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§0. Introduction

This work is concerned with the initial value problem of the form

(IVP no) (dldt)u(t) + dφu(t) 9 Biι(ί), t > 0,

M(0) = u09

where φ is a proper lower semicontinuous (l.s.c.) convex functional on an abstract
real Hubert space H, dφ is its subdifferential and B is a single-valued operator in
H with domain D(B) containing the effective domain D(φ) of φ. Initial value
problems of this type have been studied by many authors (e.g. [5, 11, 12, 13]).

Let {S(τ); 0<τ<co} be the nonlinear contraction semigroup on D{φ) gener-
ated by — dφ, and {V(τ); 0<τ<oo} a one-parameter family of single-valued
operators V(τ) in H with D(V(τ))=>D(B) such that τ-ι(V(τ)-\)-+B as τ I 0 in a
certain sense. (However the family {F(τ)} is not assumed to be a contraction
semigroup on D(B).) In this paper it is our main interest to establish an existence
theorem for (IVP; M0) by showing that

(0.1) un(t) = [F(τ(n))S(τ(n))Pp/*(»>3tι0 > u(t) in H as n->oo

and

φ(S(τ(n))Pun(t)) > φ(u(t)) in R as n->oo

for a suitable subsequence {τ(n)} with τ(n) | 0 as n-»oo, where P is the projection
from H onto D(φ) and [s] denotes the greatest integer in s e R.

In case — B is the subdifferential of a proper l.s.c. convex functional φ on H,
i.e. B= —dφ, it was shown by Kato and Masuda [7] that

[S'(τ)P'S(τ)Pp/τϊιι0 > u(t) hi H as τ 10 for ίe[0, oo)

and the convergence is uniform on [0, T] for each 0<T<oo, where {S'(τ);
0 < τ < oo} is the nonlinear contraction semigroup on D(φ) generated by —dψ and
Pr the projection from H onto D(ψ). This result is a nonlinear analogue of
Trotter's product formula for linear nonnegative self-adjoint operators (cf. [2, 6])
and the family (Γ(τ); 0<τ<oo} defined by T(t)uo=*u(t)9 u0 e D(φ) n D(ψ)9 gives
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the contraction semigroup on D(φ) Π D(ψ) generated by — d(φ + φ).

However, our problem (IVP; u0) involves the case in which the solution may

blow up in a finite time. In fact, such cases may occur when — B is not a monotone

operator (cf. [5, 13]). Therefore the methods employed in [2] and [6] cannot be

applied directly to prove the convergence (0.1). In this paper, with the aid of the

compactness argument and some techniques evolved in the theory of ordinary

differential equations, we show that (0.1) and (0.2) hold uniformly on some

interval [0, T], and that the limit u gives a solution of (IVP; u0) on [0, T]. If

(IVP; u0) has a unique solution u on [0, T*), we are able to show without taking

a subsequence {τ(n}} that

(0.1)' \imτiolV(τ)S(τ)PT^uo = u(t) in H

and

(0.2)' Umτioφ(S(τ)PlV(τ)S(τ)PT^uo) = φ(u(t)) in R,

exist uniformly with respect to t in every compact subinterval of [0, T*). The

formula (0.1)' is a nonlinear version in our case of the Trotter's product formula;

and for the linear case, this type of formula was earlier given by Ichinose and

Koyama [4, 8].

§1... Main results

Let H be a Hubert space, φ a proper l.s.c. convex functional on H, and let B

be a single-valued operator from D(B)czH into H. Given u0 in H, we consider

the initial value problem

(IVP; M0) u'(i) + dφu(t)9Bu{t\ 0 < t < T, ιι(0) = uθ9

where u'{t) ( = (d/dt)u(t)) denotes the strong derivative of u(t) in H.

An H-valued function u on [0, T] (0<T<oo) is called a solution o/(IVP; u0) on

( i ) ue W1'2^ T; H) and κ(0) = u0,

(ii) Bu( )eL2(0, T; H), and

(iiί) Bu(t) - u'(t) e dφu(t) for a.e. t e [0, Γ] .

An H-valued function u on [0, T) (0< T< oo) is called a solution o/(IVP; u0)

on [0, T) if it is a solution of (IVP; u0) on [0, T ] for every 0 < Γ ; < Γ .

REMARK 1.1. Let u be a solution of (IVP; u0) on [0, Γ]. Then it is known

that the function t-+φ(u(4)) is absolutely continuous on [0, T]. See Brezis [1;

Lemma 3.3].

In wha t follows, | | H and ( , ) B denote the norm and the inner product in H,

respectively.
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Our objective here is to discuss the construction of solutions of the problem

(IVP; u0) in terms of product formula of Trotter's type under the following

assumptions.

(A) For each r>0, the set Lφ(r}= {zeH; \z\H<r,φ(z)<r} is compact in H.

(B) The operator B satisfies the following conditions:

(b.l) D(φ)czD(B);

(b.2) \Bz\^<l(φ(z)) for any zeD(φ), where /(•) is a non-decreasing

continuous function from R into [0, oo);

(b.3) B is demicontinuous on each level set of φ, namely: if zn-*z

strongly in H and {φ(zn)} is bounded, then Bzn-+Bz weakly in H.

(C) There exists a family V={V(τ); 0<τ<oo} of single-valued operators

V(τ)from Z)(F(τ))cH into H satisfying the following conditions:

(c. 1) D(B) c D(V{τ)) for τ > 0

(c.2) τ-ι\{V{τ)-i)z\Ή<L\Bz\u for τ > 0 and zeD(B), where L is a

non-negative constant;

(c.3) τ-\V(τ)-\)z-+Bz weakly in H as τ I 0 and, for each r>0, the

convergence holds uniformly with respect to z in Lφ(r).

As is well-known (cf. Brezis [1; Theorems 3.4, 3.6]), — dφ generates a non-

linear semigroup S = {5(τ); 0<τ<oo} on D(φ). We denote by P the projection

from H onto the closed convex set D(φ).

To state our main theorems we introduce the scalar initial value problem

(1.1) p\t) = (L*/2)Z(p(0); X0) = X,

where K is a given real number, /( ) is as in (b.2) of (B) and L is as in (c.2) of (C).

It is well known (cf. Coddington-Levinson [3; Ch. 2, Theorem 1.2]) that (1.1)

admits a unique maximal solution. We denote it by/( , K) and write [0, t*(K))

(0<t*(K)< oo) for the associated maximal interval of existence.

The main results are now stated as follows.

THEOREM 1.2. Suppose that (A), (B) and (G) hold. Let u0 be an element of

D(φ). Then there exist a solution u o/(IVP; u0) on [0, t*(φ(u0))) and a sequence

{τ(n)} in (0, oo) with τ(n) I 0 as n-»oo such that

(1.2) l i n w ίV(τ(n))S(τ(n))PT/τinnu0 = u(t) in H

and

(1.3) linw

for each te [0, t*(φ(u0))) and the limits exist uniformly with respect to. t in any

finite interval [0, Γ] with 0<T<t*(φ(uo)).

REMARK 1.3. Suppose that the operator B satisfies condition (B) and that
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the family {V(τ); 0<τ<oo} is defined by V(τ)=l + τB for τ>0. Then {V(τ)}

satisfies automatically condition (C). Therefore, in order to obtain a local solu-

tion of (IVP; u0) in this particular case by Theorem 1.2, it is sufficient to assume

that only (A) and (B) hold. However, Theorem 1.2 not only asserts the existence

of local solutions, but also guarantees that the solutions of (IVP; u0) may be

approximated in different ways according to the choice of the family {V(τ)}

satisfying (C).

THEOREM 1.4. Suppose that (A), (B) and (C) hold. Let u0 be an element

of D(φ). Further suppose that (IVP; u0) has a unique solution u on [0, T*).

Then

(1.4) lim τ i 0 [F(τ)S(τ)Pp/τJu0 = u(t) strongly in H

and

(1.5) limτ40 φ(S(τ)PlV(τ)S(τ)PT^u0) = φ(u(i))

for t e [0, Γ*) and the limits exist uniformly in t e [0, T] for every 0<T< T*.

The proofs of the above results are given in §3 and §4.

Since φ is proper, l.s.c, and convex on H, there exist α*eH and constants

α, α*,/?, j5*>0 such that

(1.6) φ(z) > (α*, z)H - β > - α|z|H - β > - α | z β - β* for any z e H .

Also, on account of Kato-Masuda [7; Example 2.5], we have

(1.7) φ(z) > φ(S(τ)Py) + τ-i(y-S(τ)Py, z-y)Ή + (2τ)-1|^-S(τ)P);|^,

for z, j eH. These inequalities are used in later arguments.

LEMMA 1.5. Let {τ(n)} be a sequence in (0, oo) with τ(n) 4 0 (as n-*oo) and

{vn} a sequence in L2(0, T; H), 0 < T < o o , such that

υn • v strongly in L2(0, Γ; H)

and

<n)~ \υn( ) - S(τ)Pvn(.)) > v* weakly in L2(0, T H).

υ*(i)εdφv(t)for a.e. ί e [ 0 , T].

PROOF. Since { τ ί n ) - 1 ^ - ) - ^ ^ ) ) ^ ^ . ) ) } is bounded in L2(0, T; H),

we have i;n(.) - S(τ(n))Pvn( )-+0 strongly in L2(0, Γ H). Therefore S(τ(n))Pvn~*

v strongly in L2(0, T ; H). Next, it follows from (1.7) that
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(1.8) \Tφ(w(t))dt^\Tφ(S(τ(n))Pvn(t))dt
Jo Jo

vn(t) - S(τ(n))PvM w(t) - vn(t))*dt

for every w e L2(0, T; H). Letting n->oo in (1.8) yields

{\(w(t))dt > \Tφ(v(t))dt + ( V ( 0 , w(0 - ι<0)HΛ
Jo Jo Jo

for every weL2(0, T; H), which means that v*(t)edφv(t) for a.e. ίe[0, Γ].

Q.E.D.

LEMMA 1.6. Suppose that (A), (B) and (C) hold. Let {τ(n)} be a sequence

in (0, oc) w/fΛ τ(n) I 0 (as n-^oo), 0 < τ < oo, and let {vn} be a bounded sequence in

L°°(0, T; H) such that

vn > v strongly in L2(0, T; H)

and

{φ(vn(t))} is uniformly bounded on [0, T ] .

Then v(t)eD(B)for a.e. te [0, T] and

(1.9) τ(w)-i(F(τ(n)K(.)~^( ))—>A< ) wea/c/j; m L2(0, T H).

PROOF. By assumption there is a number r > 0 such that vn(t)eLΦ(r) for

a.e. ί e [0, T] and n = 1, 2,.... Hence, by (b.3), v(t) e D(B) for a.e. t e [0, T] and

)- KV«n))vn(t)-t;π(0)-

^KίO-t .αW-β^O, w(0)HΛ + [T(Bvn(t)-Bv(t)9 w(t))Bdt
Jo

for any weL2(0, T H). Now conditions (b.2) and (c.2) imply that both

{τ(n)-KV(τ(n))vn( )-vn( ))-Bvn(.)} and {»;„(.)-*!<•)} are bounded in L°°(0,

T; H). By virtue of (b.3), (c.3) and Lebesgue's dominated convergence theorem,

the right hand side of the above equality tends to zero as n->oo. Q. E. D.

§ 2. Approximate solutions and their estimates

Throughout this section, we suppose that (A), (B) and (C) hold, and that

uoeD(φ). We here construct a sequence of approximate solutions of (IVP; w0)

and give energy estimates for them.

For each τ>0, we define a function F(τ, •); [0, oo)-»H by



288 Tetsuya KOYAMA

F(τ, kτ) = [5(τ)PF(τ)] fc5(φ0 for fc = 0, 1,...,

and

F(τ, 0 = F(τ, fcτ) + ( r - f c φ - ^ ί τ , (fc+l)τ)-F(τ, fcτ)}

for kτ <t < (fc+l)τ and fc = 0, 1,....

In what follows we regard the functions F(τ, ) ^ > 0 small, as approximate solu-
tions to the problem (IVP; w0). Note that the function F(τ, •) is also written as
follows:

+ ((f/τ) - [ί/τ])F(τ, ([ί/τ] + l)τ) for t > 0.

Clearly, JF(τ, ί) is absolutely continuous in t>0 and differentiate in t except for
the points t — kτ (/c = 0, 1,...) By definition we have

F(τ,kτ)eD(dφ) for k = 0, 1,...,

F(τ, 0 e D(φ) for t > 0

and

(2.1) FXτ,0( = ( 3 / W τ , 0 ) = τ - H F ( ^ ^ ^

for ί ^ kτ, fc = 0, 1,....

In order to give the energy estimate for F(τ, ), it is convenient to employ the
maximal solution f(- K) of (1.1) and the corresponding Cauchy's polygon
/(τ, K) which is given by

/(τ,0;K) = K

and

/(τ, t; K) =/(τ, kτ; X) + (L2/2)(ί-kτ)/(/(τ, kτ; X))

for k τ < ί < ( f c + l)τ and fc = 0, 1,....

Note that/(τ, t; K) and/(ί, K) are nondecreasing in t and X,

(2.2) /(τ, ί; X) = K + (L2/2) Γ /(/(τ, [S/τ]τ; K))ds9

Jo

and

/(τ, p/τ]τ; K) </(τ, ί X) < /(ί; X) for 0 < t < t*(K).

LEMMA 2.1. (i) For any τ>0 and any pair of non-negative integers m, n
with m<n, we have
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(2.3) φ(F(τ, nτ)) + (2τ)"» Σϊ=i 1 ^ , (fc + l)τ) -F(τ, fcτ)&

< φ{F(τ, mτ)) + (L2/2)τ Σ P i Kφ(F(τ, kτ))).

(ii) For any τ > 0 and any T, T '>0 with 0<T<T'<oo we have

(2.4) 2-i £ |F,(τ, Olέrfί+φ(f(t, T'))^/(τ, Γ'-[T/τ]τ;

PROOF. The inequality (1.7) implies that

φ(z) - φ(S(τ)Py) ^ (2τ)"»\z -S(τ)Py\2

B - (2τ)~ ι\z -y\2

H for y, z ε H.

In this inequality, put z=F(τ, kτ) and y = F(τ)z. Then, since

f(τ, fcτ) = S(τ)P[l/(τ)S(τ)F]ku0

and

y = [K(τ)S(τ)P]*+iMo, S(τ)Pj; = F(τ, (fc+ l)τ),

it follows from conditions (b.2) and (c.2) that

(2.5) φ(F(τ, (fe + l)τ)) + (2τ)-»|F(τ,(fc+l)τ)-F(τ, kτ)\i

£ φ{F{τ, kτ)) + (2τ)-1 |(F(τ)-l)F(τ, kτ)&

< φ(F(τ, kτ)) + (L2/2)τ|BF(τ, kτ)\2

Ή

< φ(F(τ, kτ)) + (L2/2)τ/(φ(F(τ, fcτ))).

Summation of (2.5) over k=m, m + ί,..., n — 1 yields (2.3). Comparing φ(F(τ,

fcτ)) with/(τ, fcτ; <p(F(τ, mτ))), we infer from (2.3) that

(2.6) φ(F(τ, πτ))</(τ, {n-m)τ; φ{F{τ, mτ))) for n > m.

Suppose that mτ^T<(m + l)τ and nτ<T'<(n + l)τ. It follows from the con-

vexity of φ and (2.5) that

, TO) ^ φ(F(τ, nτ)) + ( Γ - n φ - M ^ T , (n + l)τ))-φ(F(τ, nτ))}

^ φ(F(τ, nτ)) + (Γ - nτ)τ~ H(La/2)τK^ί (τ, nτ)))

and

τ, (fc+l)τ)-F(τ,

2-1(T'-nτ)τ-2|F(τ, (n
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Therefore, noting (2.3) and (2.6), we get

φ(F(τ, mτ)) + (L2/2) Γ l{φ{F(τ, [ί/τ
Jmτ

τ, T'-mτ;φ(F(τ,mτ))).

Thus (2.4) is obtained. Q. E. D.

LEMMA 2.2. Let 0<T<t*(φ(uo)) and 0<τ o<oo. Then there is a constant
M x >0 such that

(2.7) |F(τ, t)\n£M1 for τe(0, τ0] and re[O, T],

(2.8) |<p(F(τ, 0)1 < Mt for τe(0, τ0] and <e[0, Γ]

(2.9) |F,(τ, - ^ ( O . Γ H ^ M ! /or τe(0,τ o ] .

PROOF. LetO<τ<τ0. Put T=0 and Γ' = ί in (2.4). Then

(2.10) 2" i \' \Fs(r, s)&ds + φ(F(τ, ί)) ^ /(τ, ί φ(S(r)u0))
Jo

ζf(τ,T

for all I e [0, Γ]. Using (1.6) and (2.10), we have

If (*, OIH ^ |F(τ, 0) |H + £ |Fs(τ, s)|H ίίS

^ |J?(τ, 0 ) | H + ί1

< \F(τ, 0)|H + αT+(4α)->
|

Jo

^ |5(T)«0IH + «T+ 2-1|F(τ, ί)lH + βl(2a) + (2β)" V(Γ; φ(«

for all ί e [0, Γ], so that

2-1|F(τ, OIH < sup{|S(τ)«0|H; 0<τ<τ o } + aT+βl(2a)

+ (2«)-1f(T;φ(u0)) = R1 for all te[0,T}

Also, on account of (1.6) and (2.4) we have

\φ(F(τ, 0)1 < φ(F(τ, t)) + 2α|F(τ, OIH + 2β<f(T; φ(u0)) + 4αΛx + 2β

for all 16 [0, Γ], and
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\ | F i τ , s) |^ds < 2 / ( T ; φ(u0)) + 2α|F(τ, t)\H + 2β
Jo

< 2 / ( T ; φ(w0)) + 4αR 1 + 2^ = i?ΐ

for all t e [0, Γ]. Hence the desired estimates (2.7), (2.8) and (2.9) are obtained

withM1=max{2R1, R'ί9 R'ί). Q.E.D.

LEMMA 2.3. (i) For τ>0 and ί^/cτ, /c = 0, 1,..., we have

(2.11) F,(τ, 0 + τ-Kl-S(τ)P)F(τ)F(τ, [ί/τ]τ) = τ-i(V(τ)-l)F(τ, [ί/τ]τ).

(ii) Lβί T and τ 0 ftβ as in Lemma 2.2. T/zen î iere is α constant M 2 > 0

such that

(2.12) I τ - H n τ ) - ! ) ^ , [ ί/τ]τ) | H <M 2 for τe(0,τ o ] and *e[0, T]

and

(2.13) | τ- 1 ( l-S(τ)P)F(τ)F(τ,[ ./τ]τ) | L 2 ( 0 , Γ ; H )<M 2 for τ e ( 0 , τ o ] .

PROOF. The equality (2.11) follows immediately from (2.1) and the definition

of F(τ, kτ). By (b.2), (c.2) and Lemma 2.2 we have

\τ~\V(τ)-l)F(τ9 [ί/τ]τ)|H < L\BF(τ, [ί/τ]τ)|H

< L{/(φ(F(τ, ltlτ]τ)W* < L{/(M1)}^2 s ^ 2

for τ G (0, τ 0] and t e [0, T]. Besides, it follows from (2.11) that

\τ-Kl-S(τ)F)V(τ)F(τ9ltlτlτ)\Ώ

< \Ft(τ, OIH + \τ-KV(τ)-ϊ)F(τ9 [ί/τ]τ)|H

for ί ̂  fcτ, fc = 0, 1,.... Therefore,

|τ-Kl-S(τ)P)F(τ)F(τ, lΊτlτ)\L2{0iT;Ή) < M, + R2T,

where Mx is as in Lemma 2.2. Thus we obtain (2.12) and (2.13) with M2=Mi +

R 2Γ+K 2 . Q.E.D.

§ 3. Proof of Theorem 1.2

In order to prove the existence of a solution of (IVP; w0), we show that

{F(τ(ή), •)} converges as n-*oo for some suitable sequence {τ(n)} with τ(n) | 0.

Suppose that (A), (B) and (C) hold, u0 e D(φ), and let 0< T< t*(φ(u0)). Then, by

condition (A) and Lemma 2.2, {F(τ, t); 0 < τ < τ o , 0 < ί < T} is compact in H and

{F(τ, •); 0<τ<τ o } is bounded in W1'2^, T; H). Firstly, by the Ascoli-Arzera
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theorem, there exists a sequence {τ(n)} with τ(n) 4 0 such that

F(τ(n), ) > u strongly in C([0, T] H)

and

Fffln), ) m ' weakly in L2(0, T H)

for some u e Wl>2(09 T; H). Secondly,

F(τ(n), O/τ(n)]τ(n)) > u(t) strongly in H and uniformly in t e [0, Γ]

and

F(τ(n))F(τ(n), [ί/τ(n)]τ(n» > w(ί) strongly in H and uniformly in t e [0, T]

as n->oo, and the functions

t — > φ(F(τ(n), [ί/τ(n)]τ(n)))5 π = 1, 2,...

are uniformly bounded on [0, T]. Thirdly, on account of (ii) of Lemma 2.3, we

may assume (by taking a subsequence if necessary) that

τ(n)-*(V(τ(n))-l)F(τ(n), [ /τ(n)]τ(n)) > v* weakly in L2(0, T; H)

and

(3.1) τ(n)-i(l-S(τ(n))P)V(τ(n))F(τ(n), [./τ(n)]τ(n)) — > w*

weakly in L2(0, Γ; H)

for some v*9 w* e L2(0, Γ; H). Therefore, it follows from (i) of Lemma 2.3 that

u'(t) + w*(0 = υ*(t) for a.e. t e [0, Γ ] .

On the other hand, Lemmas 1.5 and 1.6 together imply that

w*(t) e dφu(t) and v*(t) = Bu(t) for a.e. t e [0, T ] .

Since F(τ(n), 0) = S(τ(n))wo->uo strongly in H, we have M(0) = MO, and consequently,
u is a solution of (IVP; u0) on [0, Γ].

Next, from the fact that

{ u0 for 0 < t < τ,

F(τ)F(τ,([f/τ]-l)τ) for τ < ί < Γ,
it follows that (1.2) holds for the sequence {τ(n)} and for the function u obtained

above.

For the proof of (1.3), it is sufficient to show that

(3.2) lim i n f ^ φ(F(τ(n), [ί/τ(n)]τ(n))) > φ(u(t)) uniformly in t e [0, T]
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and

(3.3) lim s u p ^ ^ φ(F(τ(n), [ί/τ(n)]τ(n))) £ φ(u(ή) uniformly in t e [0, T ] .

The inequality (3.2) follows immediately from the lower semicontinuity of φ

and the compactness of {F(τ, t) 0 < τ < τ 0 , 0 < t< T} in H. Hence we prove (3.3).

To this end we need the following lemma.

LEMMA 3.1. For each measurable set E in [0, T], we have

(3.4) l i n w f #(τ(n) )[ί/τ(n)]τ(n)))Λ = ( φ{u{t))du
JE JE

PROOF. Let z = u(t) and 3; = [F(τ(n))S(τ(n))P]tf/^Λ)iM0 in (1.7) for t e [0, T]

and integrate the resultant inequality over E. Then we have

(3.5) ( φ(u(t))dt>[ φ(F(τ(n),ltlτ(n)-]τ(n))dt
JE JE

[
J

ιι(0 -

+ [
E

The second term of the right hand side of (3.5) tends to 0 as n->oo by (2.3) and

(3.1). This, together with (3.2), yields (3.4). Q. E. D.

Suppose that (3.3) does not hold. Then there are a number ε>0, a subse-

quence {τ(nk)} of {τ(n)} and a sequence {tk} c [0, T] such that tk converges to some

t0 as fc->oo and

(3.6) (?(F(τ(nfc), ['Jτ(nfc)]τ(nfc))) ^ φ(w(ίk)) + 3β for k = 1, 2,....

First we have f o >0. In fact, by (i) of Lemma 2.1 we have

(3.7) φ(F(τ(nk), [ίfc/τ(nfc)]τ(nk)))

<: φ(F(τ(nk\ 0)) + (L2/2)ίk/(M\), fc = 1, 2,...,

where M x is the same constant as in Lemma 2.2. Also, since φ(u(t)) is continuous,

we infer from (3.6) and (3.7) that

φ{u{t0)) + 3ε < l i m s u p ^ φ{F(τ(nk\ [ί*

< l i m ^ φ(S(τ(nk))u0) +

Clearly this is impossible for to=0, and so t0 must be positive.

Next, choose a number <5>0 and an integer fc0 so that
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2δ < t0,

(3.8) \φ(u(t)) - φ(u(s))\ < ε for any s, ί e [ ί 0 - 2 δ , to + 2δ1 Π [0, Γ ] ,

(3.9) \tk-t0\< δ for any k ^ k0,

(3.10) (3/2)L2i(Mi)5 < ε.

Then, from (3.6), (3.8), (3.9), (3.10) and from (i) of Lemma 2.1, it follows that

φ(μ(t)) + 2ε< φ(tk)) + 3ε ^ φ(F(τ(nk), [ίk

< φ(F(τ(nk), [ί/τ(n,)]τ(nt))) + ε,

for k=1, 2,..., and t e E=[ί0—2δ, t0—5]. Therefore, on account of Lemma 3.1.

f φ(u(t))dt + εδ£ l i m ^ f φ(F(τ(nk),
j£ JE

This is a contradiction. Thus (3.3) must hold, and the proof of Theorem 1.2 is

thereby complete.

§ 4. Proof of Theorem 1.4

Suppose that all the assumptions of Theorem 1.4 are satisfied. Let TJ be

the supremum of all T > 0 such that both of the limit relations (1.4) and (1.5) hold

uniformly on [0, T].

As is easily seen from Theorem 1.2 and the uniqueness assumption for the

solution of (IVP; u0), we have

It is sufficient to prove that TJ > T*, and this can be shown in the following way.

Suppose ΓJ < T*. Fix any To e (TJ, T*) and put

Choose positive numbers <50 and ε0 such that

3<5O < t*(K + ε0)

and

0 < s0 s Tξ - δ0 < Tί + A < Γo

Further, choose a positive number τ 0 (<<50) such that
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φ(F(τ, t))< K + ε0 for 0 < τ < τ0 and 0 < t < so;

such τ 0 does exist since φ(F(τ, 0)^9(^(0) a s τ i 0 uniformly in t e [0, s0]. Then,
on account of Lemma 2.1, we have

2""1 Γ |Fs(τ, s)&ds + φ(F(τ, 0)
K' SO

< /(τ, ί - [so/τ]τ ;φ(F(τ, [so/τ]τ)))

< /(τ, t — s0 + τ X + ε0)

< oo

for all 0 < τ < τ o and ίe[s 0 , 5O + 25O] = [TJ —50, TJ + δ 0]. In the same way as
in Lemma 2.2, we infer from the above inequalities that there exists a constant
Mt such that

|F(τ, 0 I H < M I for any ΓJ - δ0 < t < Tξ + δ0 and 0 < τ < τ0,

|φ(F(τ, 0)1 < Mt for any T* - δ0 < t < TJ 4- δ0 and 0 < τ < τ 0

and

\Ft{τ, )JL>(τ?^ao.τ?+ ϊ̂H) < ^ i /<w ««7 0 < τ .< τ0.

Therefore, in a way similar to the proof of Theorem 1.2, we can conclude that

F(τ, t) > u(t) as τ I 0 strongly in H and uniformly in t e [0, ΓJ + ί 0 ]

and that

φ(F(τ, 0) > <2>(w(0) as τ | 0 uniformly in ί e [0, Tg +δ 0 ]

In fact, by the uniqueness of the solution, the limit relations (1.2) and (1.3) hold
uniformly on [0, TJ + <50] for all sequences {τ(n)} with τ(n) 4 0. This contradicts
the definition of TJ. Thus T£ > T*.

§5. Application

Throughout this section, let Ω be a bounded domain in RN with smooth
boundary Γ. We denote by | \q (resp. | | 1 > 9), l < g < oo, the norm of the space
L«(Ω) (resp. the Sobolev space Wι *(Ω)) and by Wl>*(Ω) the closure of C$(Ω)
in Wίiq(Ω). For simplicity we often write uXi for the partial derivative (d/dx^u
and ut for (djdt)u.

We use the symbol Ap? 2<p<oo, to denote the following nonlinear differ-
ential operator:

A " = ΣU(\uxt\
p-2uxt)X).
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We here consider the following obstacle problem:

(5.1) ut>Δpu + άivβ(μ)+f(u) on (0, T) x Ω,

u > h on (0, T) x Ω,

ut = Δpu + div /?(u) + f{μ) on {u > ft},

w(0, ) = M0 on Ω, and

w = 0 on (0, T) x Ω,

where 2 < p < oo; /ι is a given obstacle function in WUp(Ω) satisfying h<0 a.e. on

Γ; and the initial function u0 belongs to W^P{Ω) and satisfies uo^h a.e. on Ω;

β(-) = (β1(-), β2(•),-.., /?#(*)) is a function from R into RN; and / i s a function

from R into itself.

We impose the following conditions (β) and (/) on β and /, respectively.

(β) ( i ) If p>N, then each βt is locally Lipschitz continuous on R;

(ii) If2<p = N9 then each βt is locally Lipschitz continuous on R and

there exist a number 2<q< oo and constants C 1 ,C 2 >0 such that

(5.2) \βί(λ)\ < Cx\λ\* + C2 /or AeR,i = l,2,...fAT;

and if2 = p = N, then each βt is locally Lipschitz continuous and

(5.2) holds with q = 0;

(iii) If2<p<N9 then each β( is locally Lipschitz continuous and(5.2)

holds for q = N(p- 2)/(2(N - p)\

(/) There exist monotone nondecreasing functions fγ and f2 satisfying

f=zfι—f2 and the following conditions',

( i ) If p>N, thenfx andf2 are continuous on R;

(ii) If p = N, then fx and f2 are continuous on R and there exist a

number 2<r<oo and constants C3, C 4 > 0 such that

(5.3) I/Ml £ C 3 | λ | ' + C4 for AeR, i = l , 2 ;

(iii) If2<p<N, thenfγ andf2 are continuous on R and (5.3) holds for
r = Np/(2(N-p)).

We then define a closed convex set K in Wfrp(Ω) by

K = {ze W}>>P{Ω)\ z>h a.e. on Ω},

and a proper l.s.c. convex functional φ on H=L 2(Ω) by

((UpϊΣΐ-ΛjxA if Z6X,
(5.4) <?(*) )

I oo otherwise.
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Moreover, we employ the operator B defined by

(5.5) £z

LEMMA 5.1. B maps each bounded subset ofWfrp(Ω) into a bounded subset

ofΈL, namely: B: FK£ p(Ω)-»H is bounded, Further, B satisfies condition (b.3) of

(B).

PROOF. Since β can be approximated by smooth functions satisfying (β), we

may assume without loss of generality that β is smooth. First we show the lemma

in the case of 2<p<N. lΐ2Φp, then for any z e Wfrp(Ω) we apply (5.2) to get

(5.6) I f t M J i = \β'i(ΦXi\
2n <: M*l#(*)lW-2)

< \zXi\
2

p{rn3(ΣU kJp)"<

where mί^m4. are positive constants independent of z and, in the last inequality,

the Gagliardo-Nirenberg inequality [10] is used. In case 2=p<N, a similar

estimate holds since β( ) is bounded. Also, in the case of2<p<N, the applica-

tion of (5.3) yields

(5.7) .IΛWIi < m5\z\»y<«z>] + m6 £ mΊ\z\^-^ + ms, i = 1, 2,

where constants m 5 ~m 8 are independent of z. Combining (5.6) and (5.7), the

first assertion of the lemma is obtained.

In the case of p=JV (resρ.p>iV), the inclusion W}f*(Ω)-*Lι(Ω) (resp.

WfrP(Ω)-+B(Ω)) is bounded for any 1 < /< oo, where B(Ω) is the set of all bounded

continuous functions on Ω. Therefore the boundedness of B: W£'p(ί2)-»H can

be proved just as in the case of p<N.

Suppose that zn-*z strongly in H and the set {φ(zn)} is bounded. Then we

have |z | 1 > p < oo and thus z eD(B). It is easy to show thatyi(zn)-^/f(z) weakly in H

by virtue of the maximal monotonicity of/f( ). Further, by a simple calculation,

we have βi(zn)-+βi(z) strongly in H and thus βi(zn)Xi-+βi(z)Xi weakly in H. There-

fore it is concluded that B satisfies condition (b.3). Q. E. D.

By the definition of φ, condition (A) is clearly satisfied. Besides, by virtue

of Lemma 5.1 and Poincare's Lemma, condition (B) is satisfied. Now the initial

value problem

(5.8) (d/dt)u(t) + dφu(t) 3 Bu(t), 0 < t < T,

is a variational formulation for the system (5.1), namely: the function w(ί) =

u(u ' )r u being a solution of (5.8), can be regarded as a generalized solution of the

system (5.1).
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Applying Theorem 1.2 with F(τ) = l + τ £ , we obtain the following result:
There exist at least one solution u of (5.8) on £0, T] for some 0<Γ<oo and a
sequence {τ(n)} with τ(ή) I 0 as n-»oo such that

(5.9) [(1 + τ(n)B)S(τ(n))PJt^n^u0 — + u(t) strongly in H

and

(5.10) φ(S(τ(n))Pί(l + τ(n)B)S(τ(n))PT/τ{n»u0) > φ(u(t))

uniformly for t e [0, T]. Here {<S(τ); 0<τ< oo} is the contraction semigroup on
D(φ) generated by — dφ, and P the projection from H onto D(φ).
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