Study of the behavior of logarithmic potentials by means of logarithmically thin sets

Yoshihiro MIZUTA (Received September 5, 1983)

1. Introduction and statement of results

Let R^n $(n \ge 2)$ be the *n*-dimensional euclidean space. For a nonnegative (Radon) measure μ on R^n , we set

$$L\mu(x) = \int \log \frac{1}{|x-y|} d\mu(y)$$

if the integral exists at x. We note here that $L\mu$ is not identically $-\infty$ if and only if

(1)
$$\int \log (1+|y|)d\mu(y) < \infty.$$

Denote by B(x, r) the open ball with center at x and radius r. For $E \subset B(0, 2)$, define

$$C(E) = \inf \mu(R^n)$$
,

where the infimum is taken over all nonnegative measures μ on R^n such that S_{μ} (the support of μ) \subset B(0, 4) and

$$\int \log \frac{8}{|x-y|} d\mu(y) \ge 1 \quad \text{for every} \quad x \in E.$$

If $E \subset B(x^0, 2)$, then we set

$$C(E) = C(\{x - x^0; x \in E\}).$$

One notes here that this is well defined, i.e., independent of the choice of x^0 .

Throughout this paper let k be a positive and nonincreasing function on the interval $(0, \infty)$ such that

$$k(r) \le Kk(2r)$$
 for any $r, 0 < r < 1$,

where K is a positive constant independent of r. A set E in \mathbb{R}^n is said to be k-logarithmically thin, or simply k-log thin, at $x^0 \in \mathbb{R}^n$ if

$$\sum_{i=1}^{\infty} k(2^{-j})C(E_i') < \infty,$$

where $E'_{j} = \{x \in B(x^{0}, 2) - B(x^{0}, 1); x^{0} + 2^{-j}(x - x^{0}) \in E\}.$ If $k(r) = \log r^{-1}$ for

r sufficiently small, then a set E which is k-log thin at x^0 is called simply logarithmically thin at x^0 . Then the following result is well known (see [1; Theorem IX, 7] for n=2):

THEOREM A. Let $x^0 \in \mathbb{R}^n$ and μ be a nonnegative measure on \mathbb{R}^n satisfying (1).

(i) There exists a set E in \mathbb{R}^n which is logarithmically thin at x^0 and satisfies

$$\lim_{x\to x^0,x\in\mathbb{R}^n-E} L\mu(x) = L\mu(x^0).$$

(ii) There exists a set E in R^n which is logarithmically thin at x^0 and satisfies

$$\lim_{x\to x^0, x\in R^n-E} \left(\log \frac{1}{|x-x^0|}\right)^{-1} L\mu(x) = \mu(\{x^0\}).$$

Our first aim is to give a generalization of Theorem A.

THEOREM 1. Let h be a nondecreasing and positive function on the interval $(0, \infty)$ such that $h(2r) \leq Mh(r)$ and

(2)
$$\int_0^{1/2} \frac{dt}{h(t)(\log t^{-1})(r+t)} \le \frac{M}{h(r)}$$

for any r, 0 < r < 1, where M is a positive constant independent of r. Let μ be a nonnegative measure on \mathbb{R}^n satisfying (1),

$$\lim_{r \downarrow 0} h(r) (\log r^{-1}) \mu(B(x^0, r)) = 0$$

and

$$\int \tilde{h}(|x^0-y|)d\mu(y)<\infty,$$

where $\tilde{h}(0) = \infty$ and $\tilde{h}(r) = h(r)k(r)$ for r > 0. Then there exists a set E in \mathbb{R}^n which is k-log thin at x^0 and satisfies

$$\lim_{x \to x^0, x \in \mathbb{R}^n - E} h(|x - x^0|) L \mu(x) = 0.$$

REMARK 1. For $\delta > 0$, define

$$h_{\delta}(r) = \begin{cases} (\log r^{-1})^{-\delta} & \text{if } 0 < r \leq 2^{-1}, \\ (\log 2)^{-\delta} & \text{if } r > 2^{-1}. \end{cases}$$

Then h_{δ} satisfies all the conditions on h in Theorem 1.

REMARK 2. If $h(r) = (\log r^{-1})^{-1}$ and $k(r) = \log r^{-1}$ for r sufficiently small, then Theorem 1 implies Theorem A, (ii).

Hereafter, when a positive function h on $(0, \infty)$ is given, we let \tilde{h} be as in Theorem 1.

THEOREM 2. Let h be a nonincreasing and positive function on the interval $(0, \infty)$ such that rh(r) is nondecreasing on $(0, \infty)$ and $\lim_{r\downarrow 0} rh(r) = 0$. Suppose furthermore $h(r)\log(r/s) \leq M\tilde{h}(s)$ whenever $0 < s < r \leq 1$, where M is a positive constant independent of r and s. Let μ be a nonnegative measure on R^n satisfying (1) and

$$\int \tilde{h}(|x^0-y|)d\mu(y)<\infty.$$

Then there exists a set E in R^n which is k-log thin at x^0 and satisfies

$$\lim_{x \to x^0, x \in \mathbb{R}^n - E} h(|x^0 - y|) [L\mu(x) - L\mu(x^0)] = 0.$$

REMARK. If h(r)=1 and $k(r)=\log r^{-1}$ for r sufficiently small, then Theorem 2 yields Theorem A, (i).

Fuglede [3] discussed fine differentiability properties of logarithmic potentials in the plane R^2 . To state his result, we let $L(x) = \log(1/|x|)$ and set for a nonnegative integer m,

$$L_m(x, y) = L(x-y) - \sum_{|\lambda| \le m} \frac{(x-x^0)^{\lambda}}{\lambda!} \left[\left(\frac{\partial}{\partial x} \right)^{\lambda} L \right] (x^0 - y),$$

where $\lambda = (\lambda_1, ..., \lambda_n)$ is a multi-index with length $|\lambda| = \lambda_1 + \cdots + \lambda_n$, $\lambda! = \lambda_1! \cdots \lambda_n!$, $x^{\lambda} = x_1^{\lambda_1} \cdots x_n^{\lambda_n}$ and $(\partial/\partial x)^{\lambda} = (\partial/\partial x_1)^{\lambda_1} \cdots (\partial/\partial x_n)^{\lambda_n}$.

THEOREM B (cf. Fuglede [3; Notes 3]). Let μ be a nonnegative measure on R^2 satisfying

(3)
$$\int |x^0 - y|^{-1} \log (2 + |x^0 - y|^{-1}) d\mu(y) < \infty,$$

then there exists a set E in R^2 which is (logarithmically) thin at x^0 and satisfies

(4)
$$\lim_{x\to x^0, x\in\mathbb{R}^n-E} |x-x^0|^{-1} \int L_1(x, y) d\mu(y) = 0.$$

For a proof of Theorem B, see Davie and Øksendal [2; Theorem 6]. Our second aim is to generalize Theorem B, and in fact to show, under a condition weaker than (3), that (4) holds for a set E which will be k-log thin at x^0 with an appropriate function k.

THEOREM 3. Let h be a nonincreasing and positive function on the interval $(0, \infty)$ such that rh(r) is nondecreasing on $(0, \infty)$ and $\lim_{r\downarrow 0} rh(r) = 0$. Let μ be a nonnegative measure on \mathbb{R}^n satisfying (1) and

$$\int |x^0 - y|^{-m} \tilde{h}(|x^0 - y|) d\mu(y) < \infty,$$

for a positive integer m smaller than n. Then there exists a set E in \mathbb{R}^n which is k-log thin at x^0 and satisfies

$$\lim_{x \to x^0, x \in \mathbb{R}^n - E} |x - x^0|^{-m} h(|x - x^0|) \int L_m(x, y) d\mu(y) = 0.$$

REMARK. In case n=2 and m=1, if we take $h(r) \equiv 1$ and $k(r) = \log (2 + r^{-1})$, then Theorem 3 coincides with Theorem B.

In case m=n, we shall establish the following result.

THEOREM 4. Let μ be a nonnegative measure on R^n which satisfies (1) and the following two conditions:

- (a) $\lim_{r \to 0} r^{-n} |\mu a \Lambda_n| (B(x^0, r)) = 0$ for some a, where Λ_n denotes the n-dimensional Lebesgue measure;
- (b) $A_{\lambda} = \lim_{r \downarrow 0} \int_{R^{n} B(x^{0}, r)} \left[\left(\frac{\partial}{\partial x} \right)^{\lambda} L \right] (x^{0} y) d\mu(y)$ exists and is finite for any λ with length n.

Then there exists a set E in Rⁿ which has the following properties:

- (i) $\lim_{x\to x^0, x\in\mathbb{R}^n-E} |x-x^0|^{-n} \left\{ \int L_{n-1}(x, y) d\mu(y) \sum_{|\lambda|=n} \frac{C_{\lambda}}{\lambda!} (x-x^0)^{\lambda} \right\} = 0;$
- (ii) $\lim_{j\to\infty} C(E'_j) = 0$,

where $C_{\lambda} = A_{\lambda} + aB_{\lambda}$ for $|\lambda| = n$ and B_{λ} will be defined later (in Lemma 4).

One may compare these theorems with fine and semi-fine differentiabilities of Riesz potentials investigated by Mizuta [6] and [7].

REMARK. If μ is a nonnegative measure on R^n with finite total mass, then (a) and (b) in Theorem 4 hold for almost every $x^0 \in R^n$ (cf. [10; Chap. III, 4.1]).

We say that a set E in R^n is k-log semi-thin at x^0 if

$$\lim_{i\to\infty} k(2^{-j})C(E_i')=0.$$

The set E in Theorem 4 is k-log semi-thin at x^0 with $k \equiv 1$. The following theorem gives the behavior of logarithmic potentials in terms of k-log semi-thin sets.

THEOREM 5. Let h be a nondecreasing and positive function on the interval $(0, \infty)$ such that $\lim_{t \downarrow 0} h(t) = 0$ and

$$\int_0^1 \frac{ds}{\tilde{h}(s)(r+s)} \le \frac{M}{h(r)} \quad \text{for} \quad r > 0,$$

where M is a positive constant independent of r. Let m be a nonnegative integer and μ be a nonnegative measure on R^n satisfying (1) and

$$\lim_{r\downarrow 0} r^{-m}\tilde{h}(r)\mu(B(x^0, r)) = 0.$$

Then there exists a set E in R^n which is k-log semi-thin at x^0 and satisfies

$$\lim_{x\to x^0,x\in\mathbb{R}^n-E}|x-x^0|^{-m}h(|x-x^0|)\int L_{m-1}(x,\,y)d\mu(y)=0,$$

where $L_{-1}(x, y) = L(x - y)$.

In the final section we shall be concerned with the behavior at infinity of logarithmic potentials.

2. Proof of Theorem 1

We first prepare the following lemma, which will be used frequently.

LEMMA 1. Let h be a positive Borel function on $(0, \infty)$ such that

(5)
$$h(s) \le Mh(r)$$
 whenever $0 < r/2 \le s \le 2r \le 1$,

where M is a positive constant independent of r and s. If μ is a nonnegative measure on R^n such that

$$\int \tilde{h}(|y|)d\mu(y) < \infty,$$

then there exists a set E in Rⁿ which is k-log thin at 0 and satisfies

$$\lim_{x \to 0, x \in \mathbb{R}^{n} - E} h(|x|) \int_{B(x,|x|/2)} \log \frac{|x|}{|x - y|} d\mu(y) = 0.$$

PROOF. Take a sequence $\{a_j\}$ of positive numbers such that $\lim_{j\to\infty} a_j = \infty$ and $\sum_{j=1}^{\infty} a_j \int_{B_j} \tilde{h}(|y|) d\mu(y) < \infty$, where $B_j = B(0, 2^{-j+2}) - B(0, 2^{-j-1})$. Consider the sets

$$E_{j} = \left\{ x \in A_{j}; \int_{B_{j}} \log \frac{|x|}{|x-y|} d\mu(y) \ge h(2^{-j})^{-1} a_{j}^{-1} \right\}$$

for j=1, 2,..., and $E=\bigcup_{j=1}^{\infty} E_j$, where $A_j=B(0, 2^{-j+1})-B(0, 2^{-j})$. By the assumption on h, one sees easily that

$$k(2^{-j})C(E'_j) \le a_j h(2^{-j}) k(2^{-j}) \mu(B_j) \le \text{const. } a_j \int_{B_j} \tilde{h}(|y|) d\mu(y).$$

Hence E is k-log thin at 0. Furthermore,

$$\limsup_{x\to 0, x\in \mathbb{R}^{n-E}} h(|x|) \int_{B(x,|x|/2)} \log \frac{|x|}{|x-y|} \, d\mu(y)$$

$$\leq \text{const. lim sup}_{j\to\infty} \sup_{x\in A_j-E_j} h(2^{-j}) \int_{B_j} \log \frac{|x|}{|x-y|} d\mu(y)$$

$$\leq \text{const. lim sup}_{j\to\infty} a_j^{-1} = 0,$$

and hence
$$\lim_{x\to 0, x\in\mathbb{R}^{n-E}} h(|x|) \int_{B(x,|x|/2)} \log \frac{|x|}{|x-y|} d\mu(y) = 0.$$

We are now ready to prove Theorem 1.

PROOF OF THEOREM 1. Without loss of generality, we may assume that x^0 is the origin 0. For a nonnegative measure μ on \mathbb{R}^n satisfying (1), we write

$$L\mu(x) = \int_{\{y; |x-y| \ge |x|/2\}} L(x-y) d\mu(y) + \int_{\{y; |x-y| < |x|/2\}} L(x-y) d\mu(y) = L'(x) + L''(x).$$

Note here that L'(x) is finite for any $x \neq 0$. Let

$$\varepsilon(\delta) = \sup_{0 \le r \le \delta} h(r) (\log r^{-1}) \mu(B(0, r)).$$

Then by our assumption, $\lim_{\delta \downarrow 0} \varepsilon(\delta) = 0$. If $x, y \in B(0, 1/4)$ and $|x - y| \ge |x|/2 > 0$, then

$$0 < L(x-y) \le \text{const.} \log \frac{1}{|x|+|y|}.$$

By (2), $\lim_{r\downarrow 0} h(r) = 0$. Hence we have again by (2),

$$\begin{split} & \limsup_{x \to 0} \ h(|x|) |L'(x)| = \lim \sup_{x \to 0} \ h(|x|) \int_{B(0,\delta) - B(x,|x|/2)} L(x - y) d\mu(y) \\ & \leq \text{const. } \lim \sup_{x \to 0} h(|x|) \int_{B(0,\delta)} \log \frac{1}{|x| + |y|} d\mu(y) \\ & \leq \text{const. } \lim \sup_{x \to 0} h(|x|) \Big\{ \mu(B(0,\delta)) \log (|x| + \delta)^{-1} \\ & + \int_0^\delta \mu(B(0,r)) (|x| + r)^{-1} dr \Big\} \leq \text{const. } \varepsilon(\delta) \end{split}$$

for δ , $0 < \delta < 1/4$. This implies that $\lim_{x\to 0} h(|x|)L'(x) = 0$. Since $\lim_{x\to 0} h(|x|) \cdot (\log |x|)\mu(B(x, |x|/2)) = 0$, with the aid of Lemma 1 we can find a set E in R^n which is k-log thin at 0 and satisfies

$$\lim_{x \to 0, x \in \mathbb{R}^n - E} h(|x|) L''(x) = 0.$$

3. Proofs of Theorems 2 and 3

Before giving proofs of Theorems 2 and 3, we recall the next result.

LEMMA 2 (cf. [9; Lemma 4]). If $x, y \in B(0, 1)$ and $|x-y| \ge |x|/2 > 0$, then

$$|L_m(x, y)| \leq \text{const.} \min\left(1, \frac{|x|}{|y|}\right) \times \begin{cases} \log\left(2 + \frac{|x|}{|y|}\right) & \text{when } m = 0, \\ |x|^m |y|^{-m} & \text{when } m \geq 1. \end{cases}$$

We shall give only a proof of Theorem 3, since Theorem 2 can be proved similarly by the use of Lemma 2.

PROOF OF THEOREM 3. We may assume that $x^0 = 0$. Let μ be a nonnegative measure on \mathbb{R}^n satisfying (1) and

$$\int H(|y|)k(|y|)d\mu(y) < \infty,$$

where $H(r) = r^{-m}h(r)$ for r > 0. By the assumptions on h, H satisfies condition (5) with h replaced by H. We write

$$\int L_m(x, y) d\mu(y) = \int_{R^{n-B}(0,2|x|)} L_m(x, y) d\mu(y)$$

$$+ \int_{B(0,2|x|)-B(x,|x|/2)} L_m(x, y) d\mu(y) + \int_{B(x,|x|/2)} L_m(x, y) d\mu(y)$$

$$= L'(x) + L''(x) + L'''(x).$$

If $y \in R^n - B(0, 2|x|)$, then Lemma 2 implies that

$$|L_m(x, y)| \le \text{const.} |x|^{m+1} |y|^{-m-1},$$

so that Lebesgue's dominated convergence theorem gives

$$\lim \sup_{x \to 0} |x|^{-m} h(|x|) |L'(x)|$$

$$\leq \text{const. } \lim \sup_{x \to 0} |x| h(|x|) \int_{R^{n} - B(0, 2|x|)} |y|^{-m-1} d\mu(y)$$

$$= \text{const. } \lim \sup_{x \to 0} |x| h(|x|) \int_{B(0, 1) - B(0, 2|x|)} |y|^{-m-1} d\mu(y) = 0$$

since $\lim_{r\downarrow 0} rh(r) = 0$ and $rh(r) \le k(1)^{-1} sh(s) k(s)$ for 0 < r < s < 1. If $y \in B(0, 2|x|)$ and $|x-y| \ge |x|/2 > 0$, then Lemma 2 implies that

$$|L_m(x, y)| \le \text{const.} |x|^m |y|^{-m}.$$

Hence we obtain

$$\lim \sup_{x \to 0} |x|^{-m} h(|x|) |L''(x)|$$

$$\leq \text{const. } \lim \sup_{x \to 0} h(|x|) \int_{B(0,2|x|)} |y|^{-m} d\mu(y) = 0$$

since $h(r) \le h(s) \le 2h(2s) \le 2k(1)^{-1}h(2s)k(2s)$ whenever 0 < s < r < 1/2. As to L''', we note that

$$|x|^{-m}h(|x|)|L'''(x)| \le \text{const. } H(|x|) \int_{B(x,|x|/2)} \log \frac{|x|}{|x-y|} d\mu(y) + \text{const. } \int_{B(x,|x|/2)} H(|y|) d\mu(y).$$

The second term of the right hand side tends to zero as $x \to 0$ by the assumption. In view of Lemma 1, the first term of the right hand side tends to zero as $x \to 0$, $x \in \mathbb{R}^n - E$, where E is k-log thin at 0. Thus the proof is complete.

REMARK 1. Theorem 3 is best possible as to the size of the exceptional set. In fact, if h and \tilde{h} are as in Theorem 3 and E is a subset of R^n which is k-log thin at x^0 , then one can find a nonnegative measure μ on R^n with compact support such that

$$\int |x^0 - y|^{-m} \tilde{h}(|x^0 - y|) d\mu(y) < \infty$$

and

$$\lim_{x \to x^0, x \in E} |x - x^0|^{-m} h(|x - x^0|) \int L_m(x, y) d\mu(y) = \infty.$$

REMARK 2. Let μ be a nonnegative measure on R^n satisfying (1) and let h be as in Theorem 3. If $\int |x^0-y|^{-m}h(|x^0-y|)d\mu(y) < \infty$ and there exist M, $r_0 > 0$ such that

$$h(|x-x^0|)\mu(B(x, r)) \le Mr^m$$

for any $x \in B(x^0, r_0)$ and any $r, 0 < r \le |x - x^0|/2$, then E appeared in Theorem 3 can be taken to be an empty set and $L\mu$ is m times differentiable at x^0 .

To prove this, assume that $x^0 = 0$. For the first assertion, in view of the proof of Theorem 3, it suffices to show that

(6)
$$\lim_{x\to 0} |x|^{-m}h(|x|) \int_{B(x,|x|/2)} \log \frac{|x|}{|x-y|} d\mu(y) = 0.$$

For $\delta > 0$, set $\varepsilon(\delta) = \sup_{0 < r \le \delta} r^{-m} h(r) \mu(B(0, r))$. If $0 < \delta < |x|/2$, then

$$|x|^{-m}h(|x|) \int_{B(x,|x|/2)} \log \frac{|x|}{|x-y|} d\mu(y)$$

$$= |x|^{-m}h(|x|) \int_{B(x,\delta)} \log \frac{|x|}{|x-y|} d\mu(y)$$

$$+ |x|^{-m}h(|x|) \int_{B(x,|x|/2)-B(x,\delta)} \log \frac{|x|}{|x-y|} d\mu(y)$$

$$\leq \text{const.} \left\{ \left(\frac{\delta}{|x|} \right)^m \log \frac{|x|}{\delta} + |x|^{-m} h(|x|) \mu(B(0, 2|x|)) \log \frac{|x|}{\delta} \right\}$$

$$\leq \text{const.} \left\{ \left(\frac{\delta}{|x|} \right)^m + \varepsilon(2|x|) \right\} \log \frac{|x|}{\delta}.$$

Since $\lim_{x\to 0} \varepsilon(2|x|) = 0$, for x sufficiently close to 0 we can choose $\delta > 0$ so that

$$\log \frac{|x|}{\delta} = [\varepsilon(2|x|) + |x|]^{-1/2}.$$

Since $\lim_{x\to 0} (\delta/|x|) = 0$, we derive (6).

To prove the second assertion, we first note that

$$\int |x-y|^{-m+1}d\mu(y) < \infty \quad \text{for every} \quad x \in B(0, r_0),$$

and hence $L\mu$ is m-1 times differentiable at $x \in B(0, r_0)$ and

$$\left(\frac{\partial}{\partial x}\right)^{\lambda} L \mu(x) = \int \left[\left(\frac{\partial}{\partial x}\right)^{\lambda} L\right] (x - y) d\mu(y)$$

for any $x \in B(0, r_0)$ and any multi-index λ with $|\lambda| = m - 1$. As in the proofs of Theorem 1 and Remark 4 in [6; Section 2], we can show that

$$\lim_{x\to 0} |x|^{-1} h(|x|) \{u_{\lambda}(x) - u_{\lambda}(0) - \sum_{i=1}^{n} a_{i} x_{i}\} = 0,$$

where $x = (x_1, ..., x_n)$ and $u_{\lambda} = (\partial/\partial x)^{\lambda} L \mu$ for a multi-index λ with length m-1 and $a_i = \int \left[\frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x} \right)^{\lambda} L \right] (-y) d\mu(y)$. This implies that $L\mu$ is m times differentiable at 0.

4. Proof of Theorem 4

We first recall the following results.

LEMMA 3 (cf. [7; Lemma 1]). Let μ be a nonnegative measure on R^n such that $\lim_{r\downarrow 0} r^{\alpha-n}\mu(B(0,r))=0$ for some real number α . Then the following statements hold:

- (i) If $\beta < 0$, then $\lim_{r \downarrow 0} r^{\beta} \int_{B(0,r)} |y|^{\alpha-\beta-n} d\mu(y) = 0$;
- (ii) If $n \alpha + 1 > 0$ and $\beta > 0$, then

$$\lim_{r \to 0} r^{\beta} \int_{B(0,1)} (r + |y|)^{\alpha - \beta - n} d\mu(y) = 0.$$

Lemma 4 (cf. [7; Lemma 4]). Set $u(x) = \int_{B(x^0,1)} L(x-y)dy$. Then $u \in C^{\infty}(B(x^0,1))$. Moreover, if λ is a multi-index with length n, then

$$B_{\lambda} \equiv \left[\left(\frac{\partial}{\partial x} \right)^{\lambda} u \right] (x^{0}) = \int_{\partial B(0,1)} y^{\lambda'} \left[\left(\frac{\partial}{\partial x} \right)^{\lambda''} L \right] (y) dS(y),$$

where $\lambda = \lambda' + \lambda''$ and $|\lambda'| = 1$.

Now we prove Theorem 4 by assuming that $x^0 = 0$. Let μ be a nonnegative measure on R^n satisfying (1), (a) and (b) with $x^0 = 0$. For $x \in B(0, 1/2) - \{0\}$, we write

$$|x|^{-n} \left\{ \int L_{n-1}(x, y) d\mu(y) - \sum_{|\lambda|=n} \frac{C_{\lambda}}{\lambda!} x^{\lambda} \right\}$$

$$= |x|^{-n} \int_{R^{n-B}(0,1)} L_{n}(x, y) d\mu(y)$$

$$+ |x|^{-n} \int_{B(0,1)-B(0,2|x|)} L_{n}(x, y) d\left[\mu - a\Lambda_{n}\right](y)$$

$$- |x|^{-n} \sum_{0 < |\lambda| \le n} \frac{x^{\lambda}}{\lambda!} \lim_{r \downarrow 0} \int_{B(0,2|x|)-B(0,r)} \left[\left(\frac{\partial}{\partial x} \right)^{\lambda} L \right] (-y) d\left[\mu - a\Lambda_{n}\right](y)$$

$$+ a|x|^{-n} \left\{ \lim_{r \downarrow 0} \int_{B(0,1)-B(0,r)} L_{n}(x, y) dy - \sum_{|\lambda|=n} \frac{B_{\lambda}}{\lambda!} x^{\lambda} \right\}$$

$$+ |x|^{-n} \int_{B(0,2|x|)-B(x,|x|/2)} L_{0}(x, y) d\left[\mu - a\Lambda_{n}\right](y)$$

$$+ |x|^{-n} \int_{B(x,|x|/2)} L_{0}(x, y) d\left[\mu - a\Lambda_{n}\right](y)$$

$$= u_{1}(x) + u_{2}(x) - u_{3}(x) + au_{4}(x) + u_{5}(x) + u_{6}(x).$$
If $y \in R^{n} - B(0, 2|x|)$, then $|L_{n}(x, y)| \le \text{const.} |x|^{n+1}|y|^{-n-1}$ and hence

$$\lim_{x\to 0} u_1(x) = 0.$$

For simplicity, set $v = |\mu - a\Lambda_n|$. Then $\lim_{r \to 0} r^{-n}v(B(0, r)) = 0$ by (a), and we have

$$\lim \sup_{x \to 0} |u_2(x)| \le \text{const. } \lim \sup_{x \to 0} |x| \int_{B(0,1)} (|x| + |y|)^{-n-1} d\nu(y) = 0$$

because of Lemma 3, (ii).

If $0 < |\lambda| < n$, then Lemma 3, (i) yields

$$\begin{aligned} &\limsup_{x\to 0} |x|^{|\lambda|-n} \int_{B(0,2|x|)} \left| \left[\left(\frac{\partial}{\partial x} \right)^{\lambda} L \right] (-y) \right| dv(y) \\ & \leq \text{const. } \lim \sup_{x\to 0} |x|^{|\lambda|-n} \int_{B(0,2|x|)} |y|^{-|\lambda|} dv(y) = 0. \end{aligned}$$

If $|\lambda| = n$, then, by [5; Lemma 3.1], $\int_{B(0,r)-B(0,s)} \left[\left(\frac{\partial}{\partial x} \right)^{\lambda} L \right] (-y) dy = 0$ for any

r, s>0. Hence by the definition of A_{λ} ,

$$\lim_{x\to 0}\left\{\lim_{r\downarrow 0}\int_{B(0,2|x|)-B(0,r)}\left[\left(\frac{\partial}{\partial x}\right)^{\lambda}L\right](-y)d[\mu-a\Lambda_n](y)\right\}=0.$$

Therefore, $\lim_{x\to 0} u_3(x) = 0$.

Since
$$u(x) \equiv \int_{B(0,1)} L(x-y) dy \in C^{\infty}(B(0,1))$$
 and
$$u_4(x) = |x|^{-n} \left\{ u(x) - \sum_{|\lambda| \le n} \frac{x^{\lambda}}{\lambda!} \left[\left(\frac{\partial}{\partial x} \right)^{\lambda} u \right] (0) \right\}$$

in view of Lemma 4, we see that $\lim_{x\to 0} u_4(x) = 0$.

As to u_5 , we obtain

$$|u_5(x)| \le \text{const.} |x|^{-n} \int_{B(0,2|x|)} \log\left(2 + \frac{|x|}{|y|}\right) dv(y)$$

$$\le \text{const.} |x|^{1-n} \int_{B(0,2|x|)} |y|^{-1} dv(y),$$

which tends to zero as $x \rightarrow 0$ by Lemma 1, (i).

Applying the following Lemma 5 with $h(r)=r^{-n}$ and k(r)=1, we see that $u_6(x)$ tends to zero as $x\to 0$, $x\in R^n-E$, where E is a set in R^n satisfying (ii) of the theorem. The proof of Theorem 4 is now complete.

LEMMA 5. Let h be a positive function on $(0, \infty)$, and define $b_j = \sup\{h(r); 2^{-j} \le r < 2^{-j+1}\}$. If v is a nonnegative measure on R^n such that $\lim_{j\to\infty} b_j k(2^{-j})v(B(0, 2^{-j+2}) - B(0, 2^{-j-1})) = 0$, then there exists a set E in R^n which is k-log semi-thin at 0 and satisfies

$$\lim_{x \to 0, x \in \mathbb{R}^{n} - E} h(|x|) \int_{B(x,|x|/2)} \log \frac{|x|}{|x - y|} dv(y) = 0.$$

The proof is similar to that of Lemma 1.

REMARK 1. If $\lim_{j\to\infty} C(E'_j) = 0$, then we can find a nonnegative measure μ on R^n with compact support such that $\lim_{r\to 0} r^{-n}\mu(B(0, r)) = 0$ and

$$\lim_{x\to 0, x\in E} |x|^{-n} \int L_{n-1}(x, y) d\mu(y) = \infty.$$

REMARK 2. Let μ be a nonnegative measure on R^n satisfying (1), (a), (b) and

(c) There exist M, $r_0 > 0$ such that $\mu(B(x, r)) \le Mr^n$ for any $x \in B(x^0, r_0)$ and any $r \le r_0$.

Then the set E in Theorem 4 can be taken to be empty and, moreover, $L\mu$ is n

times differentiable at x^0 .

This fact can be proved in the same way as in Remark 2 in Section 3.

5. Proof of Theorem 5

As before we assume that $x^0=0$. Let μ be a nonnegative measure on \mathbb{R}^n satisfying (1) and

(7)
$$\lim_{r \downarrow 0} r^{-m} \tilde{h}(r) \mu(B(0, r)) = 0.$$

Define $\varepsilon(\delta) = \sup_{0 < r \le \delta} r^{-m} \tilde{h}(r) \mu(B(0, r))$. By (7), $\lim_{\delta \downarrow 0} \varepsilon(\delta) = 0$. If m = 0, then

$$\int_0^\delta \frac{\mu(B(0, s))}{r + s} ds \le M \varepsilon(\delta) [h(r)]^{-1}$$

whenever $0 < r < \delta < 1$, on account of the assumptions on h and \tilde{h} . Since $\int_{r}^{\delta} \mu(B(0, s)) s^{-1} ds \ge \mu(B(0, r)) \log(\delta/r)$, it follows that $\limsup_{r \downarrow 0} h(r) (\log r^{-1}) \mu(B(0, r)) \le M \varepsilon(\delta)$. Thus

(8)
$$\lim_{r \to 0} h(r) (\log r^{-1}) \mu(B(0, r)) = 0.$$

Then the case m=0 can be proved in the same way as in Theorem 1 by using Lemma 5 in place of Lemma 1.

Let $m \ge 1$, and write

$$\begin{split} \int L_{m-1}(x, y) d\mu(y) &= \int_{B(x, |x|/2)} L_{m-1}(x, y) d\mu(y) \\ &+ \int_{R^{n-B(x, |x|/2)}} L_{m-1}(x, y) d\mu(y) = L'(x) + L''(x) \,. \end{split}$$

Since $\lim_{r\downarrow 0} r^{-m}h(2r)k(r)\mu(B(0, 4r)) = 0$ by (7), Lemma 5 implies that $|x|^{-m} \cdot h(|x|)L'(x)$ tends to zero as $x\to 0$ except for x in a set which is k-log semi-thin at 0. What remains is to prove that $|x|^{-m}h(|x|)L''(x)$ tends to zero as $x\to 0$. For this we deal only with the case m=1, because the case $m\ge 2$ can be proved similarly.

Let m=1. By Lemma 2,

$$|x|^{-1}h(|x|)|L''(x)| \le |x|^{-1}h(|x|) \int_{B(0,2|x|)} \log\left(2 + \frac{|x|}{|y|}\right) d\mu(y)$$

$$+ \text{const. } h(|x|) \int_{R^{n}-B(0,2|x|)} |y|^{-1} d\mu(y)$$

$$= I_{1}(x) + \text{const. } I_{2}(x).$$

Note that

$$\begin{split} I_{1}(x) & \leq \text{const.} \ |x|^{-1}h(|x|) \Big\{ \mu(B(0, \, 2|x|)) + \int_{0}^{2|x|} \mu(B(0, \, s))s^{-1}ds \Big\} \\ & \leq \text{const.} \ |x|^{-1}h(|x|) \Big\{ \mu(B(0, \, 2|x|)) + \varepsilon(\delta) \int_{0}^{2|x|} \frac{ds}{\tilde{h}(s)} \Big\} \\ & \leq \text{const.} \ \Big\{ |x|^{-1}h(|x|)\mu(B(0, \, 2|x|)) + \varepsilon(\delta)h(|x|) \int_{0}^{2|x|} \frac{ds}{\tilde{h}(s)(|x|+s)} \Big\} \\ & \leq \text{const.} \ \{ |2x|^{-1}\tilde{h}(2|x|)\mu(B(0, \, 2|x|)) + M\varepsilon(\delta) \} \end{split}$$

whenever $0 < 2|x| < \delta$. Similarly,

$$\begin{split} I_{2}(x) & \leq h(|x|) \Big\{ \int_{R^{n} - B(0, \delta)} |y|^{-1} d\mu(y) + \delta^{-1} \mu(B(0, \delta)) + \varepsilon(\delta) \int_{2|x|}^{\delta} \frac{ds}{\tilde{h}(s)s} \Big\} \\ & \leq h(|x|) \Big\{ \int_{R^{n} - B(0, \delta)} |y|^{-1} d\mu(y) + \delta^{-1} \mu(B(0, \delta)) \Big\} + 2M\varepsilon(\delta) \,. \end{split}$$

These yield that $\lim_{x\to 0} |x|^{-1}h(|x|)L''(x)=0$. Thus we conclude the proof of Theorem 5.

REMARK. The set E in Theorem 5 can be taken to satisfy

(9)
$$\lim_{i\to\infty} H(2^{-i})k(2^{-i}) \sum_{j=i}^{\infty} \frac{C(E'_j)}{H(2^{-j+1})} = 0,$$

where $H(r) = r^{-m}h(r)$. In fact, take a sequence $\{a_j\}$ of positive numbers such that $\lim_{j\to\infty} a_j = \infty$, $\lim_{j\to\infty} a_j H(2^{-j+1})k(2^{-j+1})\mu(B(0, 2^{-j+2})) = 0$ and

$$\sum_{j=i}^{\infty} a_j \mu(B_j) \le 2a_i \sum_{j=i}^{\infty} \mu(B_j) \quad \text{for each} \quad i,$$

where B_j are defined as in the proof of Lemma 1; this is possible as will be shown in the Appendix. As in the proof of Lemma 1, define E_j with h replaced by H and $E = \bigcup_{j=1}^{\infty} E_j$. It is easy to see that E satisfies (9).

The next proposition shows that (9) gives a best possible condition as to the size of E, in case $H(2r) \le \text{const. } H(r)$.

PROPOSITION 1. Let h be as in Theorem 5 and define H as above. If a set E in \mathbb{R}^n satisfies (9), then there exists a nonnegative measure μ on \mathbb{R}^n satisfying (1), $\lim_{r \to 0} H(r)k(r)\mu(B(0, r)) = 0$ and

$$\lim_{x\to 0, x\in E} H(2|x|) \int L_{m-1}(x, y) d\mu(y) = \infty.$$

PROOF. We assume that $C(E_j') > 0$ for each j. By definition of $C(\cdot)$, for each j we can find a nonnegative measure μ_j such that $\mu_j(R^n - B(0, 2^{-j+2})) = 0$, $\mu_j(B(0, 2^{-j+2})) < 2C(E_j')$ and

$$\int \log \frac{2^{-j+3}}{|x-y|} d\mu_j(y) \ge 1 \quad \text{for every} \quad x \in E_j,$$

where $E_j = E \cap B(0, 2^{-j+1}) - B(0, 2^{-j})$. Take a sequence $\{a_j\}$ of positive numbers such that $\lim_{j\to\infty} a_j = \infty$,

$$\lim_{i \to \infty} a_i H(2^{-i}) k(2^{-i}) \sum_{j=i}^{\infty} \frac{C(E_j')}{H(2^{-j+1})} = 0$$

and

$$\sum_{j=i}^{\infty} a_j \frac{C(E'_j)}{H(2^{-j+1})} \le 2a_i \sum_{j=i}^{\infty} \frac{C(E'_j)}{H(2^{-j+1})} \quad \text{for each } i$$

(see Lemma 6 in Appendix). Denote by μ'_j the restriction of μ_j to the set $B_j = B(0, 2^{-j+2}) - B(0, 2^{-j-1})$, and define a nonnegative measure μ by

$$\mu = \sum_{j=1}^{\infty} \frac{a_j}{H(2^{-j+1})} \mu'_j.$$

Let i be a positive integer. Then we see that

$$\begin{split} H(2^{-i})k(2^{-i})\mu(B(0,2^{-i})) & \leq H(2^{-i})k(2^{-i}) \sum_{j=i}^{\infty} \frac{a_j}{H(2^{-j+1})} \mu'_j(B_j) \\ & \leq 4a_i H(2^{-i})k(2^{-i}) \sum_{j=i}^{\infty} \frac{C(E'_j)}{H(2^{-j+1})} \\ & \longrightarrow 0 \quad \text{as} \quad i \longrightarrow \infty, \end{split}$$

so that $\lim_{r\downarrow 0} H(r)k(r)\mu(B(0, r)) = 0$.

On the other hand, if $x \in E_j$, then

$$H(2|x|) \int_{B_j} \log \frac{2^{-j+3}}{|x-y|} d\mu(y)$$

$$\geq 2^{-m} a_j \{ 1 - 4(\log 2) \mu_j(B(0, 2^{-j-1})) \} \longrightarrow \infty \quad \text{as} \quad j \longrightarrow \infty.$$

Since $\lim_{r\downarrow 0} H(r)\mu(B(0, r)) = 0$,

$$\lim_{j\to\infty} \sup_{x\in E_j} H(2|x|) \int_{B_j - B(x,|x|/2)} \log \frac{|y|}{|x-y|} d\mu(y) = 0$$

and

$$\lim_{j\to\infty}\sup_{x\in E_j}H(2|x|)\sum_{1\leq |\lambda|\leq m-1}\int_{B(x,|x|/2)}\frac{x^\lambda}{\lambda!}\left[\left(\frac{\partial}{\partial x}\right)^\lambda L\right](-y)d\mu(y)=0.$$

Hence it follows that

$$\lim_{x \to 0, x \in E} H(2|x|) \int_{B(x,|x|/2)} L_{m-1}(x, y) d\mu(y) = \infty$$

in case $m \ge 1$. This also holds in case m = 0 on account of (8). Noting that h(2r) satisfies all the conditions on h in Theorem 5, we derive

$$\lim_{x\to 0} H(2|x|) \int_{\mathbb{R}^{n-B}(x,|x|/2)} L_{m-1}(x, y) d\mu(y) = 0,$$

in view of the proof of Theorem 5. Thus $\lim_{x\to 0, x\in E} H(2|x|) \int L_{m-1}(x, y) d\mu(y) = \infty$.

By Theorem 5 we can establish the following result.

PROPOSITION 2. Let h be as in Theorem 5, and μ be a nonnegative measure on R^n satisfying (1). Then the following statements are equivalent:

(i) There exists a set E in R^n which is logarithmically semi-thin at x^0 and satisfies

$$\lim_{x \to x^0, x \in \mathbb{R}^{n} - E} h(|x - x^0|) L \mu(x) = 0.$$

(ii) There exists a sequence $\{x^{(j)}\}$ in \mathbb{R}^n such that $x^{(j)} \to x^0$ as $j \to \infty$, $\{|x^{(j)} - x^0|/|x^{(j+1)} - x^0|\}$ is bounded and

$$\lim_{j \to \infty} h(|x^{(j)} - x^0|) L \mu(x^{(j)}) = 0.$$

(iii) $\lim_{r\to 0} h(r) (\log r^{-1}) \mu(B(x^0, r)) = 0.$

PROOF. Without loss of generality, we may assume that $x^0 = 0$. The implication (iii) \rightarrow (i) follows readily from Theorem 5.

(i) \rightarrow (ii): Let B = B(0, 1). Then $B'_j = B(0, 2) - B(0, 1)$ and $\lim_{j \to \infty} jC(B'_j - E'_j) = \infty$. Hence we can find a sequence $\{x^{(j)}\}$ such that $x^{(j)} \in B(0, 2^{-j+1}) - B(0, 2^{-j}) - E$ for large j. This sequence satisfies all the conditions in (ii).

(ii) \rightarrow (iii): Let $\{x^{(j)}\}$ be a sequence in (ii). Then one notes that

$$h(|x^{(j)}|) \left(\log \frac{1}{|x^{(j)}|}\right) \mu(B(0, |x^{(j)}|))$$

$$\leq h(|x^{(j)}|) \int_{B(0, |x^{(j)}|)} \log \frac{2}{|x^{(j)} - y|} d\mu(y)$$

$$\leq h(|x^{(j)}|) \int_{B(0, 1)} \log \frac{2}{|x^{(j)} - y|} d\mu(y)$$

$$\longrightarrow 0 \quad \text{as} \quad j \longrightarrow \infty.$$

Take M>1 such that $|x^{(j)}| \le M|x^{(j+1)}|$ for each j. Then $(0, M|x^{(1)}|] \subset \bigcup_{j=1}^{\infty} [M^{-1}|x^{(j)}|, M|x^{(j)}|]$. If $M^{-1}|x^{(j)}| \le r \le M|x^{(j)}| < 1$, then

$$h(M^{-1}r)(\log Mr^{-1})\mu(B(0, M^{-1}r))$$

$$\leq \operatorname{const.} h(|x^{(j)}|) \left(\log \frac{1}{|x^{(j)}|}\right) \mu(B(0, |x^{(j)}|)) \longrightarrow 0 \quad \text{as} \quad j \longrightarrow \infty,$$

from which (iii) follows readily. The proof in now complete.

For similar results on semi-fine limits of Riesz potentials, see Mizuta [8; Theorems 2 and 2'].

REMARK. Let $\tilde{h}(r)$ be nonincreasing on the interval (0, 1) and define

$$E = \{x \in \mathbb{R}^n; \lim \sup_{r \downarrow 0} \tilde{h}(r) \mu(B(x, r)) > 0\}$$

for a nonnegative measure μ on R^n . If $\mu(E)=0$, then $\Lambda_{\tilde{h}^{-1}}(E)=0$, where $\Lambda_{\tilde{h}^{-1}}$ denotes the Hausdorff measure with respect to the measure function \tilde{h}^{-1} ; in particular, if μ is absolutely continuous with respect to the *n*-dimensional Lebesgue measure and $\lim_{r \to 0} r^n \tilde{h}(r) = 0$, then $\Lambda_{\tilde{h}^{-1}}(E) = 0$.

5. Logarithmic potentials of functions in L^p

For a nonnegative measurable function f on \mathbb{R}^n such that

(10)
$$\int [\log (1+|y|)] f(y) dy < \infty,$$

we define

$$Lf(x) = \int L(x-y)f(y)dy.$$

If in addition $f \in L^p(\mathbb{R}^n)$, p > 1, then Lf is continuous on \mathbb{R}^n .

PROPOSITION3. Let m be a positive integer smaller than n, and f be a nonnegative function in $L^p(\mathbb{R}^n)$ satisfying (10). Then there exists a set E in \mathbb{R}^n such that $B_{n-m,p}(E)=0$ and for any $x^0\in\mathbb{R}^n-E$,

(11)
$$\lim_{x \to x^0} |x - x^0|^{-m} \int L_m(x, y) f(y) dy = 0.$$

Here $B_{\alpha,p}$ denotes the Bessel capacity of index (α, p) (see [4]).

PROOF OF PROPOSITION 3. Consider the sets

$$E_{1} = \left\{ x; \int |x - y|^{-m} f(y) dy = \infty \right\},$$

$$E_{2} = \left\{ x; \lim \sup_{r \downarrow 0} r^{(n-m)p-n} \int_{B(x,r)} f(y)^{p} dy > 0 \right\}.$$

Then, in view of [4; Theorem 21], $B_{n-m,p}(E_1 \cup E_2) = 0$. We have only to show that for $x^0 \in \mathbb{R}^n - E_1 - E_2$,

$$\lim_{x\to x^0} |x-x^0|^{-m} \int_{B(x,|x-x^0|/2)} \log \frac{|x-x^0|}{|x-y|} f(y) dy = 0$$

(see the proof of Remark 2 in Section 3). For this, without loss of generality, we may assume that $x^0 = 0$. By Hölder's inequality,

$$|x|^{-m} \int_{B(x,|x|/2)} \log \frac{|x|}{|x-y|} f(y) dy$$

$$\leq |x|^{-m} \left\{ \int_{B(x,|x|/2)} \left(\log \frac{|x|}{|x-y|} \right)^{p'} dy \right\}^{1/p'} \left\{ \int_{B(x,|x|/2)} f(y)^p dy \right\}^{1/p}$$

$$\leq \text{const.} \left\{ |x|^{(n-m)p-n} \int_{B(0,2|x|)} f(y)^p dy \right\}^{1/p},$$

which tends to zero as $x \rightarrow 0$, where 1/p + 1/p' = 1.

In the same way we can prove the next result (see also [7; Theorem 3 and its corollary]).

PROPOSITION 4. If f is as above, then (11) with m=n holds for almost every $x^0 \in \mathbb{R}^n$.

6. Fine limits at infinity of logarithmic potentials

We say that a set E in R^n is logarithmically thin at infinity if $E^* = \{x/|x|^2; x \in E\}$ is logarithmically thin at 0. Then it is easy to see that E is logarithmically thin at infinity if and only if

$$\sum_{j=1}^{\infty} jC(E'_{-j}) < \infty, \quad E'_{-j} = \{x \in B(0, 2) - B(0, 1); \, 2^{j}x \in E\}.$$

By inversion we can establish the next result.

THEOREM A'. Let μ be a nonnegative measure on R^n satisfying (1). Then the following statements hold:

(i) There exists a set E in \mathbb{R}^n which is logarithmically thin at infinity and satisfies

$$\lim_{|x|\to\infty,x\in R^n-E}\left[L\mu(x)+\mu(R^n)\log|x|\right]=0.$$

(ii) There exists a set E in \mathbb{R}^n which is logarithmically thin at infinity and satisfies

$$\lim_{|x| \to \infty, x \in \mathbb{R}^{n} - E} [\log |x|]^{-1} \int \tilde{L}_{0}(x, y) d\mu(y) = -\mu(\mathbb{R}^{n}),$$

where $\tilde{L}_0(x, y) = L(x-y)$ if $|y| \le 1$ and $\tilde{L}_0(x, y) = L(x-y) - L(y)$ if |y| > 1.

REMARK 1. Let μ be a nonnegative measure on R^n . Then $\int |\tilde{L}_0(x, y)| d\mu(y) < \infty$ for almost every x if and only if $\int (1+|y|)^{-1} d\mu(y) < \infty$ on account of [9; Lemma 4].

REMARK 2. Let μ be a nonnegative measure on R^n such that $L\mu(0)$ is finite, and define μ^* by setting $\mu^*(A^*) = \mu(A)$ for $A \subset R^n$, where $A^* = \{x^* = x/|x|^2; x \in A\}$. Then

$$L\mu^*(x^*) = L\mu(x) + \mu(R^n)\log|x| - L\mu(0)$$
.

We say that a set E in \mathbb{R}^n is logarithmically semi-thin at infinity if $\lim_{j\to\infty} jC(E'_{-j})=0$. By Proposition 2 we have the following result.

PROPOSITION 2'. Let h be a nonincreasing and positive function on $(0, \infty)$ such that

$$\int_{2}^{\infty} \frac{dt}{h(t)(\log t)t(t+r)} \le \text{const.} \frac{1}{rh(r)} \quad \text{for any} \quad r > 1.$$

Let μ be a nonnegative measure on R^n with finite total mass. Then the following statements are equivalent:

(i) There exists a set E in R^n which is logarithmically semi-thin at infinity such that

$$\lim_{|x|\to\infty,x\in\mathbb{R}^n-E}h(|x|)\left\{\int \tilde{L}_0(x,\,y)d\mu(y)+\mu(\mathbb{R}^n)\log|x|\right\}=0.$$

(ii) There exists a sequence $\{x^{(j)}\}$ in \mathbb{R}^n such that $\lim_{j\to\infty}|x^{(j)}|=\infty$, $\{|x^{(j+1)}|/|x^{(j)}|\}$ is bounded and

$$\lim\nolimits_{j\to\infty}h(|x^{(j)}|)\left\{\int \tilde{L}_0(x^{(j)},\,y)d\mu(y)+\mu(R^n)\log|x^{(j)}|\right\}=0.$$

(iii) $\lim_{r \downarrow 0} h(r) (\log r) \mu(R^n - B(0, r)) = 0.$

Theorems 1 and 2 can be reformulated similarly; but we do not go into detail.

Finally, corresponding to Theorems 3 and 5, we give generalizations of Theorems 1 and 2 in [9].

THEOREM 3'. Let h and k^* be nondecreasing positive functions on $(0, \infty)$ such that

- (a) $r^{-1}h(r)$ is nonincreasing on $(0, \infty)$ and $\lim_{r\to\infty} r^{-1}h(r)=0$;
- (b) $k^*(2r) \le Mk^*(r)$ for r > 0;
- (c) $\frac{s}{r} \log \frac{r}{s} \le M \frac{\tilde{h}(r)}{h(r)}$ whenever 0 < s < r,

where $\tilde{h} = hk^*$ and M is a positive constant independent of r and s. Let μ be a nonnegative measure on R^n satisfying

$$\int |y|^{-m-1} \tilde{h}(|y|) d\mu(y) < \infty$$

for a nonnegative integer m. Then there exists a set E in R^n having the following properties:

(i)
$$\lim_{|x|\to\infty,x\in\mathbb{R}^n-E}|x|^{-m-1}h(|x|)\int \tilde{L}_m(x,y)d\mu(y)=0;$$

(ii)
$$\sum_{i=1}^{\infty} k^*(2^i)C(E'_{-i}) < \infty$$
.

Here $\tilde{L}_m(x, y) = L(x - y)$ if |y| < 1 and $\tilde{L}_m(x, y) = L(x - y) - \sum_{|\lambda| \le m} \frac{x^{\lambda}}{\lambda!} \left[\left(\frac{\partial}{\partial x} \right)^{\lambda} L \right]$ (-y) if $|y| \ge 1$.

THEOREM 5'. Let h and k* be as above. Assume further that

(d)
$$\int_{1}^{\infty} \frac{dt}{\tilde{h}(t)(t+r)} \le \frac{M}{h(r)} \quad for \quad r > 1,$$

where M is a positive constant independent of r. If μ is a nonnegative measure on R^n satisfying $\lim_{r \to 0} r^{-m-1} \tilde{h}(r) \mu(B(0, r)) = 0$ for a nonnegative integer m, then there exists a set E in R^n having (i) of Theorem 3' and

(ii)'
$$\lim_{j\to\infty} k^*(2^j)C(E'_{-j})=0.$$

Appendix

Here we prove the next elementary fact.

LEMMA 6. Let $\{b_j\}$, $\{c_j\}$ be sequences of positive numbers such that $\lim_{j\to\infty}b_j=\infty$ and $\sum_{j=1}^{\infty}c_j<\infty$. Then there exists a sequence $\{a_j\}$ of positive numbers such that $a_j\leq b_j$ for each j, $\lim_{j\to\infty}a_j=\infty$ and

$$\sum_{i=k}^{\infty} a_i c_i \leq 2a_k \sum_{i=k}^{\infty} c_i \quad \text{for each} \quad k.$$

PROOF. We may assume that $b_j \le b_{j+1} \le pb_j$ for each j, where 1 . For given <math>q > 0 we can find a sequence $\{k_i\}$ of nonnegative integers such that $k_0 = 0$, $k_1 = 1$, $k_i < k_{i+1}$ for i = 1, 2, ... and

$$\sum_{j=k_{i+1}+1}^{\infty} c_j \le q \sum_{j=k_{i+1}}^{k_{i+1}} c_j \quad \text{for } i = 1, 2, \dots$$

Define $a_i = b_i$ if $k_i < j \le k_{i+1}$. For $k_i < k \le k_{i+1}$ we have

$$\begin{split} \sum_{j=k}^{\infty} a_{j} c_{j} &= \sum_{j=k}^{k_{i+1}} a_{j} c_{j} + \sum_{\ell=i}^{\infty} \left(\sum_{j=k\ell+1+1}^{k\ell+2} a_{j} c_{j} \right) \\ &= b_{i} \sum_{j=k}^{k_{i+1}} c_{j} + \sum_{\ell=i}^{\infty} \left(b_{\ell+1} \sum_{j=k\ell+1+1}^{k\ell+2} c_{j} \right) \\ &\leq b_{i} \sum_{j=k}^{k_{i+1}} c_{j} + \left(\sum_{\ell=i}^{\infty} \left(pq \right)^{\ell-i} \right) b_{i+1} \sum_{j=k\ell+1+1}^{k_{i+2}} c_{j} \\ &\leq \frac{p}{1 - nq} b_{i} \sum_{j=k}^{\infty} c_{j} = \frac{p}{1 - nq} a_{k} \sum_{j=k}^{\infty} c_{j}, \end{split}$$

if pq < 1. Hence if q is chosen sufficiently small, then $\{a_j\}$ satisfies all the conditions in the lemma.

References

- [1] M. Brelot, On topologies and boundaries in potential theory, Lecture Notes in Math. 175, Springer, Berlin·Heidelberg·New York, 1971.
- [2] A. M. Davie and B. Øksendal, Analytic capacity and differentiability properties of finely harmonic functions, Acta Math. 149 (1982), 127-152.
- [3] B. Fuglede, Fonctions BLD et fonctions finement surharmoniques, Séminaire de Théorie du Potentiel, No. 6, Lecture Notes in Math. 906, Springer, Berlin-Heidelberg-New York, 1982.
- [4] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand. 26 (1970), 255-292.
- [5] Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiroshima Math. J. 4 (1974), 375–396.
- [6] Y. Mizuta, Fine differentiability of Riesz potentials, Hiroshima Math. J. 8 (1978), 505-514.
- [7] Y. Mizuta, Semi-fine limits and semi-fine differentiability of Riesz potentials of functions in L^p, Hiroshima Math. J. 11 (1981), 515-524.
- [8] Y. Mizuta, On semi-fine limits of potentials, Analysis 2 (1982), 115-139.
- [9] Y. Mizuta, On the behaviour at infinity of superharmonic functions, J. London Math. Soc. 27 (1983), 97-105.
- [10] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.

Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University