asc)(F N A,) N E<)A < L>(asc).

ProoF. Let LeD(AXF N A;). Then there exists a D(4)-ideal I of L such
that L/TeFnA,. Let H, Ke L (4) and J=(H, K). If 4 is asc, then we
assume that H, Ke . We shall show that JAL. If L/IeN, then it is trivial
from Proposition 3.5. Hence we suppose that L/I € A,\A. It is clear that

(H+DIAL|I with A(L/I: (H+D/I) < o.
By using [5, Lemma 2.9], we have
(H+D/I < (L*+D]I or H+1=L.
If H+I=L, then it is easy to see that
J=H+Unl) and {(JNDH>=JnI4L.

Therefore by Lemma 3.3 or 3.4 we have JAL. If (H+I)/I<(L?+1I)/I and
(K+D/I<(L?+1)/I, then we have -

(J+DJI < (L2+ID)Ieq.

This implies that HoK<J?<I. Hence we have HoK AL, so that JAL by
Lemma 3.3 or 3.4. Therefore we obtain

DA(FnYU,) < Kwasc) N L(G-asc).
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It now follows from Proposition 1.5 that
D(wasc)(F n A,) < L*°(wasc).
By Lemma 1.6 (2) we have
Dasc)(Fn A, n B=)A < 8%(asc).

By the proof of Theorem 5.1 (3) below, we have U, £2_(4), so that AF, £
8.(4). Therefore it seems that the class £.,(4) is not large enough to present
many interesting subclasses of 2°(4) n £,.(4). However, we can prove

Lemma 3.8. Min-4 < 8 (4).

ProoOF. Let LeMin-4 and {H;: Ae A} =& (4). Set J=N,..H,. We
must show that Je #;(4). Assume, to the contrary, that J& & (4). Let the
elements of A be well ordered, thatis, A={a: a<p} for some ordinal p. Then
we construct the descending chain (J,),<, of subalgebras of L as follows:

J0=L, Ja= /\p<¢Hp (0<0t$p).

Since J,=J¢& & (4), there exists the least ordinal u < p such that J, & #(4).
Evidently u>0. If uis not a limit ordinal, then by Lemma 1.2

JI‘ = J[t—l n Hu—l EyL(A),

a contradiction. Hence p is a limit ordinal. It follows that J,=/N,<, J,
Since L e Min-4 and {J,: a<pu} < &;(4), we can find an ordinal A<y such that
J,<J foralla<pu. Then we have J,=J,e€ &,(4). Thisis also a contradiction.
Therefore we have J € &(4), so that L € 8_(4).

We now set about showing the main theorems of this section.

THEOREM 3.9. (1) The following are subclasses of 2(®-wasc):
LR, D(G-wasc).
(2) The following are subclasses of ﬁ(\&asé):
3A, D(wasc)A, NA,;, N(MV(wasc)n 91_1), NI (wasc).
(3) The following are subclasses of 2*(wasc):
Ay, J@EF A, D(wase)(FnAy),
3S(wasc), D(wasc)S(wasc), N(Max-<an M, (wasc)).

(4) The following are subclasseés of £2(wasc) N £, (wasc):
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My(asc) N B(<)A, F n (NA),
(& n W)S(wasc), - (& n N)(Min-<t n Max-<1 n M (wasc)).

PrOOF. (1) is trivial.
(2) By Proposition 3.5 (1) we have

3UA < D(wasc)WU < L(wasc).

By Propositions 3.1 (1) and 3.2 (1) we have
M, (wasc) < L*¥(wasc) and M(wasc) N A, < L¥(wasc).

It then follows from Lemma 1.3 (1) that

NRA, < NM, (wasc) < L(wasc)
and

St(iﬂl(ﬁasc) n A, < Lwasc).

(3) By Theorem 3.7 (l)lwe have
A, < 3(F 0 A, < D(wase) (F N A,) < L2(wasc).
By Theorem 3.6 (1) we have
JS(wasc) < D(wasc)S(wasc) < L8*(wasc).
It is immediately deduced from Propositions 1.5 and 3.1 (1) that
N(Max-<a n M, (wasc)) < L2(wasc).

(4) By Theorem 3.10 (4) below, we have Mi,(asc) < L%(asc)n L (asc).
It follows from Lemma 1.6 (2) that

M, (asc) N B(<)A < L%(wasc) N L(wasc).

Using [3, Proposition 8.5.1] we have Min-wasc N D(wasc)=F N N. Therefore
by (3) and Lemma 3.8 we obtain

&N (RA,) = Min-wasc N D(wasc)(Fn A,)
< 2%(wasc) N L, (wasc)
and
(F N ®)S(wasc) < (F N N)(Min-<a n Max-<a n M, (wasc))
= Min-wasc N N(Max-< n M, (wasc))
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< g%(wasc) N L, (wasc).
THEOREM 3.10. (1) The following are subclasses of {(®-asc):

Gr, D(asc)WU, D(asc)(FnA), IS, D(asc)S,
N(M(asc) N A,), NM,(asc).

(2) The following are subclasses of L(asc):
3A, D(asc)AU n E<)A,
NA,, NG nM,(asc)), (Fn MM, (asc).
(3) The following are subclasses of 2*(asc):

Ay, I@FnAy, Dasc)(FnAy) n <),
3G nS), Dsc)(Gn),
N(Max-<a n G' n M, (asc)), (Fn N)(Max-< n M,(asc)).
(4) The following are subclasses of 2%(asc) N £(asc):
M, (asc), 8' nMA,),
(FnRES, (FnN)(Min-<s n Max-<1-nIMN,(asc)).

Proor. (1) Since Gr=D(G-asc), we have Gr < &(G-asc). By Proposition
3.5 (2) and Theorem 3.7 (2), we have

D(asc)UA < L(G-asc) and D(asc)(F N A,) < L(G-asc).
Moreover, by Theorem 3.6 (2) we have
38 < D(asc)S < L(G-asc).
By Propositions 3.1 (2) and 3.2 (2), we have
M, (asc) < L¥(G-asc) and MW(asc) N A, < L*¥(G-asc).
It then follows from Lemma 1.3 (2) that
9, (asc) < H(G-asc) and R(M(asc) N UA,) < LG-asc).

(2) Since every hypercentral Lie algebra has an ascending -series all of
whose terms are characteristic ideals, it is easy to see that JW<¥(<)A. Hence
by Proposition 3.5 (2) we have '

JUA < Dasc)WU n E(<)UA < L(asc).
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By Theorem 3.9 (2) and Lemma 1.6 (2), we have
NA, < Lwasc) N EA < L(asc).
It is directly deduced from Proposition 3.1 (2) and Lemma 1.3 (1) that
N(G' n M, (asc)) < L(asc).
Using [5, Theorem 2.7 (2)], we can easily show that
(F N M, (asc) <P(asc) N (NIM,(asc)) < L(asc).
(3) By Theorem 3.7 (2) we have
WU, < J@FnA) < D(asc)(Fn Ay n E(<)A < L2(asc).
By Theorem 3.6 (2) we have
3G N S) < D(asc)(G N S) < L%(asc).
Using Propositibn 1.5 we can deduce from 2 thaf
Q(Max-é 'n @' n Ml(asc)) -g ﬁ“’(asc)
and '
(3 n N)(Max-< n M, (asc)) < 2°°(asc)‘.'
(4) By using [6, Proposition 11], we have
M,(asc) < M(asc) N 2 n L, < L=(asc) N L (asc).
It is easily deduced from (3) and Lemma 3.8 that
& N (NA,) = Min-asc n D(asc)(Fn A,) N E(<)A
< 2%(asc) N L,(asc)
and
(FNNS < (Fn N)(Min-< N Max-<a n M, (asc))
= Min-asc n (& n.9N) (Max-<.n M, (asc)) -
< £%(asc) N L, (asc).

4.

In this section we shall mainly consider Lie algebras over a field of char-
acteristic zero to search more interesting subclasses of £(®-asc), L(asc), £*(asc)
or £%(asc) N L(asc).
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In [6, Theorem 7] we proved that over any field of characteristic zero,
€ n (8°Max-si)< 2°. We shall first improve this result in the following theorem,
which corresponds to [8, Theorem 3.25] and characterizes the class £* over a
field of characteristic zero.

THEOREM 4.1. OQver any field of characteristic zero,
L°Max-si = 2~

ProOF. Let L ef®Max-si. Then there exists an 2*-ideal I of L such
that L/Ie Max-si. Let H;siL(AeA) and J=C(H;: AeA). Set 7={T: T<J
and Tsi L}. First we show that 7 has a maximal element. To do this we use
Zorn’s lemma. Let {T,: xe A} be a totally ordered subset of 7 and set T=
\Ugea T,.  Since L/I € Max-si, we can find a € A such that for all a € A

(T +D/I < (Tz+ DI
Then we have T+1=Tp+1, so that

Since T, nIsil e L® for all € A, we have TnIsiL. By using [3, Lemma 2.1.4]
we have T si L, so that T €9 . Therefore by Zorn’s lemma J has a maximal
element. Owing to [1, Theorem 1.2], we have Jsi L. Thus we obtain L € 8%,
This completes the proof.

Let X be a class of Lie algebras. In [3] X is said to be subjunctive if in
any Lie algebra the join of any pair of X-subideals is always a subideal. We
analogously say that X is ascendantly subjunctive if in any Lie algebra the join
of any pair of ascendant X-subalgebras is always an ascendant subalgebra. Then
we have the following ‘

LemMa 4.2. If X is an 1(asc)-closed class of Lie algebras such that & n X
is ascendantly subjunctive, then

LX < 2%(®-asc) and 6! n X < L¥(asc).

Proor. Let H, Ke ¥ (®-asc) and J=(H,K). If LeLX, then there
exists an X-subalgebra of L containing J. Since X is I(asc)-closed, we have
H, Ke®nX. Therefore we obtain Jasc L as & n X is ascendantly subjunctive.
Hence LX< 2(®-asc). Similarly if JeLX then JascL. Since the class LX is
1(asc)-closed, we have LX e @*(®-asc). It now follows from Lemmas 1.1 (1)
and 1.4 (2) that &' n X=G6"!nLX < L*(asc).

In view of Lemma 4.2 it is effective for the purpose of giving subclasses of
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2(G-asc) or L(asc) to search ascendantly subjunctive subclasses of . However,
it does not seem to be easy to do this. Over fields of characteristic p>0 there
is no hope of success (cf. [3, Lemma 3.1.1]). Hence we must restrict ourselves
to fields of characteristic zero. Then by using results of [2] and [3], we have
the following classes as ascendantly subjunctive subclasses of G :

® n Min<, &!'n €,, & n Max-asc n €,,

where €, is the class of Lie algebras L such that L={e(L)).
For convenience’ sake, we define the left-normed products of classes %

and 9 recursively by
x'O‘Z):‘{a x'n+1‘l)=(x'ns!))?) (nZO)'

Then we have the following result as the main theorem of this section.

THEOREM 4.3. Over any field of characteristic zero, we have
(1) The following are subclasses of 2*(®-asc):

LMin-si, L(®'n E.l), L(Max-ascn E€,l).
(2) The following are subclasses of £*(asc):
Min-si N Max-si, ®!' n Min-si, ®! n €,
(3) The following are subclasses of 2(®-asc):
N(LMin-si), NAL(G N E.Y)), NR(L(Max-ascn E.l)).
(4) The following are subclasses of £(asc):
Min-si, 6!, RN(G!n Min-si), R(G'nE,Y).
(5) The following are subclasses of 2*(asc):
Max-asc, N(Min-si N Max-si), (Max-sin G!'nE,r).
(6) The following are subclasses of £*(asc) N L(asc):
(Min-si n M, (asc)) -, (Min-si N Max-si),
(&N N).,(Min-si n Max-si) (n=>0).
Proor. (1) Let X be one of the following classes:
Min-si, ®!' n €,!, Max-asc N €L

By [9] we have Min-si=Min-asc< Pt(asc). On the other hand, by Lemma 1.1 (1)
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and [11, Theorem 2.1 (2)] we have 6! U Max-asc<MM(asc). Hence X is 1(asc)-
closed. Using [3, Theorem 3.2.5] or [2, Corollary 6.3 or 6.4], we can easily
see that the class ® n X is ascendantly subjunctive. It then follows from Lemma
4.2 that

LX < 8*%(®-asc) and G! n X < 8*(asc). (*)

By the first one of (x), (1) is proved.
(2) By the second one of (x), we have

®! N Min-si < 8*(asc) and 6! n €,! < L*(asc).

Since Min-si <M(asc), the class Min-si N Max-si is 1(asc)-closed. Let H, Ke
& (asc) and J={H, K). If L e Min-si N Max-si, then H, K € Min-< n Max-<.
By [3, Theorem 3.2.5] the class Min-<a« N Max-<a is ascendantly coalescent.
Hence we have JascL. It follows that Min-si N Max-si< @(asc). Similarly
if J € Min-si N Max-si then Jasc L. Thus we obtain

Min-si N Max-si < 2*(asc).

(3) is directly deduced from (1) and Lemma 1.3 (2).
(4) By [6, Corollary 5] we have Min-sin !'< 2. It follows that

Min-si U 6! < M(asc) N L < L(asc).
By (2) and Lemma 1.3 (1) we have
N(G! N Min-si) < Lasc) and RN(G'n E,!) < L(asc).
(5) Using [6, Corollary 5] we have

Max-asc < Pi(asc) N L < L(asc).

It then follows from Proposition 1.5 that
Mazx-asc < 2%(asc).

By (2) and Proposition 1.5 we have

N(Min-si N Max-si) < 2°(asc).
and

N(Max-sin 6! n €, 1) < 8°(asc).

(6) By [6, Proposition 11] we have M,(asc)< L. Since the class Min-si
is {E, 1, Q}-closed, by Theorem 4.1 we can easily show that for any integer n>0
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(Min-si n M,(asc)) -, (Min-si N Max-si)
= Min-si n (M,(asc) -, Max-si)
< Min-si n 2%
and
(& NN -, (Min-si n Max-si)
= Min-si n (M-, Max-si)
< Min-si n £,
Since Min-si < M(asc), by Lemma 3.8 we obtain
Min-si N 2% < 8%(asc) N L (asc).
It is not hard to see that over any field of characteristic zero

6! n L2(asc) = G' n Max-asc,

that is, with respect to ®! the class 2°(asc) coincides with the class of Lie algebras
satisfying the maximal condition for ascendant subalgebras.
Finally we should note that

€ <€, <C,.

(See the examples described in [3, p. 340].)

5.

In this section we shall first distinguish between the classes £(®-4), £(4),
2%(4) and £,(4), where 4 is any one of the relations wasc and asc, and secondly
present an example of Lie algebras L such that L € £*(&-asc) n 2°(asc) N £,(asc)
and L& Min-si.

THEOREM 5.1. Let A be one of the relations wasc and asc.
(1) L2(4) < £(4) over any field of characteristic p>0.
(2) L2(4) < L(6©-4) over any field.

(3) £2(4) £ 2,(4) over any field.

@) L.,4) £ L(®-4) over any field of characteristic p>0.

Proor. (1) Let f be a field of characteristic p>0 and A the (additive)
abelian group of type p*. Let X be an abelian Lie algebra over f with basis
{x,: ae A}. For each be A, define d(b) € Der (X) by

X,0(b) = 2028 Xa10n (a€ A).
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Set Y=<{d(b): be A)<Der(X) and construct the split extension L=X+Y of
X by Y, which is the Lie algebra constructed in [5, Example 4.2]. Then we
have Le A2 n Ft as was proved there. Moreover, [5, Remark to Example 4.2]
states that L does not satisfy the idealiser condition, that is, L & D(4). By
Proposition 3.5 we have Le 2(4). However, since Le Ft<Gr<D(®-4), we
have L e D(6-4)\D(4), so that L &L2°(4). Therefore (1) is proved.

(2) Let L be the Lie algebra constructed in the proof of [3, Lemma 2.1.11],
that is, let L be the split extension of the abelian ideal C=A@®B by the
9N,-subalgebra J with A and B spanned respectively by {a(P): Pe &} and {b(P):
Pe &}, where & is the set of all infinite sequences P=(p,, p,,...) of integers,
and with J spanned by {x,, V., Zm.: m, n€Z}. Then the following conditions
are satisfied:

(a) a(P)=(—1)a(P’) and b(P)=(—1)b(P’) for any P, P'e& such that
by a finite number, r, of transpositions P can be transformed into P’;

(b) a(P)=b(P)=0 if by a finite number of transpositions P cannot be
transformed into any element of the subset J of & consisting of the strictly
increasing sequences;

(c) Forany Pe & and any m, ne Z

[xm’ xn] = [ym9 y”] = 0’ [xma yn] = Zm,m
La(P), x,] = b(m, P), [b(P), x,,] =0,
[a(P), ym] = O, [b(P), y,] = a(m, P),

where (m’ P)=(m’ Pos pl"") if P=(p0s pla'--)'
By the proof of [3, Lemma 2.1.11] we see that

H<3L, K<3L, J=<(H,K)> I,(J))=J and J:=L,

where H=<{x,: me Z) and K=(y,,: me Z). Hence J is neither an ascendant
nor a descendant subalgebra of L. It follows that L ¢ 2(asc). Since Le AR, < A3,
by Lemma 1.6 (2) we have L& £(4).

Next we shall show that Le ($-4). Let me Z. We denote by 4, the
subset of 7 consisting of the sequences which involve m as terms. Set

C,, = <a(P), b(P): Pe J,,).
Then we have C,,<t L and
[xm L] = [Xms A] + [ K1 € Cpp + ez Zm -
Hence we can easily show that

[xm9 i+1L] s Cm (121)
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It follows that
<x'l;'> S Cm + <xm> + Znez <Zm,n> .

By (b) we see that for any Pe Z,, and any ne Z
[a(P), zn,n] = [b(P), Zp,a] = [a(P), X,] = 0.

Therefore we have (x%t> e W. Similarly we have (yL>e . It is clear that

L= C + Zmez<x5> + Zmez<yrlr‘t> .

Hence L is the sum of abelian ideals. This implies that Le t<®r. Therefore
we have L e £(®-4), so that 2(4) < 2(6-4).

(3) Let A be an abelian Lie algebra with basis {a;: ie Z}. Define xe
Der(A4) by a;x=a;_, (ie Z), and construct the split extension L=A4+<{x) of
A by {x>. Then it is clear that L e %,. Hence by Theorems 3.9 (3) and 3.10 (3)
we have Le 8°(4). Foreachne Z, set A,={a;: i<n). Then we have

(A %> < Api 1 XD < \Upioy KAy XD = L,
so that {A,, x> <x® L forany ne Z. Butitis not hard to show that

Nuez {An %) = x> = I ({XD).

Hence L& 2 (asc) and therefore L& 2,(4) by Lemma 1.6 (2). Thus we obtain
L2(4) £8,(4).

(4) Owing to [3, Lemma 3.1.1], we see that over any field of characteristic
p>0

& N (AN,) £ 6-4).
By Lemma 3.8 we have §F< 2. (4). Therefore (4) is proved.

REMARK. By using the result shown in the proof of Theorem 5.1 (2), we
can easily see that there exists a Lie algebra having a serial (resp. weakly serial [4])
subalgebra which is neither ascendant (resp. weakly ascendant) nor descendant
(resp. weakly descendant [4]). In fact, let L be the Lie algebra constructed
in the proof of [3, Lemma 2.1.11]. Then L is an abelian-by-nilpotent Lie algebra
having a subalgebra J which is neither ascendant nor descendant in L. On the
other hand, by the proof of Theorem 5.1 (2) L is a Fitting algebra. It follows
that L is locally nilpotent. Using [3, Proposition 13.2.4], we see that every
subalgebra of L is a serial subalgebra of L. In particular, J is a serial
subalgebra of L. Since J is not ascendant in L and L is solvable, J is not also a
weakly ascendant subalgebra of L by [10, Theorem 1]. Since J is not descendant
in L and L is abelian-by-nilpotent, J is not also a weakly descendant subalgebra
of L by [4, Theorem 4.2].
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Finally we shall construct a Lie algebra which lies in the class 2*(6-asc) n
M, (asc) and which does not satisfy the minimal condition for subideals.

ExaMpLE 5.2. Let f be a field of characteristic zero. We regard the group Z
of integers as a subgroup of the additive group of . Let W=%#", be a generalized
Witt algebra (cf. [3, p. 206]), that is, W be a Lie algebra over f with basis {w;:
i€ Z} such that

[w;, Wj] = (i—j)wi+j (i,jeZ).
Then by [3, Theorem 10.3.1] we have We &. Furthermore, it is clear that
W=<{w_,, w_q, Wi, wp).

Hence we have We G n S.

Let A be a vector space over f with basis {a;: ie Z}. Under the linear map
w;—a,; (ie Z), we regard A as the underlying vector space W. Then A4 is a W-
module with respect to the adjoint action of W. Consider A as an abelian Lie
algebra and construct the split extension L=A4 4+ W of A by W. Since every sub-
space of A4 is a subideal of L, L does not satisfy the minimal condition for subideals.
By Theorem 3.6 (2) we have

LeA(GnS) < L2(asc).

Moreover, we can prove that L € M,(asc), so that L e 8°(asc) N £, (asc) by Theorem
3.10 (4). To do this it is sufficient to show that

Fasc)={H: H<A or H=L} = {H: H<?L}.

Clearly we have {H: H<Aor H=L}<={H: H<? L} = %;(asc). Let H € ¥;(asc)
and assume that H #A4. Then

0# (H+A)/A asc L/A = We S = S(asc)

and so H+A=L. Hence we can find an h € H such that wo=h mod 4. For any
integer i # 0, by Lemma 2.1 there exists an integer n=n(i)> 0 such that

i"a; = [a;,, wo] = [a;,, h]e H.
It follows that a;e H. Therefore we have
{a;: 0#ieZ}y =< H and L= H + {ay,).
Hence we can find a ke H and an a €f such that k=w, +aa,. Then we have
[wa, k] = [wz, wi] — alao, wo] = w3 + 2aa,.

By induction on j it is easy to show that
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(w2 k]l =(Ywjs, mod 355y <a> (j=1).

By Lemma 2.1 there exists an integer m>0 such that [w,,,k]eH. Since
> i>1 {a;y = H, we have (m!)w,,,, € H, so that w,,, € H. It follows that

2(m+2)a0 = [wm+2’ a—m—2] €H.
Hence a, € H and therefore L=H +{a,)=H. Thus we obtain
Flasc)={H: H<A or H=L} = {H: H<?L}.

Finally we shall show that Le 2*(G-asc). Let X denote the class 2 U (L)
of Lie algebras over f, where (L) is the smallest class containing L. Obviously
X< Q(®-asc). Since F(asc)={H: H< A or H=L}, the class X is 1(asc)-closed.
Let M be any Lie algebra over f and let H, K € &#)(®-asc). Assume that J=
(H,K)>eX, H<J and K<J. If J&, then J is embedded in 4, a contradiction.
Hence we have JeU. By using [2, Lemma 6.5] we have Jasc M. It follows
that X < 2*(®-asc). Therefore we obtain L e £*((-asc).
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