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Abstract: We consider initial-boundary value problems for heterogeneous reaction-
diffusion equations -^-=-=— (d(x) -^-+e(x)u)-{- εf(x, w), and study transient and

ot ox ox
large time behaviors of solutions. Our method is to explicitly construct a two-
timing function ι/(/, εt, x) that converges to the exact solution as ε [ 0 uniformly in
ίe[0, oo). Such an explicit expression of approximate solutions in terms of two-
timing functions can be applied to a fairly general class of equations of the above
form as well as weakly-coupled systems of such equations.

1. Introduction

We consider the initial value problem with a small parameter ε,

ut 4- Au = εF(u)
(1.1) in B,

I (0)
where B is a Banach space and A is a sectorial operator in B and u(t) e D(A) Π

CHiO, oo); B). We impose the following conditions on A and F: for simplicity,

we denote the norm by || | |B and also the operator norm by the same symbol, if

there is no ambiguity.

1) σ(A), the spectral set of A, consists of σ1 = {0}, σ2cz{AeC| R e λ x x > 0 for

some constant α>0}.

2) There exists Mx > 0 such that

where e~tA is a semigroup generated by A.

Let Q, P be projections corresponding to σl9 σ2 respectively.

3) QB = Ker A and it is a finite dimensional space.

4) There exist M2 > 0, λγ > 0 such that

\\e'tAP\\B ^ M2e-^ for t ^ 0.

5) F(u) is a twice Frechet differentiable mapping from B into itself and for each

bounded set B0'm B there exists M 3 > 0 depending on Bo such that
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IIFOOIU, \\F'(u)\\B9 \\F"(u)\\B ^ M3 on Bo,

where ' represents the Frechet derivative.

We are concerned with the study of transient and asymptotic behaviors of the

solution u(t; ε). This study is motivated by ecological problems proposed by

Shigesada [8]. First let us briefly state the ecological background of the problem

(1.1).

Consider a bounded heterogeneous habitat where N-species are interacting

one another and are migrating by both random motion and direct movement to-

ward favoured states. Then the population density of the ΐ-th species u, in a one

dimensional habitat J = (0, L) is described by the heterogeneous reaction-diffusion-

advection system

(1.2) -gj-Ui + ^faud^effaύ), x e / , ί > 0 (ί = l ,2 , . . . ,N),

where w=(u l 5 w2, ..> UN) and the flux J f(x, ut) of ut takes the form

(1.3) Jfc, ut) = - dfr)-^ut - eix)ut 0 = 1, 2,..., N),

where the first and second terms represent the diffusion process withd ί(x)>D and

the advection one, respectively. If e^x) is written as eί(x) = -τ^-£i(x), the function

Et(x) is called the environmental potential in the sense that individuals of the t'-th

species have the tendency to migrate toward the minimum points of E£x) in /.

fi(x, u) is the spatially inhomogeneous growth rate of ut due to ecological inter-

actions among ΛΓ-species. In many ecological systems, the dispersal processes

take place daily but the growth processes do only once or twice a year; that is,

the processes proceed on totally different time scales. It therefore seems natural

to assume ε in (1.2) to be very small.

A simple but motive example of (1.2) for a single species is

(1.4) - ^ + ^-J(x, ii) = ε{a(x)-b(x)u}u,

where J(x, u) is the flux of u as in (1.3) with N=l and the growth rate ε{a(x)

— b(x)u} is a heterogeneous version of the Pearl-Verhulst logistic law. It is

assumed here that b(x) is positive, while the sign of a(x) may vary.

The initial and boundary conditions for (1.2) are given by

(1.5) wt(0, x) = uoi(x)9 xel
0 = 1 , 2,..., TV),

(1.6) Ji(x, Uι) = 0, xedh t > 0

respectively. We are interested in the study of the effect of the heterogeneities of
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di(x), ef(x),/f(x, u) and uOi(x) on the behavior of solutions to the problem (1.2),

(1.5), (1.6). In ecological terms, we are concerned with the existence or extinc-

tion of the species; in other words, which species can survive and which species

become extinct. To our knowledge, it is rather hard to study the transient and

asymptotic behaviors of solutions of heterogeneous reaction-diffusion-advection

systems such as (1.2). Although there is an extensive literature on heterogeneous

reaction-diffusion systems (Fleming [2], Fife and Peletier [1], Kurland [4],

Mimura and Nishiura [6] etc), only a few of those deal with the transient or the

asymptotic behavior of solutions.

Recently, assuming that ε is sufficiently small, Shigesada [8] has applied the

two-timing method (see, for instance, Nayfeh [7]) to the problem (1.4), (1.5), (1.6)

( N = 1) and has then constructed a lowest order approximate solution of the form

(1.7) u(t, x; ε) = w(t9 x)n(εf).

Here w(ί, x) is a solution of (1.4), (1.5), (1.6) in the limit ε | 0; that is, w satisfies

- -w—J(x, w) = 0, x e /, t > 0

together with (1.6) and

and n(τ) is a solution of

(1.8)

= { {a(χ) - b(x)nw(x)}nw(x)dx, τ > 0,

where w(x) = limf_00 w(ί, x). The first equation of (1.8) is reduced to

= (abn)n~~ = (a-bn)n9 τ>0,

= ( α(x)w(x)rfx, b = ί b(x)w2(x)dx.

where

Shigesada [8] numerically showed that the approximate solution ύ(t, x ε), which

is formally valid for time up to O(l/ε), agrees fairly well with the exact solution

even for a longer time range. On these observations, she used the O. D. E. (1.8)

to study whether the species survives or becomes extinct. More precisely, observ-
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ing that lim^oo n(τ) = a/b>0 if a>0 and lim^^ n(τ) = 0 if α<0, she concluded
from the representation (1.7) that l im,^ u(t, x; ε)>0 if α>0 and lim^^. «(ί, x;
ε)=0 if α<0, where u(ί, x; ε) is the solution of (1.4), (1.5), (1.6) with N = l ; in
other words, the population survives if a >0 and becomes extinct if a <0. When
e(x) is neglected in (1.4), this conclusion can be justified by the results of Fleming
[2].

Shigesada's approach motivates us to construct a "two-timing" function of
the form (1.7) that approximates the solution of (1.2), (1.5), (1.6) fairly accurately
uniformly in time. The results will be stated in an abstract form in the next sec-
tion (Theorems 1-3).

In Section 3, we give some examples to illustrate how our abstract results
apply to specific equations. In particular, Shigesada's approach to the equation
(1.4) will be completely justified in the following sense (see Example 3.1 for detail):
let u(t, x; ε) and ύ(t, x; ε) be a solution of (1.4), (1.5), (1.6) C/V = l) and a "two-
timing" function of the form (1.7) respectively; then, if α>0,

for some positive constant Cι and

\ u(t, x; ε)dx-n(εt) g C2ε (0<^t< +oo)

for some positive constant C2. On the other hand, if α<0, then

||ιι(ί, ε)-w(f, . ε) | |L- ( / ) g C 3 ε ^ ε ί (0^ ί< +oo)

for some positive constants C3 and β. Therefore, it follows from l im,^ u(t, x;
ε) = α/b vv(x) for α>0 and lim^^ u(ί, x; ε) = 0 for α<0, that the sign of a
determines the existence or extinction of the population.

2. Main results

In this section we consider the abstract equation (1.1). The results will then
be applied to specific equations of the form (1.2) in the next section.

Under the conditions l)-5) stated in Section 1, we consider the following
equations:

in B^QB.

= Qu0

Denoting by y(τ; Qu0) the solution of (2.1), we define v(τ) by
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υ{τ\ u0) = y(τ; Qu0) + PuQ.

Then we have

THEOREM 1. Suppose that the solution Qv(τ; u0) ( = y(τ; Qu0)) converges

as τ-*oo to some ξeBX~QB satisfying (λF(£) = 0 and that all eigenvalues of the

Jacobian QF'(ξ)\Bι have negative real parts. Let u(t; uOi ε) be the solution of

(1.1). Then there exist positive constants C and ε0 such that

\\u(t; u09 ε)-e~tA v(εt\ uo)\\B g Cε

for all εe(0, ε0] and all ί e [ 0 , oo).

COROLLARY TO THEOREM 1. In addition to the assumptions of Theorem 1,

suppose that ξ satisfies F(ξ) = Q. Then there exist positive constants β, C and ε0

such that

\\u(t; ii0, e)-e-tΛυ(et 9 uo)\\B ^ Cεe~P£t

for all ε e (0, ε 0] and all t e [0, oo).

THEOREM 2. Suppose that the solution Qv(τ; u0) exists for τ e [ 0 , T] for

some T<oo. Then there exist positive constants CT and ετ depending on Tsuch

that

\\u(t; t/0, ε)-e~tΛ v(εt; uo)\\B S Cτε

for all ε e (0, εΓ] and all t e [0, T/ε].

We next consider the stationary equation of (1.1)

(2.2) Aw = εF(w) in B.

THEOREM 3. Suppose that there exists ξeBx satisfying QF(ξ)=O and

d e t ( β F ' ( £ ) | β l ) # 0 . Then there exists a positive constant ε0 such that (2.2) has

a unique solution w(ε) satisfying w(ε)eC2(( —ε0, ε 0); B) and w(0) = ξ.

The proof will be given in Section 4.

3. Applications

We apply the results in Section 2 to specific models such as (1.2). We first

consider the case 7V = 1. Define Z = L2(/) and the inner products (u, v) in X by

(M, V)-{ u(x)v(x)k(x)dxi where

k(x) = ( exp ( - U(s))ds exp (U(x)) with U(x) =t {* e(s)td(s)ds.
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Here we assume that each coefficient in (1.2) is real-valued and in Hι(I). Let

the operator A in X be Au=-~—J(x, w), the domain of A be D(A) = {u e H2(I) \

J(x, u) = 0 on x e dl} respectively. Then

for u, ve D(A) and A is found to be a non-negative and self-adjoint operator in X.
Thus, σ(A) consists of {0 = /10<A1 <,...}, where λt (Ϊ = 0, 1, 2,...) are the eigenvalues
of A and Ker A = (φ0} with φQ{x) = \jk{x). We now find that the projections Q
and P are given by

Qu = (w, φo)φo = j u(x)φo(x)k(x)dx Φo = j u(

and P = I — Q, respectively.
Suppose that f(x, u) takes the form f(x, w)=Σ«=o <*n(

x)u"> where m is a
non-negative integer and αn(x) e H^I). Then F(w)(x)=/(x, M) is a polynomial
mapping on X1/2 = D(A1/2) with the graph norm.

THEOREM 4. Xlί2 = Hί(I) with equivalent norms.

The proof will be given in Section 4. Thus, if we set B^Hί(I) and 4̂M =

^-J(x, w) with D(X) = {ue//2(/)| J(x, u) = 0 on xeδ/ and ^4WG5}, then con-

ditions l)-5) in Section 1 are satisfied. When iV^2, we may take ^ { i
Now we consider two typical examples.

(3.1)

EXAMPLE 1. Consider a single species model described by

d(x)^-+ e ( x ) u } + ε { a ( x ) • b(χwu>χe/'

+ e(x)w = 0, xedl, t > 0,

M(0, X) = ιιo(x) ^ 0, uo(x)φ0, xel,

( I f

where d(x) is positive on /. Since Qu = \ u(x)dx φ0, we obtain the following

equation with respect to y(τ) = n(τ)φ0:

(3.2)

τ > 0 ,

The above problem reduces to
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n = (a — bn)n, τ > 0,
dτ

π(0) = ^ uo(x)dx > 0,

(3.3)

where ίz = \ a(x)φo(x)dx and fr = \ b(x)φl(x)dx. It follows from (3.3) that if

b>0,

( i ) l i m ^ n(τ) = α/& for α > 0,

(ϋ) l i m ^ ^ n(τ) = 0 for a < 0

and if b<0,

(Hi) limt_τo/ι(τ) = oo for α > 0 ,

(iv-1) limτ_,, n(τ) = 0 (0 < w(0) < a/b) for α < 0,

(iv-2) limτ_τ i n(τ) = oo (α/6 < n(0)),

where τ 0 , τ x are some finite numbers. For the case (i), Theorem 1 shows

||iι(ί, ε)-e-tA(n(εt)φ0 + Pu0)\\Hi g Cε, 0 g t < + oo

for some C. Hence,

ί, x ε)dx — n(εt) ^ Cε, 0 ^ ί < 4- oo,

which indicates that the species will survive. For the cases (ii) and (iv-1), we

note that M = 0 is a solution of F(u) = 0 and that Q.Fr(0)\Bί = a<0. Thus, Corol-

lary to Theorem 1 shows

||ιι(ί, 8)-e-'Λ(n(εt)φ0 + Pu0)\\Hί ^ Cee-'«, 0 ^ t < + oo

for some C and β, which indicates the extinction of the species as ί->oo. Finally,

consider the cases (iii) and (iv-2), where the solution n(τ) blows up in a finite time.

We expect that, in these cases, the original solution u(t, x; ε) also blows up in a

finite time, yet we have no rigorous results.

The above observations illustrate, in a very explicit manner, the eίfect of the

functions a(x), b(x)9 e(x) and uo(x) on the transient and large time behaviors of

solutions.

EXAMPLE 2. Consider a two competing species model described by the equa-

tions
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~dΓUί + ~SχJγ = β ί r i W ~ M i -cu2}uΛ

(3.4)
0, x e / = (0, 2),

0, x) = uOί(x), u2(0, x) = uO

where J\ takes the form of (1.3), rt(x) (> 0) is the intrinsic growth rate of uL (ί = 1, 2)

and c(>0) is the interspecific competition rate between the two species. An

ecological interest in (3.4) is to study whether or not the two species can coexist

under the competitive interaction.

In order to investigate quantitatively the effect of rt(x) and e,(x) 0 = 1, 2) on

the behavior of solutions, let us specify the coefficients as follows:

dt(x) = d2(x) = 1, = 1 - O.lx, r2(x) = 1 + 0.5x.

For simplicity, let us first consider the special case where φ ) = 0 0 = 1, 2).

Ecologically, this means that the environmental potentials are spatially homo-

geneous (see Introduction). This special case was first studied by Su Yu [10]

(he also considered non-autonomous equations). In this case, a simple calculation

shows that the corresponding O. D. E. system to (2.1) takes the form

nΛ = (rί-nί-cn2)nί

(3.5)
dτ

n2 = (r2-cnΛ-n2)n2

Γ2 Γ2
nΛ(0) = \ uOi(x)dx, n2(0) = \ MO2(X)C/X,

\ Jo Jo

where r f =l/2 \ rt(x)dx (i = l, 2); and it follows from Theorem 1 (and also from

[10]) that the large time behavior of (3.4) is essentially dominated by that of (3.5).

More precisely, if the solution of (3.5) approaches an asymptotically stable equi-

librium point (/?,, fi2) as τ—• + oo, then the original solution (u^t, x; ε), u2(t9 x; ε))

of (3.4) asymptotically enters the ε-neighborhood of the homogeneous state

(nu ή2). One easily finds that the asymptotically stable equilibrium points of

(3.5) are

if 0 < c < 3 / 5 ;

ii) (0, r2) if 3/5<c<5/3;
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iii) (rί9 0) and (0, r 2) if c>5/3. Which species can survive depends on initial

data.

We next consider the general case where ^ ( x ) # 0 (or possibly e((x) = 0).

The functions d((x) and rt(x) are the same as before. Put

n τ ) = '0>iW, y2iτ)) = '(^(τtyj, n2(τ)φ*)9

δ Γ2

where K e r ^ = <</>{>> with A~-~~-Jt and \ </>odx = l (i = l, 2). A simple calcu-
ox Jo

lation shows that

h = exp ( - exp ( -

where L/ί(x) = \ e^ds (/ = 1, 2). The corresponding O. D. E. system to (2.1)

now takes the form

( d

(3.6)

«i =(Λ1-fii1n I-βi2c«2)n1

τ > 0,

= \
JI

where /?;=! ri(x)φi(x)dx, 5 0 = \ φι

0(x)'ΦJ

0(x)dx (Uj=h 2). Now, in order to

give a more explicit quantitative analysis of the effect of e£x) (and d^x), r^x) as

well) on the behavior of solutions, let us specify et{x) as

ix) = - 2 -jLφ) 0 = 1,2).

In terms of ecology, the above equalities mean that the intrinsic growth rates r, (x)

(i = l, 2) coincide with the environmental potentials multiplied by ( — 2) (see

Introduction) in other words, the growth rates are higher wherever the environ-

ment is favorable to the species. In this case, we have

5-3e-° 4

10(1 -e-° 4) 0-907,

Bι2 = Blx =
l-e1-6

_ 1+e-o ̂
1 1 10(1-e-° 4)

« 0.469,

0.507,

_ 3 e 2 - l ^
2(e2-l)

0.657.
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Putting

c

we find that

2(l-<r° *)(3e 2-l)

~ 0.333-0.22c 2 (° 5 9 5 - ° ^ 7 c , 0.839-0.425c)

is the only one stable equilibrium point

ii) if c1<c<c2, (nί9 n 2 ) = ( θ , *2 + f)& (0, 2.527) is the only one stable

equilibrium point;

iii) if c2<c9 («„ Λ2)= (o, ^ f / ) and (5{~+

3*-OΛ> °) « ( L 7 8 9 ' °) a r e b o t h

stable equilibrium points.
Theorem 1 indicates that, if the solution of (3.6) converges to the asymp-

totically stable equilibrium point (n l 5 ή2) as τ-» + oo, then the original solution
(wi(ί, x; ε), w2(ί, Λ:; e)) eventually enters an e-neighborhood of (nιΦo(x),
n2φo(x))> (As a matter of fact, by using the result of Matano [5], it can also be
proved that the solution {ux(t, x; ε), u2(t, x; ε)) converges to an equilibrium
solution near (n^l(x), n2Φo(χ)) a s t-* + °° I s e e t n e l a s t paragragh in Example 2.)
This, together with the above observation (i), implies that both species can coexist
if c < cί. It would be of particular interest to consider the case where 3/5 < c < cγ.
In this case, as just mentioned above, both species can coexist; on the other hand,
if we replace the present values of e^x) 0 = 1, 2) by 0, the previous observations
show that the only stable equilibrium point of (3.5) is (0, r2), which implies that,
in the equations (3.4), only the second component will survive. An ecological
interpretation of the above observations is that the coexistence of the two species
is possible if the environmental potentials Et(x) 0 = 1,2) (defined by e^x) —

7Eι(x)) are spatially inhomogeneous, while it is not if £, (x) (Ϊ = 1, 2) are homo-
dx
geneous (Figure 1). Note that, as in Example 1, the quantities n^εt) and n2(εt)
approximate the total volumes of ut(t, x; ε), u2(t, x; ε) respectively by order ε.
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2.0 •- n2{εt)

0 120.0 240.0 360.0

Figure 1-a: Evolution behavior of the solution of (3.6) with £—0.1, c^0.7 (3/5<
C<Ct).

2.0 - u2(t, x; ε)dx

f Ki(f, x ;

120.0 240.0 360.0

Figure 1-b: Evolution behavior of the total volume \ «{(/, x; ε)dx 0'=^ 1, 2) of (3.4)

with £=0.1, c=0.7 (3/5<c<Ci).

We continue the analysis of (3.4) for other values of c. Fix c arbitrarily in

the interval (cΐ<c<c2)l then

By simple calculations, we see that QF(Y) = 0 and det (QFf(Y)\Bl)^0. Thus,

Theorem 3 implies the existence of a unique equilibrium solution VK(ε) = (w1(ε),

w2(ε)) of (3.4) with W(0)= 7. We claim that wί(ε) = 0. To see this, let us con-

sider (3.4) with ux Ξ 0 ; namely,

(3.7)
Ύt IχJl

This type of equation was already discussed in Example 1. It is not difficult to

see that, for sufficiently small ε, there exists an equilibrium solution w2(ε) of (3.7)

with (0,w 2 (0))=F. Thus, (0, w2(ε)) is also an equilibrium solution of (3.4).

From the uniqueness of equilibrium solutions of (3.4) in a neighborhood of Y, it

follows that the solution W(ε) coincides with (0, w2(ε))5 proving our claim.. Theo-

rem 1 asserts that if the solution of (3.6) approaches the equilibrium point

(0, ή2) as τ-»-f-oσ then the original solution (ut(t, x; ε), u2(t, x; ε)) eventually
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enters an ε-neighborhood of Y. As a matter of fact, as mentioned before, we can

also show that (ux(t, x; ε), u2(t, x\ ε)) actually converges to the equilibrium

solution W{ε) as ί-> + αo. This can be shown as follows: The system (3.4) is of

competition type, hence it is strongly order-preserving in the sense of Matano [5].

In such a system, an isolated equilibrium solution has to be either asymptotically

stable or unstable (see [5; Theorem 7]); and an unstable equilibrium solution al-

ways has a non-empty unstable manifold that connects the equilibrium to another

equilibrium (or, possibly, oo) (see [5; Theorem 5 and Lemma 5.10]). As regards

our present system (3.4), W(ε) is contained in a positively invariant ε-neighborhood

of Y, denoted by VB, and is the unique equilibrium solution in this neighborhood.

Combining the observations above, we easily find that W(ε) is asymptotically

stable. Moreover, carefully reading the proof of Theorem 7 of [5] (or Hirsch's

"almost quasi-convergence theorem" [3] as well) shows that any solution of (3.4)

that enters the interior of the neighborhood VE converges to the equilibrium

solution W(ε) as ί-> + αo. This proves our claim. In terms of ecology, this

means that ux becomes extinct while u2 will survive (Figure 2).

3.0 1

2.0 -

l .O -

n2(εί)

nx{εt)

T ~r I /

0 120.0 240.0 360.0
Figure 2-a: Evolution behavior of the solution of (3.6) with ε=0.l, c=0.9

c<c2).

3.0 -

2.0 -

1.0 -

«2(r, x; ε)dx

,x; ε)dx

0 120.0 2400 360.0

Figure 2-b: Evolution behavior of the total volume \ ut(t, x; ε)dx (ι = 1, 2) of (3.4)

with ε=0.1, c=0.9 (ct<c<c2).

The other case is similarly analyzed, so we omit it.

Finally we give a brief consideration to models in an M-dimensional space,
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where M ^ 2. The main results in Section 2 can directly applied to an M-dimen-

sional version of (1.2), and the habitat I is replaced by a bounded region Ω in R M

with the smooth boundary dΩ. For example, the equation of a single species

model which we consider is the following:

(3.8)

u + div J(x, u) = ε/(x, u), xeΩ,
dt

u(0, x) = uo(x),

J(x, u) = - d(x)Fu - u - e(x),

[ <J(x, u\ v> = 0, xe dΩ,

where d(x)>0 in Ω, < , ) is the Euclidean inner product and v is an outward

normal vector on dΩ, Fu = gmάu and e(x) = t(eί(x), e2(x),...9 eM(x)). If each

coefficient in (3.8) is sufficiently smooth and there exists a function U(x) such that

e(x)/d(x) = FU(x), then (3.8) can be treated similarly to (1.2) and all the calcula-

tions given at the beginning of this section are valid. We take C(Ω) with sup-norm

as the space B and, as the domain of ,4 = div J(x, •)» D(A) = {ue W2>p{Ω)\ue

C(Ω), AueC(Ω\ p>M, <J(x, u), v> = 0 on dΩ}. To see that the conditions

l)-5) in Section 1 are satisfied, use ,for instance, Theorems 1 and 2 of Stewart [9]

and the fact that

Au v.exp(U(x))dx={ <Vu
Ω JΩ

Fv + vFU(x)>'d(x)-exp (U(x))dx

for M, veD(A); we omit the details.

4. Proofs

PROOF OF THEOREM 1.

Throughout this section, we simply write u(t; u0, ε) as u(t; ε) or w, v(τ; u0)

as v(τ) or υ, and || | |B as || ||. Also, M, Mh C, Cf. and β, βt (ι = l, 2,...) mean

positive constants independent of ε. Here M 1 ? M2 are numbers given in condi-

tions 2) and 4) in Section 1, respectively.

Transforming (1.1) by w(ί, ε) = u(ί, ε) — e~tAv(εt), we have

( d£ + Aw = ε{F(w 4- e~tA v(st)) - QF(Qv)} t > 0,
(4.1) dί

( w(0) = 0,

which is written as
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ί" + '{A'

1 w(0) = 0,

where

(4.2) N(r, vv, ε) = F(w + e-tAυ(εt)) ~ F(e~tAv(εt)) - F'(e-tAv(εt))w.

Denote by X(t, τ; ε) the solution of the operator equation

ί 4 ? + {(A-sF'(e-<Mεt))}X = 0, t > τ,
(4.3) * '

^ Z ( τ , τ ; ε ) = /,

where / is the identity on B. Then (4.1) is reduced to

(4.4) w(ί, ε) = ε f X(ί, τ; β){F(β"Mι<eτ))-ρF(ρi<βτ))
Jo

+ iV(τ, w(τ, ε); β)}dτ.

Let us show that (4.4) has a solution for small ε. To do so, wei prepare some

lemmas. First rewrite (4.3) as

(4.5)

' t , τ;ε) = /,

where

f Ac = A - eF'(ξ),
(4.6)

[ Bε(t) = ε{F'(e tAv(εt)) —

LEMMA 4.1. There exist M 4 , β and ε0 such

\\e-tA° || g M 4 e~P&t, t > 0 for ε e(0, ε 0] .

PROOF. For ̂ > 0 and Θ (O<0<π/2), define a sector 5 ε by

(4.7) Se = {λeC \arg(λ-βε)\>Θ9

As will be shown in Appendix (Lemma 5.1), there exist /?, 0, ε0, C such that for

any ε e (0, ε 0]

and
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IP-ΛJ-MI g | λ - ^ i for all λeSε,

where p(Aε) is the resolvent set of Aε. Then, taking Jc=Aε—βε, we easily find that

So c p(Jε)

and

(4.8) Iiα-J,)"1!! <^fp for all AeS0.

Denoting by Γ a contour in So with arg λ-*±θ as |Λ|-»oo, we see that

so that, by (4.8),

sup eP£t \\e~tA* || = \\e~tJ* \\ < + oo,

as required. •

LEMMA 4.2. T/iere exists M5 such that

Jo

PROOF. It follows that

S M5

(4.9) \\BF(t)\\ ^ ε Γ \\F"(Θ e-*Λ υ{εt) + (\-θ)ξ)\\dθ || e'tA v(εt)-ξ\\.
Jo

Since {e~tA v(εt)}t^0fE>0 is a bounded set in B, (4.9) reduces to

(4.10) \\Bε(t)\\ £εCt\\e-<Λυ(et)-ξ\\ S εC2{\\Qv(εt)-ξ\\, + \\e~tA Puo\\}

for some C t and C2, where || | | t means the norm on Bx. By the assumptions of

Theorem 1

(4.11) liet<τ)-ίlli g C 3 ^ ,

where j5 is the number given in Lemma 4.1, holds for some C3. From (4.10),

(4.11) and condition 4) in Section 1, it follows that

(4.12) WBXήW^εCΛe-^ + e-^},

for some C4. The described estimate is obtained by integrating (4.12) over

[0, oo). •
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Using Lemmas 4.1 and 4.2, we can show

LEMMA 4.3. There exists M6 such that

\\X(t,τ;e)\\ £ Λf6 * - * < ' " * > ,

where β is the one in Lemma 4.1.

PROOF. Since (4.5) is written as

X(t9 τ; fc) = r ^ - ^ - + ί V c - ^ Be(s)X(s, τ; ε)ds,
J

it follows that

(4.13) \\X(t, τ; e)|| £ C5{<r"<'-*> + J *-*('-•> ||J3ε(s)|| | | * ( s , τ;

for some C 5. Applying GronwalΓs inequality to (4.13) and then using Lemma

4.2, we obtain

e*«<'-*>||X(ί, τ; e)|| S C5 exp(C 5 Γ IIB^Uds) ^ C 5 exp(C5 Γ ||B.(s)||ds) ύ C6,
Jτ JO

as required. •

Rewrite (4.4) as

(4.14) w(ί,ε) = H ε(w)(0,

where Hε(w)(t) = sU(t, ε) + ε \ X(t, τ; ε)N(τ, w(τ, ε); ε)dτ9 and
Jo

(4.15) t/(ί, s) = Γ Z(ί, τ; β){F(β"^ ι<βτ))-QF(ρi<βτ))}dτ.
Jo

It suffices to show that (4.14) has a unique solution w(t, ε) such that

||w(ί, ε)|| g O(ε) uniformly for ί e [0, oo).

LEMMA 4.4. There exists Mη such that

Moreover, if ξ satisfies F(£) = 0, then there exist M 8 and βγ such that

\\U(t,ε)\\SM8e-β^.

PROOF. It follows from (4.14) that
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|| 1/(1, ε|| ^ || ( ' X(t, τ; β)PF(e^β(βτ))dτ| |
JO

, τ; ε)|| \\QF{e-*Λv(ετ))-QF(Qv{.ετ))\\xdτ

First, note that

X2 g M 6 (' e-' <'-) | | F ( « ^ φ τ ) ) - F ( ρ φ τ ) ) | | ||Q||<*τ
Jo

^ M6 Γ e-^^-) Γ ||F(βe-^ι<βτ) + (l
Jo Jo

x \\e~τA Pυ(ετ)\\dτ

^ CΊ {' e-e*«-τ) e~λ'τ dτ
Jo

for some C 7 . Then we find

K2 g C 8 e-/»2βf

for some C 8 and β2. We next estimate Kί as follows:

| | ( , τ;
o

It follows that

K1X ^ Γ \\X(t9 τ; β)P||. Γ | |F'(
Jo Jo

^ C9 Γ β-^e-t) {|| e-^ Pφτ) | | + \\Qv(ετ)-ξ\\}dτ
Jo

Jo^ C 1 0

for some C 9, C 1 0 , C u and /?3. Using the estimates on K X 1 and J^2? we have

(4.16) \\U(t, ε)\\ ^ Cί2 e-β<*< + || f' X(t, τ; έ)PF(ξ)dτ\\
Jo
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for some C12 and β4. Thus, if ξ satisfies PF(£) = 0, then we obtain the second

assertion in Lemma 4.4. We next consider the case when PF(ξ)^0. Define

z(t) by

z(0 = [ X(t, τ; ε)PF(ξ)dτ,
Jo

which is a solution of

ί = PF(ξ\

z(0) = 0,

i.e.

(4.17) I d t

' z(0) = 0.

(4.17) is equivalent to

(4.18) z(t) = Γ e-c- M-
Jo

Suppose that

ff

 e-(t-s)A
Jo

0 0 ,

which will be proved in Appendix. Then from (4.18) we can have

(4.19) ||z(ί)|| ύ C 1 3 (l + Γ ||B/5)|| \\z(s)\\ds)
Jo

for some C 1 3 . Applying Gronwall's inequality to (4.19), we see

(4.20) ||z(0ll ύ C 1 3 exp(C 1 3 Γ \\BE(s)\\ds) ^ C 1 4 .
Jo

Therefore, it follows from (4.16) that

for some M 7 . The proof is complete. •

We consider (4.4). Let C([0, oo); B) be the Banach space of all bounded

continuous functions from [0, oo) into B with the norm |||w||| = s u p r ^ 0 ||w(ί)||, and

for any fixed r, let
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FΓ = {w|weC([0, oo); B), | | | w | | | g r } .

Suppose w e Vr. Then it follows from (4.14) that

\\Hε(w)(t)\\ £ εM9(l + [' e-w-* ||ΛΓ(τ, w(τ); ε)\\dτ)

= εM 9(l + Γ e-'<'-*>|| Γ F'(0w(τ)4-<Γtκ v(ετ))dθw(τ)
Jo Jo

^ εM 1 0 ( l +
Jo

Jo

for some M 9 and M 1 0 . Thus, we have

for some M. Put so = min {1/(4M2), r/(2M)}. Then it turns out for any εe

(0, ε 0 ], ViMε^Vr a n d Hε maps V2M£ i n t o VIM& because it follows that

|||Hβ(w)||| g M(ε+ HI w|||2) g M(ε + 4M2ε2) ^ 2Mε

for all w e K2Mε. Moreover, there exists M u such that

for any w l 5 w2 e K2Mε. Consequently H ε is a contraction on K2Λfε for any 0 < ε <

min {ε0, β/M n } . Thus, there exists a unique fixed point w in K2Mε, and |||w||| g

2Mε. The proof of Theorem I is complete. •

PROOF OF COROLLARY TO THEOREM 1.

This can be shown in the same way as Theorem 1, if we replace C([0, oo) B)

by the space of continuous functions w: [0, co)-+B such that

< 0 0 >

and use the second sasertion of Lemma 4.4. So we omit the details. •

PROOF OF THEOREM 2.

Let T > 0 be the number given in the assumption of Theorem 2. Consider

the equation (4.14):

Hε(w)(t) = εU(t, ε) + e Γ X(t, τ; ε)N(τ, w(τ, ε); ε)dτ
Jo
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on the space C([0, T/ε] B) with the norm

Let VJ = {we C([0, T/ε] E) | | |w|| |E t T^r}. To prove Theorem 2, it suffices to show

the existence of ε Γ > 0 and Mτ>0 depending only on Tsuch that Hε ( 0 < ε ^ ε Γ ) is a

contraction mapping on

VTMTs = {w|weC([0, Γ/ε]; £), | | |w | | | ε , Γ ^M τ ε}.

Here we fix T > 0 arbitrarily and denote various constants depending only on T

by CT9MT,εJ ( i = l , 2,...).

LEMMA 4.5. Lei X(t, τ; ε) be ίfte solution of the equation (4.3). 77ten

C [ > 0 SMCΛ that

\\X(t9 τ; ε)|| g C\ for ί , τ e [ 0 , Γ/ε].

PROOF. From (4.3), we have

(4.21) X(t, τ; ε) = ίr<f-*>'4 + ε Γ e"^-5)^4 F ' ( e " ^ φ5))Z(s, τ;
Jo

Since {e""M v(εt)}te[0T/ε]>ε>0 is a bounded set in B,

\\F'(e-sA v(εs))\\ ̂  C\ for s e [0, T/ε].

So (4.21) gives

\\X(t; τ; ε)|| ^ M, + ε J f AftCΪ||Jir(s, τ; β)||ds.

Applying GronwalΓs inequality, we get the result. •

LEMMA 4.6. There exists C J > 0 swcft that

\\X(t, τ; ε)P|| ^ M 2 <?-Al(i-r) + ε C r / o r u τ 6 [ 0 , T/ε],

where λί is the number given in 4) of Section 1.

PROOF. From (4.21), it follows that

PX(t, τ; ε)P = «r<'-*M P 4- ε Γ P e-('-*)^ F ' ( e " ^ v(εs))X(s, τ;

so that by Lemma 4.5

(4.22) \\PX(t9 τ; ε)P|| ^ M 2 ^ i ( ^ - o + ε Γ M 2 ^-^ l(r-S) cξ| |X(s, τ;

^ M 2 e-
λ^-^
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Since Qe~tA = Q, (4.21) gives

QX(U τ; ε)P = ε Γ QF'{e~sA υ(εs))PX(s, τ;

+ ε Γ QF'(e- s A ι<εs))ρX(s, τ;

Hence, it follows from (4.22) that

\\QX(U τ; e)P\\ ύ εCξ + εCξ £ ||βX(s, τ;

so that, by GronwalFs inequality,

||βjf(ί, τ; β)P|| g εCξ e cϊ(ί-o

Consequently

||X(ί, τ; ε)P|| g ||QX(ί, τ; ε)P|| + \\PX(t9 τ; ε)P|| ^ M

for some Cξ>0. •

LEMMA 4.7. T/iere ex/s/s C ? > 0 SMC/I ί/i«ί

||£/(ί,β)|| ^ C ? for *e[0, T/ε],

l/(ί, ε) is the function given in (4.15).

PROOF. By Lemma 4.5 and Lemma 4.6, we have

X(t, s; ε)Q{F(e-°*υ(εs))-F(Qv(εs))}ds

g Cξ ί' \\X(t, s; β)P||</s
Jo

+ Cϊ Γ «Jf(/, s; ε)6||
Jo

g Cξ + CjΓ Γ ||F/(fl
Jo Jo

Jo

for ί e [0, T/ε]. This shows the result. •

We now consider the equation (4.4). For any fixed r > 0 and for any

w G VJ, it follows from Lemma 4.7 that
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\\Hε(w)(t)\\ ̂  εC? + *[' CT||JV(τ, w(τ); β)||dτ
Jo

^ εCτ

Ί + εC\ [' [l \\F'(e-*Λv(ετ) + θw(τ))-F'(e-*Λv(ετ))\\dθ- \\w(τ)\\dτ
Jo Jo

Jo

ύCΐ2(ε+\\\w\\\lτ)

for t e [0, T/ε]. Hence as is seen in the proof of Theorem 1, we can find constants

ε\ > 0 and M\ > 0 such that for all ε e (0, ε[], Hε maps VjMτ into itself. Moreover,

there exists M £ > 0 such that

for any wl9 w 2 e F j A f τ . Consequently Hε is a contraction on VjMτ for 0 < ε <

min {ε ,̂ 1/Mτ}. The proof is complete. •

PROOF OF THEOREM 3.

Decompose weB into w = w1-f-w2 with wιeQB — B1 = Ktr A and w2 e

PB = B2. Then the equations Aw -εF(vv) = 0, w(0) = ξ reduce to

(4.23)

(4.24)

where A2

then G2
G C2(D x

Put

G

Rxx

A2

2 ( ^ 2 ; ε3

^1 B2

7 (wi+w 2 )

w2 - εPF(

, wθ = A2

) with D

= 0,

w2 — εPF(MΊ + w2)

= D(^)nB 2 . Since G2(0; 0,

-^—G2(0; 0, wx) — A2 and A2 is invertible, the standard implicit function theorem

implies that there uniquely exists w2(ε, v)eC2(U(wί); B2) such that w2(0, ^ ^ = 0

and G2(w2(ε, ι?); ε, ί;) = 0. Here C/(w1) = {(fi, ϋ) | ε | < ε 0 , ϋeBίw^ ^) for some ε0

and δ depending on H^}, and B(wl9 δ) is the open ball in B1 with radius δ centered

at wt. Substituting w2 = w2(ε, vvt) into (4.23), we have

(4.25)

where ξ is the value satisfying QF(0 = 0 and det(QF'(O| B l )^0. Define Gίe

C2(U(ξ); Bx) by G^w^ ε) = QF(wί + w2(β, wx)). Then we have

(4.26) GΛ5, 0) = 0, -^Gtf, 0) =
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where lx is the identity on Bv Here we define G by

G(wl9 ε) = G2(vv2(ε, w t); e, wt) = Λ2w2(ε9wί) -

Since G(wu ε) = 0 o n U(ξ) and

i-G2(w2(ε9 W l ) ; ε, Wι)^~w2(ε, wt)

-f -Λ—G2(w2(ε, Wj); ε, Wj)/,

= (^ 2 -εPF(w 2 (ε ,w 1 ) + w 1 ) ) ^ -

we find that - ,—G(£, 0) = ,42--*—H>2(0, ί) = 0, which implies --—w2(0, ξ) = 0

because-^—vv2(0, ξ) maps JSj into B2. Therefore (4.26) becomes -~—Gx{ξ, 0) =

QF'(ξ)\Bi. Hence, by the implicit function theorem it follows from the assumption

det(QjF'(£)|Bl)#O, that there exists a constant ε o > 0 such that (4.25) has a unique

solution w,(ε) satisfying

w1(ε)eC2(( — ε0, ε0); Bx) and w ^ O ) ^ .

We finally show that w(ε) = w1(ε) + w2(ε, wx(ε)) is a unique solution of (2.2).

Assume that the equilibrium solution of (2.2) is parameterized by s e Ho = ( — s0, s0)

for some s0 > 0 as follows:

f Aw(s) = ε(s)F(w(s)l
(4.27)

1 ε(0) = 0, w(0) = {,

which is equivalent to

Ά2w2(s) =

(4.28) 0 = QF(wt

κ ε(0) = 0, Wj(0) = ξ, w2(0) = 0,

where w^^Qwis), w2(s)=Pw(s). First defining

G2(w2i s) = ̂ 42w2 — ε(s)PF(wί(s) + w2

we find that <52(0, 0)=0 and G2 e CZ(D x Ho B2). Since

*<w2, 5)
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we have -~—G2(0,Q) = A2. By ^ e implicit function theorem, there exists a

unique solution w2(s) on Ht such that G2(w2(s), S) = 0 and vv2(0) = 0, where

# ! = ( — su s^ is an open interval containing 0. Define vv2(s) = w2(ε(s), w^s)).

Then w2(s) satisfies (J2(W2.(S), S) = 0 and vv2(0) = w2(0, ξ) — 0. By the uniqueness,

w2(s) = vv2(s) = w2(s)on / / 2 = ( - s 2 , s2)<=:(•-ε0, εo)Γ\ Hi nH0.

Second, define

then Gί satisfies

Gfa 0) = QF(ξ + w2(0, ξ)) = QF(ξ) = 0

and

So -g^-Giίf, 0) = β F ( « ( / i + ^ 7 ^ 2 ( 0 , ί ^ e Π O l B t By the assumption of

Theorem 3, it turns out that there exists a unique function wt(s) defined on an

interval /f3 = ( —s3, s3) such that 51(iv1(s), s) = 0 and vv1(O) = ξ. If we define

>v1(s) = w1(e(5.)), then δjίiv^s), s) = 0 and w1(0) = ξ. So by the uniqueness,

iv1(s) = v?1(s) = w1(5) on /f4 = (~ε0, ε0) ΠH3Π # 0 . Hence

w(s) = w^s) + w2(s) = Wl(β(s)) + w2(ε(s), WiWs))) = w(ε(s)).

Thus, the proof is complete. •

PROOF OF THEOREM 4.

Since D(A) is dense in Xί/2 from the general theory, it suffices to show the

following:

i) two norms || | | f li and || | | 1 / 2 are equivalent on D(A), where || \\ui and

II II1/2 denote the norm on Hι(I) with / = (0, L)and the norm on Xί/2 respectively,

ii) D(Λ) is dense in Hψ).

First, we will show i). Here we write the norm on X by || ||. Then

2d(x)k(x)dx+\\u\\2

(4.29) Jr U{X)
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for all we£04). From (Au, u)^0, N | 1 / 2 ^ | | w | | . SO we have

673

ύ ( N i ί / 2 - Ml2)1'2

Since WuJ^C^WdixY^uJ and \e(x)ld(x)^2\ is bounded, it follows that ||wx||g

C15IMI1/2 f° r some constants C 1 4, C 1 5 . Hence | | M | | H I ^ C 1 6 | | M | | 1 / 2 for some

constant C 1 6 because the norm || || and L2-norm are equivalent. Conversely,

it follows from (4.29) that

\\u\\2

/2 S \\\d(x)^ux\\ + | ^ g ^ 2 M | | | 2 + ||u||2

SCίΊ(\\ux\\*+\\u\\2)

ύ Cιs\\u\\2

Hί

for some constants C 1 7, C 1 8 .

We next prove ii). Put (ψu)(x) = k(x) u(x) for ueHψ). Then it is easy

to see that φ is a homeomorphism on H1^) and ψ D(A) = {u€H2(I)\ux=0
on 0, L}. Therefore it suffices to show that the set D = {M6CO O(/) |U J C=0 on

0, L} is dense in Hx(l). Since all u e Hι(I) is represented as u(x) = \ uxdx 4- u(0)
Jo

with ux e L2(/), we find that

for all M, υeHι(I).

Thus, [ | M ( x ) - \ux-vx\
2dx + \u(0)-v(0)\2) and

(4.30) \\u-v\\h S

for some constant C 1 9 . Since C J ( / ) = {M e C°°(/)|U(0)=:M(L) = 0} is dense in

L2(I), there exists for ε>0 and u e H\ϊ\ w e CJ(/) such that \ | u x - w|2dx < ε.

Defining υ(x) by

v(x) = M ( 0 ) ,

we see by (4.30) that veD and j|w - Vf| "|i ^ C i 9ε. The proof is complete.
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5. Appendix

LEMMA 5.1. There exist positive constants /?, 0(O<0<π/2), ε0, C such that

(i) forεe(0, ε 0 ] , the sector Sε = {Λ,eC |arg(Λ,--/?ε)|>0, λΦβε} is contained

in ρ(AE\

(ii) iKA-A^ll^i^-^i /oral/ λeSβ.

Here Aε is the operator defined in (4.6).

PROOF. From the assumption of Theorem 1, there exists a y>0 such that

Reσ(QL\Bί)£ -y,

where L = F/(^). Since QL\Bι is a linear mapping on the finite dimensional

space Bi9 we can take a sector Sczp( — QL\Bι) so that

for some 0<jS<y, 0 < θ < ^ - , and a constant C 2 0 such that

ii
(5.1)

for all λ e S. We now define SE by

Sε = εS = {ελ|λ e S}

and show that there is a number ε0 > 0 such that if ε e (0, ε 0 ], then

for all λ e Sε. To do so, it suffices to prove that the equation

(5.2) (λ-AE)u = v

is solvable for all veB and λeSε. Put u1=Qu, u2~Pu, ΌX—QV, and υ2 = Pv.

Then (5.2) is rewritten as

λuι +

λu2 — Au2 + εPL(ux + M 2 ) = v2,
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where Aε = A—εL. The first equation of (5.3) is written as

(λ + sQL\Bί)uι = vγ - εQLu2,

Since λe p( — εQL\Bί), this implies that

(5.4) uΛ = (λ + εQL\Bχy\υλ -εQLu2).

Substituting (5.4) into the second equation of (5.3), we obtain

(5.5) (λ-Λ)u2 = - εPL{Lλ(vί-εQLu2) + u2} + v2,

where LΛ = (A + εQL|B l)~1. Denote PB by B2 and A\Bl by A2. We note that if ε

is small enough, there exsts a constant C2ί so that

Kλ-A2)-i\\2£C2ί for ε

where || | |2 is the norm or the operator norm on B2. Hence (5.5) is written as

u2 = (λ- A2Y^\_-εPL{Lλ(υί -εQLu2) + u2} +1?2] ,

that is,

(5.6) J€fλu2 ΞE {I2-ε(λ-A2

where I2 is the identity on B2. Since

(5.7) \\sLλ\\i

for all — 6 5, we find that the inverse J~\ is well defined so that
ε ε 'Λ

II TΛII ^ i ί r ^ ^23 for small ε
1 fc^22

for some C 2 2 , C 2 3 . So (5.6) reduces to

and therefore

(5.8) | |M 2 | | 2 ^ ^ i K λ - ^ r M
for some C 2 4 . Since ^42 is sectorial and R e σ ( ^ 2 ) > α for some α>0, there exists

some C 2 5 such that if ε is small enough
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for all λ e SE. From this and (5.8), we have

(5.9)

for some C 2 6 , C 2 7 . (5.9) and (5.4) imply that

(5.10) \\ux\\x <

for some C 2 8 . Since

1 ^20 _ WO

|λ-εj8|

by (5.1), it follows that

(5.11) || u

for some C 2 9 . Thus, (5.9) and (5.11) yield

for small ε. This proves Lemma 5.1. •

LEMMA 5.2. There exists some ε o > 0 and M 1 2 > 0 5uc/i

for any εe(0, ε 0]. Here ξ is one in assumptions of Theorem 1 in Section 2.

PROOF. The function w(ί)= \ e~('~s)Ae PF(ξ)ds satisfies
Jo

r ^L + Aεw = PF«),
(5.12) rfί

' w(0) = 0.

Put Z(t) = w(t)-A-1 PF(ξ), then we have

(5.13) \ d t

1 Z(0) = Z o = - ^ -
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Therefore it follows from Lemma 4.1 that

||Z(ί)|| g Λf ,e-'« IIZoll

so that

(5.14) ||w(ί)|| ^ M,-e-'« ||Z0|| + Ul1 PF(ί)ll ύ C 3 2 Mr' PF(ξ)||.

We now show that U/lj1 PF(ξ)\\ is bounded uniformly for small ε. Put w =

); then

Λεw = PF(ξ),

that is,

(5.15) (A-εF'(ξ))w = PF(ξ).

Define wί = Qw and Mί2 = Pw. Then (5.15) is written as

-εQF'(ξ)(Wl

(5.16)

• A2w2 - εPF'(ξ)(Wl

From the first equation of (5.16), we obtain

(5.17) w, = ' - J w , = - ( Q F ' ( ί ) , >

Substituting (5.17) into the second equation of (5.16), we have

{A2-εPF'(ξ)(-J + I2)}w2 = PF(ξ)

and so

For small ε, the inverse {/2—ε^4j1/>F/(ξ)(/2—J)}"1 exists and is expressed as a
Neumann series, so we have

C 3 3= l-ε\\A-2iPF'(ζ)(I2-J)\\2 = C 3 3

for small ε. Therefore (5.17) implies

(5.19) I K I U g μil2,i l |w 2 | | 2 <C 3 4,

where ||J||2fi denotes the operator norm of JeJ?(B2, Bx). Using (5.18) and

(5.19), we have

H I g HwJU + | | w 2 | | 2 ^ C 3 5 ,

as required. •
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