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1. Introduction

We denote by Lp (lrgpfgoo) the Lp-space on the real line R with norm

\\-\\p with respect to the 1-dimensional Lebesgue measure | |. We denote by

S00 the totality of rapidly decreasing functions on R. We say that a

locally integrable function f(x) is of bounded mean oscillation if \\f\\BMo —

sup(1/|/|) \ \f(x)~mjf\ dx<co, where m[f=(l/\I\) \ f(x)dx and the supremum

is taken over all finite intervals /. The space BMO of functions of bounded

mean oscillation, modulo constants, is a Banach space with norm || HBMO F° r

0<(5gl and a complex-valued kernel K(x9 y) (x, yeR), we define ωδ(K) by the

infimum over all X's with the following three inequalities:

\K(x,y)\£AI\x~-y\ (xΦy)

\K(x,y)-K(x', y)\ g A\x-xΠ\x-y\^ (|x-x'|£|x-y|/2, xΦy)

\K(x, y)-K(x, y')\ ^ Λ\y-y'\η\x-y\^δ {\y-y\£\x

(If such an A does not exist, we put ωδ(K)~co.) We say that K(x, y) is
a Calderόn-Zygmund kernel (CZ-kernel), if ωδ(K)<co for some

Kf(x) = Γ K(x, y)f(y)dy = lim [ K(x9 y)f(y)dy
J-αo ε->0 J\χ-y\>ε

exists almost everywhere (a.e.) for any feL2 and ||K|| =sup
< oo. For a CZ-kernel X(x, y), a complex-valued function h(x) and a real-valued
function φ(x), we put

Klh, « ( x , y) = X(x, y

Galderόn [1] showed that K\h, φ] is a CZ-kernel if K(x, y) = \j{x-y\
φ' eL00 and h(x) is extended as an entire function, where " ψ ' e L 0 0 " implies that
φ(x) is difFerentiable a.e. and its derivative is essentially bounded. Coifman-
David-Meyer [4] showed that Calderόn's theorem is valid with the above con-
dition on h(x) replaced by "/? e S00". The author [7] showed that their theorem
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is valid with "φ' e L 0 0 " replaced by "φ' eBMO". The purpose of this paper is

to show an analogous property for CZ-kernels K(x, y) defined by pseudo-dif-

ferential operators of classic order 0.

Given a non-negative integer n, we say that an infinitely differentiable function

τ(x, ξ) in R x R is a symbol of (classic) order n if, to any pair (p, q) of non-

negative integers, there corresponds a constant C(p9 q) such that

(1) l<^?τ(x, ξ)\ ^ C(p, q)(l +1{|)»-« ( x , ( e i ) .

We denote by C(p, q; τ) the infimum of C(p, q)'s satisfying (1) and put (£(τ) =

{C(p, q; τ)}(Pfq). We write V(τ)£V0 = {C0(p9 β ) } ( M ) if C(p, q; τ)^C0(p9 q) for

any pair (p, q). The pseudo-differential operator τ(x, D) from S00 to C00

associated with τ(x, £) is defined by

τ(x, D)/(x) = Γ e**« τ(x, ξ)/«) dξ (/e S
J-oo

where/(ξ) denotes the Fourier transform of f(x) and C00 the totality of infinitely

differentiable functions on R. We say that K(x, y) is defined by τ(x, D) if

(2) X/(x) = τ(x, D)/(x) a.e. (/eS 0 0 ) .

Let us note that, for K(x, y) defined by a pseudo-differential operator of order 0,

there exists a sequence (Km)%=ί of CZ-kernels such that lim^,.,^ Km(x, y) =

K(x9 y) a.e. in R x 1? and supm \\Km\\ < oo ([3, p. 83]). We show

THEOREM 1. For any 0<<5gl, there exists a positive integer nδ depending

only on δ with the following property: If K(x, y) is a CZ-kernel with ωδ(K)<oo

and Pκ(nδ)<co> then KΌ1* Φ~\ ϊ 5 a^so a CZ-kernel as long as φ'eBMO and

h e S00, where

ρκ(nδ) = sup {||X[ίw, ψ] | | n = 0, 1,..., nδ, H '̂Hoo^ 1 {ψ' eL0 0)} .

As an application of this theorem, we show

THEOREM 2. Let K(x, y) be a CZ-kernel defined by a pseudo-differential

operator of order 0. Then K[h, φ~\ is also a CZ-kernel as long as φ'eBMO

and heS00.

2. Known facts

We use C for absolute constants. Throughout the paper, we fix 0<<5^ 1 and

use Cδ for constants depending only on δ: The values of C, Cδ differ in general

from one occasion to another. We write by L£ the totality of real-valued

functions/(x) w i t h / ' e L 0 0 . For a kernel X(x, y) with ωδ(K)<oo, we define an

operator X* by
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K*f(x) = sup {I f K(x, y)f(y)dy 0 < ε < η\ (fe L2).
I I Jε<\x-y\<η )

The norm \\K*\\ is analogously defined to ||X||. We say that K(x, y) is a δ-CZ-

kernel if it is a CZ-kernel with ωδ(K)<co. For φeS™ and a pseudo-differential

operator τ(x, D), we inductively define operators [</>, τ( , £))]„ ( n ^ l ) from S00

to C00 by:

IΦ, <',D)-\J{x) = φ(x)τ(x, D)/(x) - τ(x,

[φ, τ( , D)] B/(x) = φ(x) [0, τ( , D)]M_ ^ ( x

Here are some known facts necessary for the proof of our theorems.

LEMMA 3 (The Calderόn-Zygmund decomposition: Journe [6, p. 12]). Let

feL1 and λ>0. Then there exists a sequence {Jk}
<j°=ί of mutually disjoint finite

intervals such that, with J=\j£τ=ί Jk,

\J\ ^ WfWJλ, mJk\f\ S 2λ (fc^l), |/(x)| ^ λ a.e. in Jc.

LEMMA 4 (cf. Journe [6, Chap. 4]). For a kernel K(x, y), \\K*\\£

Cδ{\\K\\+ωδ(K)}.

The following lemma is a version of David's theorem [6, p. 110]. Since

the proof is analogous, we omit the proof.

LEMMA 5. Let B^O and let L(x, y) be a kernel with the following property:

To every finite open interval /, there corresponds a pair (El9 Lj) of a Borel set

Ej in I with \Et\ ̂ 2 |/|/3 and a kernel LJ = LJ(X, y) such that

\\Lf\\ g B, ωδ(Lr) S B

and

U(*> y) = L(x, y) (x,yel-Er).

LEMMA 6 (Coifman-Meyer [2]). Let φeS™ and let τ(x, D) be a pseudo-

differential operator of order ng l. Then [0, τ( ,Z>)]w is uniquely extended as

a bounded operator from L2 to itself and the norm is dominated by Dn(τ)\\φ'\\^9

where Dn(τ) is a constant depending only on n and (£(τ).

LEMMA 7 (Coifman-Meyer [2]). Let H(x, y) = l/(x - y). Then

\\H[t», φ]|| ^ Dibits,

where Dn is a constant depending only on n.
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3. Proof of Theorem 1

In this section, we prove Theorem 1. We begin by showing some lemmas.

LEMMA 8. Let K(x, y) be an η-CZ-kernel (0<?7gl), h(t) a function in L00

with h'eL* and let φeL£. Then ωn(K\h9 φ})^Cωη(K){\\h\\o0 + ||ftΊUI4>Ίloo}

If 0<η<l and φ(x) is a real-valued function with φ'eBMO, then the above

inequality is valid with Wφ'W^ and C replaced by WΦ'WBMO and a constant

depending only on η, respectively.

PROOF. Since the first assertion is easily shown, we give only the proof of

the second assertion. We have \K[h9 φ"](x, y)\£ωη(K)\\h\\J\x-y\ (xφy). Let

(x, x', y) be a triple of real numbers with 0<\x — x'\^\x — y\/2. Then

Q = \KVι9φ'](x9y)-Klh9φ'](x'9y)\

x-y x - v

ίωη(K)\\hUx-χ'\ Ί\χ-y\ι+'!

+ {ωJK)\\h'U\x'-y\} φ(x)-φ(y) φ(x')-φ(y)
x-y x'-y

To estimate Q' = \(φ(x)-φ(y))l(x-y)-(φ(x')-φ(y))l(xt-y)\9 we consider the

interval Ywith endpoints x9 x' and put φ(s) = φ(s) — (mγφ')s. Let v be the smallest

integer such that 2m |Y|^2|x — y\ ( m ^ l ) and let Ϋ be the interval with midpoint

x and of length 2V|Y|. Then we have v^Clog( |x-y |/ |x-x ' | ) and \mγφ'-

mΫφ'\^Cv\\φ'\\BM0 (cf. [5, p. 142]). Thus

Φ(χ)-Φ(y) _ Φ(χ')-$(y)
x — y x'—y

χ—yx-y)(x'-y)

g C\x-x'\l(x-yr^f\φ'(s)-mYφ'\d,

ύCv\\φ'\\BMO\x-x'\l\x-y\.

Consequently we have, with a constant C'η depending only on η,

Qύωη(K)\\h\Ux^xVI\χ-y\1+tl +

\φ'(s)-mγφ'\ds
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In the same manner, we have, for any triple (x, y, y') with

K Φl(x, y) - Kίh, φ](x9 y')\

Hence the required inequality holds. Q. E. D.

LEMMA 9. There exist two constants nδ and Mδ depending only on δ such
that, for any δ-CZ-kernel K(x, y),

(3) \\K[t\ φy\\ ̂

PROOF. We choose nδ ̂  1 and Mδ later. Put

pun) = sup {\\K[tj, ψy\\;j = 0, 1,..., n, | | ^ |

Then we have

(4) P«n) =

To see this, for ψ e L'R, we choose a sequence 0/Ό?Li in S00 so that lim^^ φι(x) =
φ(x) (XER) and IIML^IIiΠco (/^l). Then, for any /eL 2 , O^ ^ n and
xei?, X[ίΛ ψ]*/(x)^liminf/_α)jK:[ί ' , ψβ*f(x). Hence Fatou's lemma shows
that \\KW9φγ\\£s\xp{\\KltJ9X]*\\; μ'lL^ll^llαo (AeS00)} (O^j^n), which
gives that p^(n) is dominated by the quantity in the right-hand side of (4). Since
the inverse inequality evidently holds, we have (4).

Now let n*znδ. For a while we assume that p£(m)<oo f° r aH wg O and
estimate ρ£(n). To do this, we choose φsS00 so that HψΊL^l With L =
Kit", φ2, we shall associate pairs {(El9 LI)}1 as in Lemma 5. Given a finite open
interval / = (α, b)9 we may assume that φ(a)^φ(b); otherwise we deal with —φ(x).
We define θ(x) by

(φ{a)

(5) θ(x) = i n f {λ(x); λ ^ φ o n l , λ ' ^ - v/2,

( θ ( b )

where ϋ = ||̂ '11 βo Let

(6) EI = {xeI;θ(x)*φ(x)}.

Since —υj2^θr{x)^υ everywhere and £jc:{χei; 0'(x)= —v/2}9 we have

0 ^ 0(b) - ^(α) = ί θ'(x)ί/x = ( + ί
Jl JEi JI-Ei

£ - v\Ej\/2 + v\I-Ej\ = v(\I\ -
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and hence |£j|<;2|/|/3. •• We put LI = K\t\θ']. Using Lemma 8 with Λ(/) =

{(signί)πiin(|ί|, 1)}", we have ωδ(LI) = ωδ(K[h, 0])<^Cnω/K). To estimate

| |L? | | ,weput

(7)

Then H'0'11

Hence we have

S(x)

<rand

= θ(x) -

ε "=°(") (

σv(x — a)

σvr'il-

(<τ = 1/4).

Thus the pair (E/5 L7) satisfies the conditions in Lemma 5 with B — {\ — σ)"pχ(n)

PKW - 1 ) + Cnωδ(K). By Lemma 5, we have, with a constant MJ,

(8) ||X[ί», W*ll ^ Q{Λ + α>,(L)} ^ MJ{(l-σ)»pί(π) + p j ( n - l ) + nωδ(K)}.

Since ψeS00 is arbitrary as long as H ^ ' H ^ l , (4) shows that pj£(n) is dominated

by the last quantity in (8). Now we choose nδ^.l so that

Then we have

(9)

^ (2Af ί)»-»*p{(na) + {(2Af J)n + (2M£)2(n - 1 ) + + (2M$)»-»*nδ}ωδ(K)

To remove the assumption that Pκ(m) < oo for all m ̂  0, we consider Kε(x, y) =

K(x, y)με(x — y) ( 0 < ε ^ 1/2), where με(s) is the even function on R defined by

|Ό (0

μ£s)=<

ε(2/ε-s)

U (s>2/ε).

Then elementary calculus yields that ωδ(Kε) S Cωδ(K), ρ%B{m) <oo

m^O). We put p(/) = supo< ε^i/ 2 Pκε(0 0 ^ 0 ) and show that

(10)
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We have, for any /eL 2 , ψeL£, 0^/^J and xeR, K[_P\ ψγf(x)£
liminfε_0Xε[rJ, ΦYf(x). Hence Fatou's lemma shows that' \\K[t*9 ιA]*/|| ύ
suPo<e^i/2 \\KεltJ\ Ψl*fh which gives the first inequality in (10). For any

gl/2, 0<η'<η\ we have

η'<\x-y\<η"

~" I )η'<\x-y\ <η",ε< \x-y\<2ε I ) η' < \x-y\ <η",2ε< \x-y | <

ψ < \x~y\ <η", ί/ε< \x-y\ <2/ε

We have

1/ε

, say).

Jε<\x-y\<2ε

^ ωδ(KMΦ'\\ί \ \f(y)\l\χ-y\dy ^ Cωδ(K)\\φ'\\imf(x),
Jε<\χ-y\<2ε

where 9Ji/(x) denotes the maximal function of f(x) [6, p. 7]. We have

a n a l o g o u s l y R3 ^ Cωδ(K)W\\jJJίf{x), W e c a n w r i t e R2=\{ K[_P, ι//].
\Jή'<\x-y\<ή"

(x, y)f(y)dy with some pair (ή\ ή"\ and hence i ? 2 ^ X [ ^ ψ ] * / ( 4 Thus

KεltJ,ψγf(x)^KltJ9ψrf(x) + Cωδ(K)\\ψr\\imf(xX which shows ||Xβ[^, ^] ||

^||X[ίΛ ^]*||+Cω5(X)||ιAΊIi (cf [6, p. 7]). This inequality yields the second

inequality in (10). Consequently (10) holds.
Since p£fi(m)< oo for all m^O, (9) is valid with K(x> y) replaced by Kε(x9 y).

Since 0<εgl/2 is arbitrary, we have, by (10) and ωδ(Kε)^Cωδ(K)9

p*(n) ^ β(n) S {β(nδ) + Cωδ(K)}C»δ ^ {pt(nδ) + Cωδ(K)}C»δ.

By Lemmas 4 and 8, we have p%(nδ) ̂  Cδ{ρκ(nδ) + nδωδ(K)}. Hence we have, with
a constant Mδ depending only on δ, p%(n)^{pκ(nδ)-\-ωδ(K)}M1

δ

t (n^nδ).

Since \\Klr, φ]*\\ = \\Kϊt"9 ψ/||ψΊL]ΊI IIΨΊIt, we have (3). Q.E.D.

LEMMA 10. There exists a constant Nδ^l depending only on δ such that,
for any CZ-kernel K(x, y),

where nδ is the constant in Lemma 9.

PROOF. We put

κ(α) - sup{||K|V', ^ ] * | | ; | | ^ | L ^ ( ^ 1 ? ) }

Then, in the same manner as in the proof of (4), we have κ;(α) = sup {||X[efί, ι/r]*||
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}. Lemma 9 shows that κ(α)<oo for all α ^ l and
Cδ{ρκ{nδ) + ωδ(K)}. To estimate κ(α) (α> 1), we choose ψ e S00 so that H '̂IL ^α.
With £=£[>*', ψ~\, we shall associate pairs {(Ej, L/)}/ as in Lemma 5. Given
I = (a, b), we may assume that \l/{a)<L\l/(b). We define Θ(x), Eτ and θ(x) by (5),
(6) and (7), respectively and put Lj = K[_eu, 0]. Then | |5 / | | 0 0^(l-σ)α and
11̂ /11 = II^O", 0]*|| ύκ{(\ -σ)α). Lemma 8 gives ω^L,)^CθLωό(K). Thus the
pair (£7, L7) satisfies the conditions in Lemma 5 with B = κ((\ —σ)ιx) + C(xωδ(K).
By Lemma 5, we have

(11) ||K|V<, i/0*|| g CάB + ωάKle*', £])} g Cδ{κ({\-σ)a) + aωδ(K)} .

Since ι// e S00 is arbitrary as long as ||^'|| ̂  gα, /c(α) is dominated by the last quan-
tity in (11). Consequently, we have, with a constant Nδ^\,

φ) ^ *N*{κ(l) + ωδ(K)} S Cδ{pκ(nδ) + ωδ(K)} {1 +α"-} (α^ 1). Q. E. D.

LEMMA 11. Let K(x, y) be a δ-CZ-kernel such that pκ(nδ)<oo. Then
K[eu, φ~] is also a δ-CZ-kernel as long as

PROOF. By Lemma 8, we have ωάK[eu, φ])^Cωa(X){l + ||0'|L}. Lemma
10 shows that \\K[eil

9 φ]*\\ < oo. Hence it is sufficient to show that K[eu

9 φ~]f(x)
exists a.e. for any fe L2.

Let fe L2 and ψ e S°°. Then

ί Klt,ψ](x9y)f(y)dy = [ K(x, y){ψ'(y) + O(x-y)}f(y)dy
J\x-y\>E Je<\x-y\ <l

K[t,ψ-](x,y)f(y)dy

Since K(x9 y) is a CZ-kernel, this shows that K[t, ψ~]f(x) exists a.e.. Note that

(12) |x; Kit, ΨTg(x)>λ\ ̂  Cδ( ^

(λ>0; ψ',-geLι).

(See for example [7, Lemma 11].) Using this inequality, we show that
Kit, φ~]f{x) exists a.e. in a finite open interval I. Let /* be an interval with the
same midpoint as / and of length 3|/|. We denote by χ(x), χ*(x) the characteristic
functions of /, /*, respectively. Since Kit, </>] {(1 —z)/}(x) exists everywhere in
/, we show that Kit, φ~\ (χf) (x) exists a.e. in /. Note that, for x e /, Kit, φ~]
(χf)(x) exists if and only if Kit, χ*φ~](χf)(x) exists. Choose a sequence 0/OS=i
in S00 so that l i m ^ ||χ*</>-ιA«lli=O. Then we have {xel; Kit, χ*φ](χf)(x)
does not exist}c{xeI; liminf^^ Kit, χ*φ-ψn']*f(x)>0}. Inequality (12)
shows that the measure of the second set equals zero, and hence Kit, φ~\ (χf)(x)
exists a.e. in I. Thus Kit, φ~\f{x) exists a.e. in /. Since / is arbitrary, Kit, Φ2f(x)
exists a.e..
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Lemma 9 shows that, for any finite interval I,

", ΦYW < 00,

and hence Σΐ=o (l/n\)K[t", φ~]*f(x)< 00 a.e. in /. Thus the Lebesgue dominated

convergence theorem shows that K|> ί f , φ']f(x)=Σΐ=oOtΊnl)Kltn, φ~]f(x) exists

a.e. in /. Since / is arbitrary, K[eu

y φ~\f(x) exists a.e.. Q. E. D.

Now we give the proof of Theorem 1. Since ωη(K) is increasing with respect

to 77, we may assume that δ < 1. By Lemma 8, we have

ω,(K[/7, φ]) g Qω/XXIIΛIU + IIΛ'llαollΦΊlBMo}.

To estimate ||K[/t, 0 ] * | | , we discuss | |K[> ί f, φ ] * | | . With L = K [ ^ t , </>], we as-

sociate pairs {(£/, Lj)}/ as in Lemma 5. Given a finite open interval /, we use the

preceding notation /*, χ*(x). Since K[eu, φ~] = eiuK[eit, φ~\ (u = mrφ\ <£(*) =

φ(x)-ux), we may assume that m^φ' — O. We put φ*(x) = φ'(x)χ*(x). Then

ll^lli^CH^ΊIjgjv/ol/l. By Lemma 3 (λ = C\\φ'\\BMO), there exists a sequence

{Λ}?=ii of mutually disjoint finite intervals such that, with J = W^=1 Jk,

0, mJk\φ*\£C\\φ'\\BMO

^ C\\φ'\\BMO a.e. in " > .

We define 0*0) and θ(x) by

(13)
0(x) = φ(d) + \ θ*(s)ds (d: a point in I\J).

T h e n \\Θ'\\σj = \ \ Θ * \ \ σ ^ C \ \ φ ' \ \ B M O . W e p u t £ # = / n J a n d L ^ K ^ ^ θ l T h e n

ω ^ L ^ C ω a W f l f II^ΊIBMO}- Lemma lOshowsthat \\Lΐ\\^Cδ{pκ(nδ) + ωδ(K)}

•{1 + IIΦΊIBΛIO}- Thus the pair (£ / ? Lz) satisfies the conditions in Lemma 5 with

Ϊ We have

Since X[/i, φ] = C Γ fiC^KCβ^ - ξ φ ] ^ , we have

(14) ||X[Λ, φ2*\\ ^ C Γ | ί « ) | ||X[e'% ξφ] ||d{
j-00 ' .

ί ^ ^ ^X)} Γ |fi(O| {l ( | ί | | | f b y }dί < ex?,
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It remains to show that K\h, φ~]f(x) exists a.e. for any feL2. Given/e S00, we
begin by discussing K\_eu, φ~\f. For a finite open interval /, we use the preceding
notation /*, χ(x) and χ*(x). We show that K\_eu, φ~\f{x) exists a.e. in /. To do
this, it is sufficient to show that K[eu, φ~\ (χf)(x) exists a.e. in /. We may assume
that mj*φ' = 0. Let 0<f/<l/10. For any ε (0 < ε < ̂ ), there exists a sequence
{Λ)?=i of mutually disjoint finite intervals such that, with φ* = φ'χ* and Jε =

\Jε\ ̂  ε|/|, mJk\φ*\ £ (C/ε)\\φ'\\BMO (fc^l)

a.e. in J - .

We define Θ%(x) and θε(x) in the same manner as in (13). Then θεeLχ. Let
J*fi = WfcLi J*> where Jf is an interval with the same midpoint as Jk and of length
2|Λ|. Then, for any x e /\J*ε,

= Γ

\φ(y)-θ'(y)\l(x-yy-\(χf)(y)\dy

Σ?-ilΛl( i/(*-
J J k

and hence

[ Mε(x)dx
J i \j*ε

^ 2ωs(K)\\f\\J\φ'\\BMO Σf-i ί ί/y ύ 2ε|/|ωa(X)||/||00||</.'||
JJk

We have, with I£ = {xe /\J*ε M£(x)g^ϊ},

- \J*B\

^\I\{i-2jJωδ(K)\\f\\J\φ'\\BMO-2s}.

Since K[eil

9 θεli(χf)(x) exists a.e. in / for any 0<ε<η, K\_eu, φ](χ/)(x) exists
a.e. in J ^ n ^ P ' , where ε - 2 - ^ . Since lim^ 0 IM = M, K^'S 0](χ/)W
exists a.e. in /. Consequently, K{eu, φ~]f(x) exists a.e.. Since feS°° is arbi-
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trary, K[eu, φ]f(x) exists a.e. for any/eZA

Let / e L2. By (14), we have, for any finite interval I,

and hence ί°° |fi(£)|X[>if, £φ]*/(x)d{<oo a.e.. This yields that JK[ft, φ]/(x)
J-00

exists a.e..

4. Proof of Theorem 2

Let X(x, j>) be a CZ-kernel defined by a pseudo-differential operator σ(x, D)

of order 0. Then X(x, y) is a 1-CZ-kernel [3, p. 87]. By Theorem 1, it is

sufficient to show that Pκ(n1)<oo. We shall deduce this fact from Lemmas 6

and 7. We write simply (£(σ) = <E0 = {C0(p, <?)}(P,9)-

Let β(s) be a non-negative even function in S00 such that

where supp (j?) denotes the support of β(s). We put j5m(s) = (l/m)j5(s/m), jSm>n(s) =

|s | w + %(s) ( m ^ 1, n>0). We easily see that

H/ft^Hi ^ /!„, \β^n(s)\ g Γ ^ l + lsl)--* (/i, ^ ^ 0 ) ,

where i4n = 2n+1(w + l ) ! m a x { | | ^ > | | 1 ; 0 ^ j ^ n + l} and Γn>g = 2^(n+l)! x

LEMMA 12. Suppose that σ(x, ξ) satisfies σ(x, ξ) = 0 (\ξ\^.m) for some

positive integer m. We inductively define two sequences (σ^x, O)?=i (*= ± ) °f

symbols by

i(x, ξ) = j o ^ _ ! ( x , s)ds - bt

n-1(x)^βm9n_ί(s)ds (c=±, w ^ l , σ& = σ),

where

Then σι

n{x, ξ) is a symbol of order n with <£(σ;,) ̂  &n = {CM(p, q)}(p>q) and σ^(x, £) =

0 (cξ^m) for any ί = ± , n ^ l , where Cn(p, r̂) depends only on π, Γ M _ l g and

and C0(Λ fc) (0 ̂  j ^ p, 0 ^ fc ̂  ^).

PROOF. The symbol σj = σ is of order 0 and satisfies e(σJ) = CL0 and

σj(x, ξ) = 0 (ξ^m). Suppose that σ+.^x, ξ) satisfies the required conditions,

Then we have, for any pair (p, q) with <?^ 1,
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\%dlσi(x, ξ)\ < \d'xδ\-iσU(x, ξ)\

OT/2

and hence

(15) \dld\<{x, ξ)\ ^ Cn(p,

where

(16) Cn(p, q) = Q ^ ί p , q) + ̂ Q . ^ p , 0)Γn- l i # (^ = max {q-1, 0}).

Here note that (15) is valid for any pair (p, 0) with Cn(p, 0) defined by (16). Thus

σ+ is of order n and satisfies (£(σί)^ε r t={C r t(p, <z)}(/M?), where each Cn(p, q) is

inductively defined by (16). Since σ+Jiix, ζ)=zβm,n-\(ζ) = ΰ (ξ^m), we have

σ^(x, ^) = 0 ( ξ ^ m ) . Thus .σj satisfies the required conditions. In the same

manner, we see that σ~ satisfies the required conditions with (£„ defined by (16).

Q.E.D.

LEMMA 13. Suppose that σ(x, ξ) satisfies σ(x, ξ) = 0 (\ξ\}tm) for some

Then

(17)

6M((ίo) ί 5 a constant depending only on n and (£0.

PROOF. In the case n = 09 (17) evidently holds. Let n ^ l . By (2), we have

Jo

Repeating the integration by parts, we have

σjtx, ξ)dξ = ί-i(x-y)T
Jo

- Σΐ^ί-Kx-yn-^Ljix)^e><*-^βm,n.j(ξ)dξ ( ί -±) ,

and hence

(18) K[ί\ ψ](x, y) = ( - 0 " Γ« i ( J -"< σί(*. ς ε)^(φ(x)-
Jo

° « , ) ί ff-(Xt ξ)dξ{φ{x)-φ{y)Y
— 00
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+ Σj-i (-0'1--' (foe
ι^-^βm,n-j(ζ)dξbUJ(x)(φ(x)-φ(y)ri(x-yy

+ Σ$=i (-/)-' Γ e^-^βm^J(ξ)dξb-.j(x)(φ(x)-φ(y))"Kx-yy

*-')«σί(jc, ξ)dξ(φ(x)-φ(y))«

e^-^σ-(x, ξ)dξ(φ(x)-φ(y))"
0

/ Σj-i JJ e'ί'-^t β(,/ -iγ\ξ)dξb^j(x)(φ(x)-φ(y)yi(x-yy^

i Σ7-1 i-ί-/χ, J ) + '' Σ j - i i ; - / χ , y). say).

Note that ||6;_,||βog4--'C1,_ί(0J0) and recall that ^rJ-Vrh^n-j (« = ± .
l ^ j ^ n ) . By Lemmas 7 and 12, we have

(19) jJLi-jii ύ \\H[t", φ-]\\ IK.,1 Jkfc JL

To estimate \\L'n\\ ( ί = ± ) , we choose a non-negative function y e C 0 0 so that
7(s) = l (se[0, oo)), supρ(y)c[—1/2, oo), and put

L'«,y(x, >') = ( - 0 " Γ ei(-3»« σ.(χ, ξ)γ(cξ)dξ(φ(x)-φ(y)y (f = ± ) .

Then Lemmas 6 and 12 show that

\\LιnJ = IIW. σ X^DM^LH g D;||φ'||5> ( ^ ± ) ,

where /);, depends only on n, (£0, j9(s) and γ(s). We have

^;,,y(^. y) - Ln(*> y)

= a f°

^ 2

and hence

,θ)B00}||H[t«,
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where D"n depends only on n, (£0, β(s) and 7(5). Thus

(20) ll^ill^l |Li f y | | + | | L ; i y - L i | | ^ ( Z

Consequently, (18), (19) and (20) show (17) with Dn(1ί0)

DH4"Cn(0,0)Λn}. Q.E.D.

Now we prove Theorem 2. To do this, we show that

(21) II J φ " , Φl\\ ύ />*(Co)IIΨΊl5, (n ^ 0,φeLΐ)9

where D*((ί0) is a constant depending only on n and (Eo.

We define a function i e S 0 0 so that υ(s) = l ( s e [ - l / 2 , 1/2]) and supp(t ) c

[—1, 1], and put

Km(x, y) = Γ *'<*-»< σ(x,
J-00 .. .

where vm(ξ) = v(ξ/m). Note that σ(x, ξ)vm(ξ) is of order 0 and satisfies

(£J for some &* = {Cξ(p,'q)}(Ptq), where each' Cξ(p, q) is independent of m.

Also note that ώ^KJ^C Σj=o'c$(0'J) ( m ^ l ) ([3, p. 88]). Let ψeS™. Then

Lemma 13 shows that \\Km[tn, ^ ] | | gDn(6:j)||^r|l!t>. Lemma 8 yields, that

ω^KJUψΠISo, Hence we have, by Lemma 4,

(22) ||Km[ί», ^] ||

^ C{Dn(<ί*) +

ΊI5>, s a y ) .

By (2), we have, for any xeR and /e5°° with x ^ s u p p ( / ) , limm-+00Xm/(x) =

Kf(x). Since supmω,(/Cm)<oo, the Ascoli-Arzela theorem yields that Km(x, 3;)

converges locally uniformly to K(x, y) in i?x/?-{(x, x); xeR} as m->oo. By

(22) and Fatou's lemma, we have | |K[r , ι/0*ll ^D*(G0)II^ΊIS>. Given φeL£9

we can choose a sequence (ψj)f==ί<=S*) so that lim,-^ φj = φ and Hi/fjU r̂g II^ΊL

Hence, again by Fatou's lemma, we have ||K[f", φ]* | | ̂ D*(eo)||φΊISo, which

shows (21).

By (21), we have immediately p^( n i) < °° Thus Theorem 1 yields Theorem 2.

Note. Recently, the author estimated nδ and obtained that nδ = 2 is

sufficient. Perhaps the condition t4Px(^ό) < °°" is not necessary.
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