HIROSHIMA MATH. J. 15 (1985), 141–143

Birational-integral extensions and differential modules

Mitsuo KANEMITSU and Ken-ichi YOSHIDA (Received August 30, 1984)

Throughout this paper, a ring will mean a commutative Noetherian ring with identity.

Let R be a Noetherian domain and let \overline{R} be the integral closure of R in its quotient field. An intermediate ring between R and \overline{R} will be called a *birational-integral extension* of R. Let A be a birational-integral extension of R. We assume that A is a finite R-module. Let $_{A}^{+}R$ be the seminormalization of R in A. If $_{A}^{+}R = A$, then we say that the extension A/R is a *cuspidal type*.

In this paper, we shall prove that a cuspidal type extension is obtained by a finite chain of constant subrings of some derivations.

Let $C = {}^{+}_{A}R$ and let I_{C} be the kernel of the canonical homomorphism

$$\Psi_C: C \otimes_R C \longrightarrow C.$$

Then I_c is generated by $\{\alpha \otimes 1 - 1 \otimes \alpha | \alpha \in C\}$ and C/R is a cuspidal type extension. For any ring S, we put $S_{red} = S/nil(S)$ where nil(S) denotes the nilradical of S. Let $\overline{\varphi}_A$ be a module-homomorphism of A to $(A \otimes_R A)_{red}$ over R defined by $\overline{\varphi}_A(\alpha) = \alpha \otimes 1 - 1 \otimes \alpha$ mod $nil(A \otimes_R A)$. In [2], M. Manaresi proved that ker $\overline{\varphi}_A = {}^{w}_{R}R$ where ${}^{w}_{A}R$ is the weak normalization of R in A. In our situation, since $C = {}^{+}_{C}R$, we have $C = {}^{w}_{C}R$. By this result, each $\alpha \otimes 1 - 1 \otimes \alpha$ ($\alpha \in C$) is nilpotent and so I_C is nilpotent, say $I_C^{q+1} = (0)$ for some integer q. Then we see that the q-th order differential module $\Omega_R^q(C) = I_C/I_C^{q+1}$ of C over R is isomorphic to I_C and there exists the canonical q-th order derivation Δ_q of C over R to $\Omega_R^q(C)$ defined by $\Delta_q(\alpha) = \alpha \otimes 1 - 1 \otimes \alpha$. We see that $\Delta_q^{-1}(0)$ is a subring of C containing R.

In the paper [1], J. Lipman introduced the following notion: For a ring S and a subring T of S, we say that

$${}_{S}^{*}T = \{ \alpha \in S / \alpha \otimes 1 = 1 \otimes \alpha \text{ in } S \otimes_{T} S \}$$

is the strict closure of T in S. If $T = {}_{S}^{*}T$, then we say that T is strictly closed in S.

Using this notion, we have:

PROPOSITION 1. Let R, C and Δ_q be as above, and let N be a $C \otimes_R C$ -submodule of $\Omega_R^q(C)$ (for example, I_C^i , where t is an integer). Then $\Delta_q^{-1}(N)$ is strictly closed in C.

PROOF. Since $\alpha \otimes 1 \equiv 1 \otimes \alpha \mod N$ for any $\alpha \in \Delta_q^{-1}(N)$, $(C \otimes_R C)/N$ can be regarded as a $\Delta_q^{-1}(N)$ -module. Hence there exists the canonical mapping

$$\sigma: C \otimes_{\mathcal{A}_{\mathfrak{a}}^{-1}(N)} C \longrightarrow (C \otimes_{\mathbb{R}} C)/N.$$

To prove that ${}^*_{c}\Delta_q^{-1}(N) \subset \Delta_q^{-1}(N)$, take β in ${}^*_{c}\Delta_q^{-1}(N)$. Then we have $\beta \otimes 1 - 1 \otimes \beta = 0$ o in $C \otimes_{\Delta_q^{-1}(N)} C$. Hence we have $\sigma(\beta \otimes 1 - 1 \otimes \beta) = 0$ in $(C \otimes_R C)/N$. $\Delta_q(\beta) \in N$ in $C \otimes_R C$. So ${}^*_{c}\Delta_q^{-1}(N) \subset \Delta_q^{-1}(N)$. Clearly $\Delta_q^{-1}(N) \subset {}^*_{c}\Delta_q^{-1}(N)$. Therefore the proof is complete. q. e. d.

Next, we recall the following

DEFINITION. Let S be a ring and let T be a subring of S. Let $i: T \rightarrow S$ be the inclusion mapping. We say that the extension S/T is *epimorphic* if, for any pair of ring homomorphisms f_1 and $f_2: S \rightarrow D$, $f_1 i = f_2 i$ implies $f_1 = f_2$.

Then the following results are well known (see [3]).

PROPOSITION 2. Let S be a ring and let T be a subring of S. Then we have: (i) ${}^{*}T=S$ if and only if the extension S/T is epimorphic.

(ii) S/T is epimorphic and integral if and only if S = T.

For convenience, let $C = C_0$ and $C_1 = \Delta_a^{-1}(0)$.

PROPOSITION 3. In the above notation, if $C_0 \supseteq R$, then $C_0 \supseteq C_1 \supset R$.

PROOF. If $C=C_0=C_1$, then we have ${}_{C}^{*}R=C$. Hence C/R is epimorphic by Proposition 2, (i). Therefore C/R is epimorphic and integral. By Proposition 2, (ii), we have $C_0=C=R$. This is a contradiction. q.e.d.

Repeating this process, we have:

THEOREM 4. There exists a finite sequence of subrings C_i of C such that

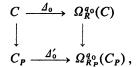
$$C = C_0 \supset C_1 \supset \cdots \supset C_d = R,$$

where C_i is the constant subring of the canonical high order derivation of C_{i-1} for every i=1,...,d.

PROOF. Let P be a minimal element of $Ass_R(C/R)$. Then the residue R_P -module C_P/R_P is an Artinian module. Hence, by Proposition 3, there exists a sequence of intermediate rings between C_P and R_P such that

$$R_P = C'_a \subset \cdots \subset C'_0 = C_P,$$

where C'_{i+1} is the constant subring of C'_i with respect to the canonical high order derivation over R_P , $\Delta'_i: C'_i \to \Omega^{q'_i}_{R_P}(C'_i)$. Let $C_0 = C \supset \cdots \supset C_g$ be the sequence where C_{i+1} is the constant subring of the canonical high order derivation over $R, \Delta_i: C_i \rightarrow \Omega_R^{q_i}(C_i)$. By the following commutative diagram:



we have $(C_1)_P \subset C'_1$. Since $(C_i)_P \subset C'_i$ holds for i=0, 1, ..., g by induction on i, we have $R_P = C'_g \supset (C_g)_P \supset R_P$. Hence $(C_g)_P = R_P$. Let $\mathfrak{c}(C/R)$ be the conductor ideal of R in C. Since $P \supset \mathfrak{c}(C/R)$ and $P \not\supset \mathfrak{c}(C_g/R)$, we have $\mathfrak{c}(C_g/R) \supseteq \mathfrak{c}(C/R)$. Repeating this process we arrive at our conclusion. q. e. d.

Since $I_C^{q+1} = (0)$, there exists a sequence of ideals

$$I_C \supset I_C^2 \supset \cdots \supset I_C^q \supset I_C^{q+1} = (0).$$

For the canonical high order derivations $\Delta_i: C \to I_C/I_C^{i+1} = \Omega_R^i(C)$, let $B_{i+1} = \Delta_i^{-1}(0)$. Then $B_{i+1} = \Delta_q^{-1}(I_C^{i+1})$, and B_{i+1} is the constant subring of Δ_i/B_i in B_i . Since Δ_i/B_i is a first order derivation, we have the following:

THEOREM 5. There exists a sequence of constant subrings of some derivations and an integer g such that

$$C = C'_0 \supset C'_1 \supset \cdots \supset C'_q = R.$$

We ask the converse of this theorem. Let $d: A \rightarrow \Omega_R(A)$ be the canonical derivation and put $B = d^{-1}(0)$. Is the extension A/B a cuspidal type extension?

References

- [1] J. Lipman, Stable ideals and Arf rings, Amer. J. Math., 93 (1971), 649-685.
- [2] M. Manaresi, Some properties of weakly normal varieties, Nagoya Math. J., 77 (1980), 61-74.
- [3] P. Samuel, Les epimorphismes d'anneaux, Séminaire d'algebres commutative dirigé par P. Samuel, Secretariat Math., Paris, 1968.

Department of Mathematics Aichi University of Education

and

Department of Applied Mathematics Okayama University of Science