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1. Imtroduction and statement of results

Let R* (n>2) be the n-dimensional euclidean space. For a nonnegative
(Radon) measure x on R”, we set '

Lu() = | tog s du(»)

if the integral exists at x. We note here that Ly is not identically — oo if and only if

M {108 (113t < oo,

Denote by B(x, r) the open ball with center at x and radius r. For E < B(0,
2), define

C(E) = inf y(R"),

where the infimum is taken over all nonnegative measures 1 on R" such that S,
(the support of u) = B(0, 4) and

_8 >
Slog =7 du(y) =21 for every xeE.
If E<=B(x%, 2), then we set
C(E) = C({x—x°; xe E}).

One notes here that this is well defined, i.e., independent of the choice of x°.
Throughout this paper let k be a positive and nonincreasing function on the
interval (0, oo) such that

k(r) £ Kk(2r) forany r,0<r<1,

where K is a positive constant independent of r. A set E in R” is said to be k-
logarithmically thin, or simply k-log thin, at x° € R* if

271 kQ2)CE)) < oo,
where E)={xeB(x° 2)—B(x° 1); x°+2-/(x—x%eE}. If k(r)=logr-! for
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r sufficiently small, then a set E which is k-log thin at x© is called simply logarith-
mically thin at x°. Then the following result is well known (see [1; Theorem IX,
7] for n=2):

THEOREM A. Let x°eR" and u be a nonnegative measure on R" satisfying

().
(i) There exists a set E in R" which is logarithmically thin at x° and
satisfies

limxﬂxo,xek”—b‘ Lﬂ(x) = Lﬂ(xo) .

(ii) There exists a set E in R* which is logarithmically thin at x° and
satisfies

1m0, sern-5 (108 Tgor ) L(x) = u({x%).

Our first aim is to give a generalization of Theorem A.

THEOREM 1. Let h be a nondecreasing and positive function on the interval
(0, o0) such that h(2r)< Mh(r) and

) SI/Z dt M

o FOUREDYCTD = H0)

for any r, 0<r<1, where M is a positive constant independent of r. Let 1 be a
nonnegative measure on R* satisfying (1),

lim, ;o h(r) (log r=)u(B(x°, r)) = 0
and

{ Aaxo - yducy) < o,

where h(0)=c0 and h(r)=h(r)k(r) for r>0. Then there exists a set E in R"
which is k-log thin at x° and satisfies

lim, ., 0 vern - g h(|% —x°))Lp(x) = O.
REMARK 1. For 6>0, define
(logr—1)-9 if 0<rg27
hy(r) = )
(log2)—¢ if r>2-1,

Then h; satisfies all the conditions on h in Theorem 1.

ReMARK 2. If h(r)=(logr—1')~! and k(r)=logr~1 for r sufficiently small,
then Theorem 1 implies Theorem A, (ii).
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Hereafter, when a positive function h on (0, o) is given, we let i be as in
Theorem 1.

THEOREM 2. Let h be a nonincreasing and positive function on the interval
(0, ) such that rh(r) is nondecreasing on (0, ) and lim,,, rh(r)=0. Suppose
furthermore h(r)log (r/s)< Mh(s) whenever 0<s<r<1, where M is a positive
constant independent of r and s. Let u be a nonnegative measure on R" satis-
fying (1) and

{ A1x—yDducy) < oo.
Then there exists a set E in R" which is k-log thin at x° and satisfies

lim,.. ;0 xern - 5 H(1%° — y]) [Lu(x) — Lu(x°)] = 0.

ReMARk. If h(r)=1 and k(r)=1log r~1 for r sufficiently small, then Theorem
2 yields Theorem A, (i).

Fuglede [3] discussed fine differentiability properties of logarithmic poten-
tials in the plane R2. To state his result, we let L(x)=log(1/|x|) and set for a
nonnegative integer m,

x=x*T7 0 \
L,(x,y) = L(x-y) — 2|).|§m —(T)[(—a'; L:I(xo -y
where ).#(A,,..., A,) is a multi-index with length |A|=A;+ -+ 4,, Al=21,!---4,),
x*=x}1...x4» and (0/0x)* =(0/0x,)*---(0/0x,)*n.

THEOREM B (cf. Fuglede [3; Notes 3]). Let u be a nonnegative measure on
R? satisfying

6) [/ 1x0—y1=*tog 2+ 10— y1=du(y) < oo,

then there exists a set E in R? which is (logarithmically) thin at x° and satisfies
@ Hi . cemn 15— 301 { Ly(x, 2)du(y) = 0.

For a proof of Theorem B, see Davie and @ksendal [2; Theorem 6]. Our
second aim is to generalize Theorem B, and in fact to show, under a condition
weaker than (3), that (4) holds for a set E which will be k-log thin at x° with an
appropriate function k.

THEOREM 3. Let h be a nonincreasing and positive function on the interval
(0, o0) such that rh(r) is nondecreasing on (0, ) and lim, o rh(r)=0. Let u be
a nonnegative measure on R* satisfying (1) and
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Slx°—yl""ﬁ(lx°—yl)du(y) < oo,

for a positive integer m smaller than n. Then there exists a set E in R" which is
k-log thin at x° and satisfies

lm e - 6= x| h(x = 2°0) | Lo, D)) = 0.

REMARK. Incase n=2 and m=1, if we take h(r)=1 and k(r)=log 2+r1),
then Theorem 3 coincides with Theorem B.

In case m=n, we shall establish the following result.

THEOREM 4. Let u be a nonnegative measure on R" which satisfies (1) and
the following two conditions:
(a) lim, o r "|u—ad,|(B(x° r)) =0 for some a,

where A, denotes the n-dimensional Lebesgue measure;

A
(b) A,1=1im,mg l:(ai L:](x0 —y)du(y) exists and is finite for
Rn—B(x%,r) X

any A with length n.
Then there exists a set E in R™ which has the following properties:

() limyos sernes 15 =57 {{ Zes (5, 2)d(2) = £ paen S 06 =592} =0;
(i) lim;.,, C(E}) =0,
where C,=A,+aB, for |A\|=n and B, will be defined later (in Lemma 4).

One may compare these theorems with fine and semi-fine differentiabilities of
Riesz potentials investigated by Mizuta [6] and [7].

ReEMARK. If u is a nonnegative measure on R" with finite total mass, then
(a) and (b) in Theorem 4 hold for almost every x° e R" (cf. [10; Chap. III, 4.1]).

We say that a set E in R" is k-log semi-thin at x° if
lim;, ., k(2=7)C(E};) = 0.

The set E in Theorem 4 is k-log semi-thin at x° with k=1. The following the-
orem gives the behavior of logarithmic potentials in terms of k-log semi-thin sets.

THEOREM 5. Let h be a nondecreasing and positive function on the interval
(0, 00) such that lim, ,, h(r)=0 and

Sl ds

M
oﬁ(s)(r+s) =< 6] for r>0,

where M is a positive constant independent of r. Let m be a nonnegative integer
and p be a nonnegative measure on R" satisfying (1) and
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lim, o r="h(r)u(B(x°, r)) = 0.

Then there exists a set E in R" which is k-log semi-thin at x° and satisfies

< s X = X7~ h(1x = 37D § Lo 15, 3)H0) =0,

where L_,(x, y)=L(x—y).

In the final section we shall be concerned with the behavior at infinity of
logarithmic potentials.

2. Proof of Theorem 1

We first prepare the following lemma, which will be used frequently.
LEMMA 1. Let h be a positive Borel function on (0, o) such that
) h(s) £ Mh(r)  whenever 0<r[2<s=2r<l,

where M is a positive constant independent of r and s. If u is a nonnegative
measure on R™ such that

gﬁayndu(y) <,

then there exists a set E in R™ which is k-log thin at O and satisfies

lim, o, yegn_g B(|% S log —*L__au(y) =o.
0,xern—£ h(|X]) B x1/2) glx—yl u(y)

Proor. Take a sequence {a;} of positive numbers such that lim;_,, a;= o0
and T, ajg h(|y])du(y) < oo, where B;=B(0, 27+2)—B(0, 2~/-1). Consider
B;

the sets

= . | x| -1 _1}
E; {xeA,, SB, log *—y] du(y) 2 h(277)a;

for j=1,2,..., and E=\U}, E;, where A;=B(0, 27/*1)—B(0, 2-/). By the
assumption on h, one sees easily that

KQ2™1)CE)) < a2 k@~ u(B) < const.ay | F(lyDdu().

Hence E is k-log thin at 0. Furthermore,

lim s0ps-o,cern-z i) {, tog 12
Im sUpso,xern-g AUX ) | - 108 2= du(y)
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< const. lim sup;_,« supxeAj-Ejh(Z‘f)S log lexlyl du(y)
Bj -

< const. limsup;_,, aj! =0,

and hence lim, ¢ ycrn—k h(lxl)g log |x] du(y) =0.
B@.lxl/2y X =Yl

We are now ready to prove Theorem 1.

ProOF OF THEOREM 1. Without loss of generality, we may assume that x°
is the origin 0. For a nonnegative measure u on R” satisfying (1), we write

Lu(x) = g L(x —y)du(y)

ilx=yl21x1/2}

f L(x=7)dpu(y) = L'(x) + L'().
(v;lx=y|<|x|/2}

Note here that L'(x) is finite for any x#0. Let
&(0) = supo<,ss h(r)(log r~Hu(B(0, r)).

Then by our assumption, lim;,, &(6)=0. If x, ye B(0, 1/4) and [x—y|=]|x|/2>0,
then '

0 < L(x—y) < const. IOch_I'-IFI_W'
By (2), lim, o h(r)=0. Hence we have again by (2),

lim sup,..o h(IXDIL'(x)| = lim sup,_, h(lxl)g L(x—y)du(y)
B(0,8)-B(x, |x1/2)

< const. lim sup, .o k(|x|) g log T)TJIFIy—l du(y)

B(0,9)

< const. lim sup,_,q h(lxl){u(B(O, 0)) log (Ix]+8)~1

+ g: u(B(O, 1) (x| +7) 1dr} < const. &(5)

for 6, 0<d<1/4. This implies that lim,_, h(|x|])L'(x)=0. Since lim,., h(|x])-
(log |x|)u(B(x, |x|/2))=0, with the aid of Lemma 1 we can find a set E in R" which
is k-log thin at 0 and satisfies

limx—*o,xeR"—E h(|x|)L”(x) =0.

3. Proofs of Theorems 2 and 3
Before giving proofs of Theorems 2 and 3, we recall the next result.
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LeEMMA 2 (cf. [9; Lemma 4]). If x, ye B(0, 1) and |x—y|=|x|/2>0, then

le log (2+—l) when m =0,
|L,(x, ¥)| £ const. min( I,

[x|™ y|—™ when mzZ 1.

We shall give only a proof of Theorem 3, since Theorem 2 can be proved
similarly by the use of Lemma 2.

PrOOF OF THEOREM 3. We may assume that x°=0. Let 4 be a nonnegative
measure on R” satisfying (1) and

| HDRYDAH) < o0,

where H(r)=r—"h(r) for r>0. By the assumptions on h, H satisfies condition (5)
with h replaced by H. We write

SL...(x, »)du(y) = S L,(x, y)du(y)

R"=B(0,2]x])

L,(x, y)du(y) + S L,(x, y)du(y)

gB(O,leI)-B(x,IxIIZ) B(x,|x]/2)

= L'(x) + L"(x) + L"(x).
If y e R"— B(0, 2|x]), then Lemma 2 implies that
|Lm(X, )| < const. |x|m*+1|y|™™=1,
so that Lebesgue’s dominated convergence theorem gives

lim sup,,o |x|~™h(|x)IL'(x)|

< const. lim sup,., [x[h(|x[) SR"_B(O 2150 IyI==1du(y)

= const. lim Supx»olxlh(lxl)g Iyl==1dp(y) =
B(0,1)~-B(0,2]x|)

since lim, ;o rh(r) = 0 and rh(r) < k(1) 1sh(s)k(s) for O<r<s<1.
If y € B(0, 2|x|) and [x—y|=|x|/2>0, then Lemma 2 implies that

ILm(x, ¥)| = const. |x|™|y|~™.

Hence we obtain

fim sup, .o |x|~™h(|x[)|L"(x)|

. lim sup,..o h “mdp(y) =
< const. lim sup,..o (Ix‘l),SB(O,Zl*I)l)’I du(y) =0
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since h(r) < h(s)<2h(2s)<2k(1)~ h(2s)k(2s) whenever 0<s<r<1/2.
As to L", we note that

x|~"h(]x[)|L" (x)| < const. H<|x|)§ log—*L_apu(y)
B(x,|x/2) [x—yl

+ const. S H(|y)du(y).
B(x,|x/2)

The second term of the right hand side tends to zero as x—0 by the assumption.
In view of Lemma 1, the first term of the right hand side tends to zero as x—0,
x € R"—E, where E is k-log thin at 0. Thus the proof is complete.

ReMARK 1. Theorem 3 is best possible as to the size of the exceptional set.
In fact, if h and h are as in Theorem 3 and E is a subset of R" which is k-log thin
at x°, then one can find a nonnegative measure p on R" with compact support
such that

f 1x0 = y1=mh(1x0— yDau(s) < o0
and

e [x = 3~ h(1x = 5°1) | L, )pcy) =

REMARK 2. Let u be a nonnegative measure on R” satisfying (1) and let h
be as in Theorem 3. IfS [x0— y|=mh(]x°— y|)du(y) < oo and there exist M, r,>0
such that

h(|x —x°Du(B(x, r)) = Mr™

for any x e B(x% ro) and any r, 0<r<|x—x°|/2, then E appeared in Theorem 3
can be taken to be an empty set and Ly is m times differentiable at x°.

To prove this, assume that x°=0. For the first assertion, in view of the
proof of Theorem 3, it suffices to show that

©) tim, g x{h(xl) | tog X au(r) = 0.
Bxlxl/2) X =y

For 6>0, set &(6)=supg<,<s ¥ "h(r)u(B(0, r)). If 0<dé<|x|/2, then

- 12
e | tog i ducy)

= Ixa(lxl) | tog L du(y)

+ |x|]""h(]x S log-1*_4
|x]7™A(|x]) B 1/ 2y-B(ss0) 08 T3 71 u(y)
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< const. {(%) 1og‘_5’i + |x|~mh(|x]) 1(B(O, 2|x])) log %}

J lxl
< — + vkt I
< const. {( I | ) s(2|x|)} log 6 .
Since limx_.o 8(2|x|)—0, for X Sufﬁcient]y C]OSC to 0 we€ can ChOOSC 6>0 SO that

tog 21 = [e(2lxf) + 11112,

Since lim,_,, (6/|x])=0, we derive (6).
To prove the second assertion, we first note that

S |x—y|™™*1du(y) < o  for every xeB(0, ro),

and hence Ly is m—1 times differentiable at x € B(0, r,) and
9 Youx = ([(-2)L d
(;;) u(x) = S[ W) }(x—y) u(y)

for any x e B(0, ro) and any multi-index A with |A|=m=—1. As in the proofs of
Theorem 1 and Remark 4 in [6; Section 2], we can show that

lim, o |x| = th(|x[) {#,(%) —u,(0) — Ty ax;} =0,
where x=(x,,..., x,) and u,=(0/0x)*Lu for a multi-index A with length m—1 and

ai=g[~£—(—aa?>lL}(— ydu(y). This implies that Ly is m times differentiable
i
at 0.

4. Proof of Theorem 4

We first recall the following results.

LemMMA 3 (cf. [7; Lemma 1]). Let u be a nonnegative measure on R" such
that lim, o r* "u(B(0, r))=0 for some real number a. Then the following
statements hold:

(@) IfB <0, thenlimuor | |yp=s=rdu(y) = 0;
O,r)
(i) Ifn—a+1>0and f>0, then

timyiort | (D rdu) = 0.
B(0,1)

Lemma 4 (cf. [7; Lemma 4]). Set u(x)=S . L(x—ydy. Then ue
: P o o JBE%1) - P
C®(B(x°, 1)). Moreover, if A is-a multi-index with length n, then
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B=[(&)u]e =§Ml)yl’[(%)‘l](y)ds(y),

where A=A"+1" and |X|=1.

Now we prove Theorem 4 by assuming that x°=0. Let u be a nonnegative
measure on R" satisfying (1), (a) and (b) with x°=0. For xe B(0, 1/2)—{0},
we write

|x|_"{S L,y (x, y)du(y) — Xa)=n % xl}
= |x|™" SRn-B(o,l) Lal 7)du()

+ 1wl L,(x, y)d[u—ad,](?)

B(0,1)-B(0,2]x})

[(.5‘1_)‘4( ~y)d[p—ad,1(»)

2
- x* ..
= x| Zo<|alsn I llmrtog
. B(0,2|x|)-B(0,r)

+ alxl={lim, o | Ly(x, 1)dy = £ pujen i}
B(0,1)-B(0,r) !
+ x| Lo(x, y)d[u—ad,)(»)
B(0,2|x|)—-B(x,|x|/2)
+ 1 Lo(x, y)d[1—ad,1(»)
B(x,|x|/2)

= u;1(x) + uy(x) — u3(x) + auy(x) + us(x) + ug(x).
If y e R*—B(0, 2|x|), then |L,(x, y)| <const. |x|**!|y|~*"! and hence
lim,_qu,(x) =0.

For simplicity, set v={u—adA,|. Then lim,,, r~*v(B(0, r))=0 by (a), and we have
lim sup,_.¢ |#,(x)| S const. lim sup,_.¢ | x| S . (x| +|y)~""tdv(y) =0
B(0,1)

because of Lemma 3, (ii).
If 0<|A]<n, then Lemma 3, (i) yields

lim su |x|“"”$ ‘[ i)Alz‘J(— )’dV( )
px—'O B(0,2|x]) ax y y

< const. lim sup, .o lxl"""g |y|~1*3ldv(y) = 0.
B(0,2(x])

- . OV = dv=0.
If |A|=n, then, by [5; Lemma 3’1]’83@.,)-3@,3) [( 2 ) LJ(‘. dy=0 for any
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r, s>0. Hence by the definition of 4,

limx..o {lim, 10 S

[(?%)AL]( ‘Y)d[#—a/l,.](y)} =0.

B(0,2|x[)-B(0,r)

Therefore, lim, _, o u5(x)=0.

Since u(x)= Sa(o b L(x—y)dy e C*(B(0, 1)) and

us(x) = ¥ {u®) = San 3] (o) 4O}

in view of Lemma 4, we see that lim, _,, u,(x)=0.
As to us, we obtain

|us(x)| < const. |x|'"g log (2+%>dv(y)

B(0,2]x])

< const. |x|1‘"'S |yI~tdv(y),
B(0,2]x])

which tends to zero as x—0 by Lemma 1, (i).

Applying the following Lemma 5 with h(r)=r~" and k(r)=1, we see that
ug(x) tends to zero as x—0, xe R*—E, where E is a set in R" satisfying (ii) of the
theorem. The proof of Theorem 4 is now complete. ’ -

LEMMA 5. Let h be a positive function on (0, ), and define b;=sup {h(r);
2-igr<27i*}, If v is a nonnegative measure on R" such that
lim;_, o, b;k(2=9)W(B(0, 277*2)—~ B(0, 277-1))=0, then there exists a set E in R"
which is k-log semi-thin at 0 and satisfies

lim, o yegn_p A(Ix S tog-—*L_av(y) =o.
0.xern—£ A(IX]) B(x, |x1/2) J [x =yl )

The proof is similar to that of Lemma 1.

RemARrk 1. If lim;,, C(E})=0, then we can find a nonnegative measure
u on R* with compact support such that lim,, o r~"u(B(0, r))=0 and

limx—‘o,er-lxl—n SLn—l (xs )’)d#()') = .
REMARK 2. Let u be a nonnegative measure on R” satisfying (1), (a), (b) and

(c) There exist M, r,>0 such that u(B(x, f))ng" for any xe B(x°, ry)
and any r<r,. :

Then the set E in Theorem 4 can be taken to be empty and, moreover, Ly is n
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times differentiable at x°.

This fact can be proved in the same way as in Remark 2 in Section 3.

5. Proof of Theorem 5

As before we assume that x°=0. Let u be a nonnegative measure on R"
satisfying (1) and

) lim, , o r=™A(r)u(B(O, r)) = 0.

Define &(J) =supg<,<s r~"h(r)u(B(0, r)). By (7), lim, o &(8)=0.
If m=0, then

S: _ugz_(r(},s_s)_) ds £ Me(6)[Ah(r)]™!

~ é
whenever 0 <r<d<1, on account of the assumptions on h and h. Since S u(B(0,

8))s~tds=u(B(0, r))log(é/r), it follows that lim sup,,, h(r)(logr- 1),u(B(E), 1) B
Meg(6). Thus

@) lim, ,  h(r) (log r=Hu(B(0, r)) = 0.

Then the case m=0 can be proved in the same way as in Theorem 1 by usihg
Lemma 5 in place of Lemma 1.
Let m=1, and write

[Luseo ) =, L )

f L (% YY) = L'(x) + L'().
Rn=B(x,[x|/2)
Since lim,,q r~™h(2r)k(r)u(B(0, 4r))=0 by (7), Lemma 5 implies that |x|~™.
h(]x|)L'(x) tends to zero as x—0 except for x in a set which is k-log semi-thin at 0.
What remains is to prove that |x|~™h(|x|)L"(x) tends to zero as x—0. For this we
deal only with the case m=1, because the case m =2 can be proved similarly.

Let m=1. By Lemma 2,

|~ HOXDILCON S i | tog (2121w

+ const. h(lxl)g

[y|~tdu(y)

Rn=B(0,2|x|)

= I,(x) + const. I,(x).
Note. that:
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() < const. x|~ () {u(BO, 2xD) + (™ w(B(O, )s~1ds}

< const. |x|~ lh(IxI){u(B(O, 2|x))) + &(8) SZIXI ﬁ‘g) }
< const. {le“h(lxl)u(B(O, 2|x0)) + &(8)h(Ix[) SZM -m)(‘f;ﬁ;)—}
< const. {|2x| = A(2|x|)u(B(0, 2|x[))+ Me(8)}

whenever 0<2|x|<4. Similarly,

L S ([ tu) + 6B, + o) ) i)
< hlf, L 1) +37 B, 8} + 2Meld).
n=B(0,5)

These yield that lim,_ |x|~'h(|x|])L"(x)=0. Thus we conclude the proof of
Theorem 5.

ReEMARK. The set E in Theorem 5 can be taken to satisfy

CE) _,

)] lim, o HQ™YK2™) L Fesgop=si1y =

where H(r)=r""h(r). In fact, take a sequence {a;} of positive numbers such that
lim;,, a;= 00, lim;_, , a;HQ2 7+ )k(2~7+)u(B(0, 27/*2))=0 and

YiiauB)) £ 2a; 3%, (B;))  foreach i,

where B; are defined as in the proof of Lemma 1; this is possible as will be shown
in the Appendix. As in the proof of Lemma 1, define E; with h replaced by H
and E=\U$., E;. Itis easy to see that E satisfies (9).

The next proposition shows that (9) gives a best possible condition as to the
size of E, in case H(2r)<const. H(r).

PROPOSITION 1. Let h be as in Theorem 5 and define H as above. If a set

E in R" satisfies (9), then there exists a nonnegative measure u on R satisfying
(1), lim, , o H(r)k(r)u(B(0, r))=0 and

im0 ce5 HJ*D) | Lu-1 (5, 3)du(y) = co.

PrOOF. We assume that C(E;)>0 for each j. By definition of C(-), for each
j we can find a nonnegative measure u; such that p;(R"—B(0, 277%2))=0,
u(B(0, 277+2)) <2C(E}) and
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Slog = l du,(y) =1 for every xekEj,

where E;=E n B(0, 277*1)—B(0, 2~J). Take a sequence {a;} of positive numbers
such that lim;_, ,, a;=o0

C(E})

2Ty O

lim; o, ¢, H(27)k(27) X 5o

and

_C(E)) C(E))

DY Pt LR  ORD) <2, 3% - gy for each i

(see Lemma 6 in Appendix). Denote by u; the restriction of u; to the set B;=
B(0, 2-7*2)— B(0, 2-7-1), and define a nonnegative measure u by

© a ’
=25y '71_(7—!_,'—+—1—)-I1 je
Let i be a positive integer. Then we see that
HQ=Yk2™ (B0, 2°) £ HQ™ K2 Z i popdrey #(B)

C(E})

<4aH(2 i)k(2 ‘) Z_, ,—17(—2—:FTY

— 0 as i— o0,

so that lim, , o H(r)k(r)u(B(0, r))=0.
On the other hand, if x € E;, then

Q@D | tog 2 du(y)
X og-——-
By & [x—yl| s
2 27ma;{1—4(log 2)u(B(0, 27/~1))} —> © as j— 0.
Since lim,, o H(r)u(B(0, r))=0,

lim ;. sup,.g, HQ2|x S lo b4 d
! Pxez, H(2Ix]) Bj=B(x,|x1/2) ®Tx=5l W) =

and
o xl a A
hmj—wo SUDyck; H(2|x]) 21§|A|§m—1 gB(x lxIIZ)W[<—5}—) L]( —y)du(y) = 0.
Hence it follows that

lim g e HQSD (Lo i3, 9)du) =
B(x,|x]/2)
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in case m=1. This also holds in case m=0 on account of (8). Noting that h(2r)
satisfies all the conditions on h in Theorem 5, we derive

tim, .o B { Lo 1(x, Y)dp(y) = 0,
. Rr=B(x,|x|/2)

in view of the proof of Theorem 5. Thus lim,_,¢ ..z H(2|x|) S L1 (x, Y)du(y)= co.

. By Theorem 5 we can establish the following result.

PROPOSITION 2. Let h be as.in Theorem 5, and u be a nonnegative measure
on R" satisfying (1). Then the following statements are equivalent:

(i) There exists a set E in R™ which is logarithmically semi-thin at x°
and satisfies

limx—ﬁxO,xeR"—E h(lx—x°|)L/,t(x) =0.

ii) There exists a sequence {x} in R" such that xU)—x° as j— oo,
q J
{]x —=xO|/|xU*D — x|} is bounded and

limj—’oo h(lx(j) —_ xOI)L#(x(.])) = 0.
(i) lim,,o h(r) (log r~Hu(B(x°, r))=0.

ProoF. Without loss of generality, we may assume that x°=0. The
implication (iii)—(i) follows readily from Theorem 5.

@i)—(@i): Let B=B(0, 1). Then B;=B(0,2)—B(0, 1) and lim;, , jC(B)—
Ej)=o. Hence we can find a sequence {x()} such that x()eB(0, 27/*+!)—
B(0, 2-7)—E for large j. This sequence satisfies all the conditions in (ii).

(ii)—(iii): Let {x()} be a sequence in (ii). Then one notes that

h(|x<i)|)(log F}’TO u(B(0, |x)))

2
<h@xoD (o log =y du(»)

- 2
< ) _—
< h(lx I)gm.l)log R0 =5 4H(»)
—0 as j— o0.

Take M>1 such that |xW|<M|xU*D| for each j. Then (0, M|xW|]c
Ufer [M~YxWD|, MIx@D[]. If M~ x| =r<M|xWP| <1, then

h(M~1r)(log Mr—Yu(B(0, M~1r))

< const. h(|xu>|)(1og Tﬁl") u(B(O, |xD])) — 0 as j— oo,
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from which (iii) follows readily. The proof in now complete.
For similar results on semi-fine limits of Riesz potentials, see Mizuta [8;
Theorems 2 and 2'].

REMARK. Let i(r) be nonincreasing on the interval (0, 1) and define
E = {xeR"; lim sup,, o A(r)u(B(x, r))>0}

for a nonnegative measure u on R". If u(E)=0, then A;-«(E)=0, where Aj-1
denotes the Hausdorff measure with respect to the measure function A-!; in
particular, if 4 is absolutely continuous with respect to the n-dimensional Lebesgue
measure and lim,, o 7*4(r)=0, then A;-:(E)=0.

5. Logarithmic potentials of functions in L?

For a nonnegative measurable function £ on R” such that

(10) [ og 141501700y < e,
we define '
L) = | Lx=»s)dy.
if in addition fe LP(R™), p>1, then Lf is continuous on R”.

PROPOSITION3 . Let m be a positive integer smaller than n, and f be a
nonnegative function in LP(R") satisfying (10). Then there exists a set E in
R* such that B,_,, (E)=0 and for any x°c R"—E,

(11) fim, -, yo [xx— x0| =™ S Lu(x, »)f(y)dy = 0.

Here B, , denotes the Bessel capacity of index (a, p) (see [4]).

ProOOF OF ProrosiTION 3. Consider the sets
E, = {x; S [x—=yl="f(y)dy= 00} ,

E, = {x; lim sup,mr‘”“”‘)l”"g f)rdy > o} :

B(x,r)

Then, in view of [4; Theorem 21], B,_,, ,(E; U E;)=0. We have only to show that
for x°e R"—E,—E,,

0
lim,_, o |x —x° ""S Jog X=X’ dy =0
X xol I B(x, |x-x0|/2) g Ix _yl f(y) Yy
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(see the proof of Remark 2 in Section 3). For this, without loss of generality,
we may assume that x®=0. By Holder’s inequality,

x|-m log—*_£(;)d
Ix] SB(x 1x1/2) glx =yl (r)dy

< m 1 |x| p’d }l/p'{g rd }llp
= Ixl {SB(x,|x1/2)< 8 IX—J’I> 7 B(x,|x|/2)f(y) 7

1/
< const. {lxl(""")”‘”g f(y)r dy} ’

B(0,2]x|)

which tends to zero as x—0, where 1/p+1/p’ =1.

In the same way we can prove the next result (see also [7; Theorem 3 and its
corollary]).

ProrosiTION 4. If f is as above, then (11) with m=n holds for almost
every x°€R".

6. Fine limits at infinity of logarithmic potentials
We say that a set E in R" is logarithmically thin at infinity if E*={x/|x|?;
x € E} is logarithmically thin at 0. Then it is easy to see that E is loganthmlca]ly
thin at infinity if and only if
21 JC(EL;) < 0, EL; = {xeB(0,2)— B(0, 1); 2/xeE}.
By inversion we can establish the next result.

THEOREM A’. Let u be a nonnegative measure on R" satisfying (1). Then
the following statements hold:

(i) There exists a set E in R* which is logarithmically thin at infinity and
satisfies

lim x|+, xern- g [Lp(X) + u(R") log [x]] =

(ii) There exists a set E in R" which is logarithmically thin at infinity and
satisfies

H -, e [10 [x[17* § Lo, 3)dity) = — w(RY,
where Lo(x, y)=L(x—y) if |y|S1 and Ly(x, y)=L(x—y)—L(y) if |y|> 1.

REMARK 1. Let p be a nonnegative measure on R”. Then \ |Lo(x, y)ldu(y)

< oo for almost every x if and only if S(1+| y)~ldu(y)<oo on account of [9;
Lemma 4].
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REMARK 2. Let u be a nonnegative measure on R* such that Lu(0) is finite,
and define u* by setting u*(A*)=pu(A) for A= R", where A*={x*=x/|x|?; x e A}.
Then

Ly*(x*) = Lp(x) + p(R™) log |x| — Lp(0).

We say that a set E in R" is logarithmically semi-thin at infinity if lim;_
JC(EL;)=0. By Proposition 2 we have the following result.

PROPOSITION 2'. Let h be a nonincreasing and positive function on (0, o)
such that

S“’ dt 1

» F@D (g DIG+7) < const. ) forany r> 1.

Let u be a nonnegative measure on R* with finite total mass. Then the following

statements are equivalent:
(i) There exists a set E in R™ which is logarithmically semi-thin at infinity
such that

-, e B {f Lo 1)) + R log [xl} = 0.

(ii) There exists a sequence {x} in R" such that lim;, . |x)|=oco0,
{|xU*D|/|xD|} is bounded and

tim,..o B(xOD{{ Lo, 9)du()+ (R log lx 01} = 0.

(iii) lim, .o h(r) (log U(R"— B0, 1)) = 0. -

Theorems 1 and 2 can be reformulated similarly; but we do not go into

detail.
Finally, corresponding to Theorems 3 and 5, we give generalizations of

Theorems 1 and 2 in [9].

THEOREM 3'. Let h and k* be nondecreasing positive functions on (0, o0)
such that

(a) r~1h(r) is nonincreasing on (0, o©) and lim,_, , r~'h(r)=0;

(b) k*Q2r)<Mk*(r) for r>0;

© log < M7

where h=hk* and M is a positive constant independent of r and s. Let u be a
nonnegative measure on R" satisfying

whenever 0<s<r,

f1ytm-1hyDau) < o
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for a nonnegative integer m. Then there exists a set E in R* having the following
properties:

(D) iy, wemog 00D § Lo, 3)du0y) = 0;

(i) X2, k*Q@)C(EL;) < .

Here L,(x,y)=L(x—) if yl<1 and L (6, )=Ltx=)~ Ziaism 37| (2 ) L]
(=3 if IyIZL. |

THEOREM 5’. Let h and k* be as above. Assume further that
) S” M s
1 R@)@+r) = k() ’
where M is a positive constant independent of r. If u is a nonnegative measure
on R" satisfying lim,,o r~™"1h(r)u(B(0, r))=0 for a nonnegative integer m,
then there exists a set E in R" having (i) of Theorem 3' and

(i) 1lim;., k*(2))C(E;)=0.

Appendix
Here we prove the next elementary fact.
LeMMA 6. Let {b;}, {c;} be sequences of positive numbers such that

lim;,, bj=00 and 7., c;<c0. Then there exists a sequence {a;} of positive
numbers such that a;<b; for each j, lim;_, , a;=c0 and

25k ajc; S 2a, > c;  foreach k.

For given ¢>0 we can find a sequence {k;} of nonnegative integers such that
ko'—'O, k1=1, ki<ki+1 for i=1, 2,... and

Proor. We may assume that b;<b;,,<pb; for each j, where 1<p<2.

Tk SgXiiv e, for i=1,2,..
Define a;=b; if k;< j<k;;,. For k;<k=k;,, we have
Tieae; = Zhraje; + T (T3, 19505
=b; 2'}‘;;‘ c;+ 25 (byey Z;iﬁ“ﬂ )
Sb Xkt + (X8 (pg) )by 2Rz Ly ¢

<=2 2iekcy =

—pq Topg @ Zircs
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if pg<1. Hence if q is chosen sufficiently small, then {a;} satisfies all the con-
ditions in the lemma.
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