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Abstract: We inspect singular perturbation methods, which Fife has introduced
to deal with stationary problems of reaction-diffusion systems, and modify the main
theorem in [1] into a more useful form.

1. Introduction

Reaction-diffusion systems arise in various fields; chemistry, ecology, popu-

lation dynamics, morphogenesis, physiology and so on. One of interesting

phenomena is that the systems often produce various spatial patterns of solutions.

An important contribution to the mathematical illustration of such a phenomenon

is made by Fife [1]. That is, under some assumptions, stationary solutions

with boundary and interior transition layers are obtained constructively and

rigorously by using singular perturbation techniques and matching arguments.

His work itself is very attractive from a mathematical point of view. Moreover,

it is recognized that his results play an important role for elucidating a complicated

structure of (stationary) solution set of a type of reaction-diffusion systems (see,

e.g., Mimura et al. [6], [7], Fujii et al. [3]). However, the arguments in [1]

demand a hypothesis which, generally, is not expected to hold. In this paper,

we intend to remove the hypothesis. In order to state our aim more precisely,

we review his results.

Consider the following problem:

(εhι"=f(u, ύ),

0 < x < 1,

v" = g(u9ύ),

u(0) = α1 ? w(l) = α2, v(0) = βu v(i) = β29

where/, g are smooth functions, α l 5 α2, βl9 β2 are given constants and f = djdx.

We make the following assumptions I ~ IV.

I. The equation /(w, t>) = 0 has two distinct solutions u = ho(vX w = /z1(t;),

for velo and ue/ j , respectively, where It are open overlapping intervals with

ft+i e/ f (fto(tθ<fti(0) o n Ό Π /i). On /f,
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Γhί(v)

Let J(v)=\ f(u, v)du, defined on Io n Ix.
Jho(v)

II. J has an isolated zero at some value υ*elo(]l1 and /changes sign as v
passes through υ*. Furthermore,

f(u, v*)du > 0 for ke(ho(v*)9 h^υ*)).
ho(v*)

Let

g(ho(υ\ υ), v e /0 Π {vS v*},
G(v) =

\ veI1Γ\{v>v*}.

III. The boundary value problem

V" = G(V) 0 < x < l ; Vφ) = β,\ V(l) = β2;

has a solution V(x) with V'(χ)φO, such that V(x*) = v* for some value x* e(0, 1).

IV, For i= 1,2,

T f(u,βi)du>0
Jhk(βi)

for ί 7̂  hk(βι) in the closed interval between hk(βι) and αf. Here k = 0 if F(x) < u*
for x in a neighborhood of the boundary point i — 1, and /c=l if F(Λ:)>I;* in
this neighborhood.

We define the constant π by

π = sup{|0u(/?oO), i;)|: Ϊ;G/ 0} + supd^/i^i;), t;)|: ϋ e / J .

THEOREM 1.1 (THEOREM 4.1 in [1]). Under the above assumptions, there
exist constants π0, ε0, such that if π < π 0 , then there exists a family (u(x, ε),
v(x, ε)) of solutions 0/(1.1), defined for 0<ε<ε o , satisfying (for any λ>0)

limε;0M(x, ε) = /io(K(x)) uniformly for xe(A, x* —A)

= /i!(F(x)) uniformly for xe(x* + λ, 1-λ);

\imεiov(x, ε) = K(x) uniformly for xe[0, 1] .

When the system (1.1) describes a stationary problem for a reaction-diffusion
process including autocatalytic reactions of a substance with concentration u,
the assumptions I~IV are often satisfied (see, e.g., Fife [2], Mimura et al. [7]).
These assumptions and the smallness of ε play a key role for the existence of
solutions with properties in the above theorem. However, the smallness of π
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seems unnecessary in showing the existence of such solutions. Indeed, it was

introduced in [1] for the convenience of the proof. Moreover, the hypothesis,

π<π0 for some π 0 , often makes us trouble when we elucidate global structure of

solution set of (1.1). The main purpose of this paper is to show the claim of

Theorem 1.1 for every π.

According to [1], the hypothesis that π < π 0 for small π 0 is used only in the

proof of Theorem 3.1 (in [1]). Therefore, for our aim, it suffices to modify the

theorem and its proof. In the next section, we give a modified theorem. In

Section 3, we give some preliminaries. The final section is devoted to the proof.

By using a method based on arguments in this paper, the author has shown the

existence of a stationary solution with the so-called transition corners to reaction-

diffusion systems of competition type ([4]). He also has investigated the structure

of solution set of the systems from a global bifurcation point of view ([5]).

2. Theorem

We make the following assumptions:

Γ. There exists a function h(υ), defined for v in some interval Γ containing

βt and β2, which satisfies

f(h(v), v) = 0, fu(h(v), v) > 0.

ΠΓ. The problem

V" = g(h(V)9 V\ 0 < x < 1 V(0) = βt V{\) = β2

has a solution V(x) with range in Γ, such that V'(x)^Q.

IV. The assumption IV holds with hk replaced by h.

THEOREM 2.1. Under the above assumptions /', ///', IV, there exists a

constant ε0 such that there exists a family u(x, ε), v(x, ε) of solutions (1.1), denned

for 0 < ε < ε o , satisfying

(2.1) lim ε i oι/(x, ε) = h(V(x)) uniformly for xe(κ, \ — κ)for every /c>0;

(2.2) l im ε i 0 v(x, ε) = V(x) uniformly in [0, 1];

(2.3) \imεiovx(x, ε) = V'(x) uniformly in [0, 1]

(2.4a) l im ε i 0 eii^O, β) = + (2 f"ι f(u, βjduy2;
Jh{βΛ)

(2.4b) limβ i 0.eux(l, ε) = ± (2 [** f(u9 β2)du)U2;,
Jhiβz)
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(2.5) |M( , ε)|2 4- |t>( , ε)|2 is bounded independently of ε.

In (2.4) the upper sign is chosen when the upper limit of integration surpasses

the lower. For the norms | | | , | | 2 , see [1] (or the next section).

REMARK. The above theorem is the same as Theorem 3.1 in [1] except that

it has no assumption on π' = sup {\gu(h(ύ)9 v)\: υeΓ}.

3. Preliminaries

For the notation of function spaces and their norms, we use the same one

as in [1], say, C£ is the Banach space of functions with derivatives up to order

£ continuous on [0, 1] with the usual norm | \Ά. C$ is the subspace of functions

in CΆ vanishing at x = 0, 1. M 2 = φ l o + ε|"Ίo + ε2|w"lo and Cg>ε is the Banach

space of functions in C2, endowed with the norm | | | . Let X, Y be Banach

spaces. We denote by B(X, Y) all of bounded linear operatos from X to 7, and

by II \\B(X,Y) t n e operator norm. We simply denote by const, various constants

independent of ε.

We first note that the assumptions Γ and I V imply that there exist solutions

Πzo> I K , with IΓL^ODI^const, exp [-const, ξ] ( i=0, 1), of

(dldξ)2Πz0 =f(KV(0)) + Π z 0 , K(0)), 0 < ξ < + oo,
(3.1)

' = α, - h(V(O)),

0<ζ< + 0 0 ,
(3.2) _

respectively. Let zo(x) = ΓUoOΦXM* zί(x) = Ylz1((l-x)/ε)ζ(\-x)9 where £

is a C^-cutoίf function with £(0=1 for 0 ^ ί ^ l / 4 , ζ(t) = O for ί^ 1/2. It is

known from Lemma 2.1 in [1] that the operator LEeB(C$ε, C°), defined by

(3.3) LEu R = 82u" +f(h{V)) + zo + zu V)u for ueC%^

has an inverse L~x with HLj1 | |B ( Co,cg f e ) gconst.. We next note that the as-

sumption III' implies that the operator M e B(Cl, C°), defined by

(3.4) Mv = ι/' + to^/KF), F)^'(F) + ̂ rr(/ι(F), K))ι; for t?eCg,

has a bounded inverse M" 1 . Since M" 1 is an integral operator with continuous

kernel,

(3.5) IM^FIorS const. | F | L l ,

where |F | L l =s( F(x)dx. Let
Jo
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(3.6) v, = M->lg(h(V) + zo + zu V)-g(h{V\ F)].

Then, vi belongs to C% and |ι; |2^const. Moreover, (3.5) yields

(3.7) lî ilo ύ const. ( |zo |L l + \zx\Lί) g const, ε,

where we used |zo(x)| ^const, exp [ — const, x/ε], Iz^x^rgconst. exp[ —const.

( ! - * ) / £ ] .
Let

u(r, s, ε) = hiV+υ^s) + z0 + zt + r,
(3.8)

[ v(r, s, ε) = F-f vt + s,

where r and s are unknown functions belonging to Cgε and C§, respectively.

Define a mapping T: Cg)C x Cg x (0, εo)->C° x C° (ε o >0) by

Γ R(r, 5, ε)
(3.9) T(t, ε) =

L S(r, s, ε)

where f = (r, 5),

(3.10) R(r, s, ε) = ε2(d/dx)2u(r, s, ε) -/(w(r, s, ε), f(r, s, ε)),

(3.11) S(r, 5, ε) = (d/dx)2v(r, s, ε) - g(u(r, 5, ε), u(r, 5, ε)).

Since M(0, 0, ε)(x) and v(0, 0, ε)(x) satisfy the boundary conditions in (1.1), so

do the functions u(r, 5, ε)(x) and v(r, 5, ε)(x). Hence (w(x, ε), v(x, ε)) = (w(r(ε),

s(ε), ε)(x), v(r(e), s(ε), ε)(x)) is a solution of (1.1) if ί(ε) = (r(ε), s(ε)) satisfies the

equation T(t, ε) = 0.

Thus, seeking a solution t of T(ί, ε) = 0, we obtain Theorem 2.1. It should be

noted that the representation (3.8) of the solution is slightly different from (3.1)

in [1]. This plays a key role in the proof of Theorem 2.1.

4. Proof of Theorem 2.1

We show the existence of a solution t of T(ί, ε) = 0 by using an implicit

function theorem. We first show the following lemma.

LEMMA 4.1 (corresponding to LEMMA 3.3 in [1]).

(4.1) l im ε i 0 |T(0, ε) | 0 = lim ε,o(|K(0, 0, β)|o + |S(0, 0, ε)|o)

= 0.

PROOF. Since V = g{h{v\ v) and v^M^lgih^ + Zo + z^ F ) - # ( K ) , K)],
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S(0, 0, ε) = - WKV+vJ + Zo + Z!, V+vJ-gihiW + Zo + Zu V)]

- Lg«(h(V), V)h\V) + gMV), V)]»,

H(θ, z0, z^dθυ, - fl(0, 0, 0)1;,,

where H(θ, z0, z1) = gJWV+θv1)+z0 + zί, V+θv1)h'(V+θv1) + g1/ih(V+θυ1)

zo + Zi, V+θvι). Since \H(Θ, z0, 2JI0, \H(0, 0, 0)|0^const., (3.7) implies

(4.2) |S(0, 0, ε)|0 ^ const, ε.

Next, we estimate R(0, 0, ε):

Λ(0, 0, ε) = ε2lh(V+Vί) + z0 + zJ' +/(/i(K+ϋ1) + z0 + z1, K+f,).

Since the supports of ζ(x) and ζ(ί — x) are disjoint,

f(h(V) + zo + zu V) = C(x)/(Λ(F) + z0, K)

+ ζ(l-x)f(h(V) + zi,V)

+ (l-ζ(x)-ζ(l-x))f(h(V) + zo + z1, V).

From (3.1), (3.2) and the definitions of z0 and zλ, we have

(4.3) R(0, 0, ε)

= - ίfWV+v^ + Zo + z,, V+v1)-f(h(V) + z0 + zι,V) ]

+ ζ(x) U(h( V(x)

where Λί = β[Λ(V+ »,)]"

βK"(x)Πzo(^/8) + ί"(l ~^)Πzi((l -x)/e] We can easily see that

(4.4) \N\0 ί cont.,

(4.5) \U{h{V+Vl) + z0 + zu V+v1)-f(h(V) + z0 + zί, V)\o

g const. \v\0 ^ cons. ε.

Since |zo(x)| ^const, exp [—const, x/ε], |zx(x)| ^const. exp [—const. (1 — x)/ε],

l-C(x)-C(l-x)=0 for xe[0, 1/4] U [3/4, 1] and f(h(V), F) = 0, we have
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(4.6) \(l-ζ(x)-ζ(l-x))f(KV) + zo + zί9 7)|0-g const, exp [-const./ε].

Denote the second and the third term in the right-hand side of (4.3) by /2W and

I3(x), respectively. Since /2(0) = 0 and £(x) = 1 for x e [0, 1/4], we have

(4.7) |/ 2(JC)| £ const. |x| for x e [0, 1/4].

From the exponential decay of Π^o and/(/?(K), K) = 0, we also have

(4.8) U2OOI ^ const, exp [ — const, x/ε] .

Combining (4.7) and (4.8), we have

(4.9) | / 2 | 0 > 0 as ε I 0.

Analogously,

(4.10) |/3lo >0 as ε I 0.

(4.3)-(4.6), (4.9) and (4.10) yield

(4.11) |#(0, 0, ε)|0 > 0 as ε | 0.

(4.2) and (4.11) show Lemma 4.4.

Next, we consider the linearized operator

[ R R Ί
: Cge x Cl >C° x C°,

s r s s J '
where Λrw = ε2w"-/M(^ι(K4 ί;1) + z 0 + z1, V+v^w,

Rsz = etlhXV+Όjzγ + UMV+υJ + Zo + z^ V+υt)

x

Ssz = z" -

for any w e C§fβ, z e C§.

LEMMA 4.2. Lβί ε be sufficiently small. The operators Rre B(C§>β, C°),

g, C°) ftαt β inverses R'1 and S j 1 , respectively.

le) a n d WS71\\B(CO,C2O) a r e uniformly bounded for ε.

PROOF. £ r can be written in the form

Rrw = Lεw — Bvv,
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where Lε is as in (3.3) and Bw = [fu(h(V+v1) + z0 + zuV+v1)-f(h(V) +
+ zu F)]w. We can easily see that

II^IIB(CO.CO) ^ c o n s t kilo ^ const, ε,

and \\L-E'B\\B{cUxh>) ^ \\L^B\\B(c0>C2te)

I I M l l l l l o ) ^ const, ε.

Hence, for small ε, R;1 = {l-L-γB)-vL~ι exists and

which is uniformly bounded for ε.
Ss can be written in the form

Ssz = Mz — Cz9

where M is as in (3.4), Cz = [JgJih(V+υ1) + z0 + zί9 V+υι)hf(V+Όι

zo + zl9 V+υJ-gMV), V)h'(V)-gJίh(V)9 K)]z. We can easily see that

\(Cz)(x)\ ^ const. (\vι(x)\ + \z0(x) + z1(x)\)\z\0.

Since \zo(x)\ ̂ const, exp [-const, x/ε], \zt(x)\ ̂ const, exp [-const. (1 -x)/ε], and
(3.7) yield

o) ^ const. (Klo + ko + ̂ ilLi) ^ const, ε.

Therefore, when ε is small, the problem Mz — Cz — F(F e C°) has a solution z =
(I-M~ίC)M~ιF G C° with

Since z = M"1Cz — M~XF, using the above inequality, we have

Mi ^ IIM-1 |IB(CO.C8)(|C|0 |Z|O + l^lo) ^ const. | F | 0 .

This completes the proof.

LEMMA 4.3.

(4.13) l|Sr

r||B(cg..fco) ύ const.,

(4.14) l|Λ,L(cg.cθ) ̂  coiw/.β.

PROOF. (4.13) is obvious. We show (4.14). Let
K(z09 zx) =/tt(Λ(F+ι;1) + z0 + z1, V+υJh'iV+υWJίKV+vJ + Zo +zl9 ;

Since f(h(v), t;) = 0 for all veΓ, differentiating with respect to v and substituting
?!, wehaveK(0, 0) = 0. Thus,iC(zo, ZO^XCZQ, ^ 0 - ^ ( 0 , 0)and
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c o n s t , e x p . [ — c o n s t , x / ε ] , O ^ x ^ 1/2,

(4.15) \K(zθ9 zt)\ g ,
const, exp [ — const. (1 — x)/ε], 1/2 ̂  x g 1.

Note that z e Cg satisfies

\z\i\x\, O ^ x gl/2,
(4.16)

Since

|x| exp [ — const, x/ε], | 1 — x| exp [ — const. (1 —x)/ε] ^ const, ε,

we have from (4.15) and (4.16) that

\K(z0, zx)z\0 ^ const. ε\z\t ^ const. ε|z|2.

Since ε2 |[/j(K+^1)z]/Ί0^const. ε2 |z|2, we have

\Rsz\0 = \ε2\_h(y+v1)zY + K(z0, zx)z\Q ^ const. ε|z|2.

This shows (4.14).

COROLLARY 4.4 (corresponding to LEMMA 3.2 in [1]). Let ε be sufficiently

small The operator Tf(0, ε) e B(C^ε x Cg, C° x C°) has an inverse which is

bounded independently of ε.

PROOF. Consider the problem

Rr
Tt(0,

where g=(w, z) is unknown and Fί9 F2 are given functions in C°. This can be

written in the form

(4.17a) w = - R^RsZ -f JRΓ1^!,

(4.17b) z = - S ^.w + SjiF2.

Substituting (4.17b) into (4.17b), we have

(4.18) w = R^R^SrW - R;1RSSJ1F2 + R-^F,.

Since Lemmas 4.2, 4.3 yield

ll5rJ1|lB(co,cί)ll S'rllB(cg..,co) ^ const, ε,



628 Masayuki Iτo

the operator (I-R^Rβj^,)-1 e B(Cgε, Cg>ε) is well-defined for small ε so that

Hence, (4.18) has a solution w such that

(4.19) \w\'2 = \(I-R;lRaSj*Sr)-\R

^ const. (IFJo + l^lo) ( f r o m Lemmas 4.2, 4.3).

Substituting w into (4.17b) and using Lemmas 4.2, 4.3, we have

(4.20) | z | 2 ^ const, ( l^ lo + l^ lo) .

(4.19) and (4.20) show the corollary.

From Lemma 4.1, Corollary 4.4 and the implicit function theorem (Theorem

3.4 in [1]), it follows that, for small ε, there exists a solution ί(ε) = (r(ε), s(ε)) of

T(t, ε) = 0 such that

(4.21) |Kβ)IS + Kε) | 2 >0 as ε | 0.

Hence, (M(X, ε), v(x, ε)) = (w(r(ε), s(ε), ε)(x), v((r(ε), s(ε), ε)(x)) is a solution of

(1.1). Note that vt in (3.6) satisfies

(4.22) \vί\1 ^ const, ε1/2.

Indeed, we can show (4.22) by using (3.7), the fact | t ; 1 | 2 ^const. and an inter-

polation. In the same way as in [1], we can show from (3.8), (4.21) and (4.22)

that (u(x, ε), v(x, ε)) satisfies (2.1)~(2.5). Thus the proof of Theorem 2.1 is

completed.

Added in proof: After this paper had been received, the author was informed

that van Harten and Vader-Burger[8] delt with the same problem in another way.
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