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1. Introduction

Consider the initial value problem

(i.i) y'=f(χ,y)

where the function /(x, y) is continuous and satisfies a Lipschitz condition with

respect to j; in IxR, / = [α, 6], JR=( — oo, oo). Let y(x) be the solution of this
problem and let

(1.2) xn = a + nh (n = 0, 1,..., ; 7ι > 0),

where h is a stepsize. We are concerned with the case where the approximations
y. (7 = 1,2,...) of y(xj) are computed by step-by-step methods. Most of the
conventional step-by-step methods such as one-step methods, linear multistep
methods [1], hybrid methods [3], pseudo-Runge-Kutta methods [3, 4] and two-
step methods [5] are of the form

(1.3) Σkj=o<*jyn+j = hΦ(xn, );,„..., yn+kι h) (n = 0, 1,...),

where α,- O' = 0, 1,..., fc) are real constants. Methods of this type determine
yn+k for given yn+ί (i = 0, l,...,/c — 1) and require starting values 3^(1=0, 1,...,

fc-1).
To achieve higher order with no increase in stepnumber, in this paper, besides

the step nodes (1.2) we introduce w — 1 sets of subsidiary nodes

(1.4) xn + v. = a + (n + Vi)h (n = 0, 1,...; ΐ = 2, 3,..., m)

and the approximations yin of y(xn+v)9 and consider the system of difference
equations

(1.5) Σf=l ΣjUOijqyin + j = hΦq(XΛ9 yln,...9 yιn + k l,..., ym»>--» J'mii + lU' Λ)

(n = 0, l,...,N;β = 1, 2,..., m),

where v j L=0, yίn = yn (n = 0, !,...)» v£ (i = 2, 3,..., m) are nonnegative numbers and
aijq (7 = 0, 1,..., /c£; /, g = l, 2,..., m; fc^l) are real constants. Methods of this
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type determine yin+ki (ι = l, 2,..., m) for given yin+j (7 = 0, 1,..., kj-1; ί = l,
2,..., m) and require starting values ytj (7 = 0, 1,..., k,-—1; ί=l, 2,..., w). vf

(z = 2, 3,..., m) need not be integers and it is not required that ki + vi^k1

(z = 2, 3,..., m). The node xn + v is called an off-step node if v is not an integer.
Clearly the method (1.5) reduces to (1.3) when m = l.

Urabe's compound multistep method [9] and his implicit one-step method
[10] can be considered as methods (1.5) with m = 2, kl = k2 and v2 = l. Two-step
methods with one and two off-step nodes have been studied by the author [6, 7, 8].

In section 2 assumptions on Φq(x, u\ v) (g = l, 2,..., m) are stated, the con-
sistency condition for (1.5) is introduced and the root condition is stated for the
characteristic equation defined in terms of the coefficients aijq's.

In section 3 convergence of the method (1.5) is defined and it is shown that
under certain conditions the method (1.5) is convegent if and only if it satisfies
the consistency condition and the root condition.

In section 4 stability of the method (1.5) is defined as the boundedness of the

effects of perturbations in Φq(x, u\ υ) (<? = !, 2,..., m) and in starting values. It is
shown that under certain conditions the method (1.5) is stable if and only if it
satisfies the root condition.

In section 5 an a priori error estimate of the method (1.5) is obtained and the

order of the method (1.5) is defined.

2. Preliminaries

2.1. Notation

Let & be the set of all functions f ( x , y) which are continuous and satisfy
Lipschitz conditions with respect to y in I x R. For/e J5" and ηeR denote by
y(x) the solution of the initial value problem (1.1). This solution exists over the
interval / [1]. Let v,- (z' = 2, 3,..., m) be nonnegative numbers if m>l, h0 be a
positive number, // = [0, Λ0], v^ =0, and

(2.1) xn + v. = a + (w + vf.)/ι (n =0, 1,...; i = 1, 2,..., m; 0< h g Λ 0).

To obtain the approximations yίn of y(xn+v), we consider the system (1.5) of dif-
ference equations. Unless stated otherwise, N denotes a positive integer such that

a + (N + μ)h ̂  fc, where μ = i
Let

(2.2) fc=ΣΓ=ι*ί> fc* = max 1^ ί ί mfc l, fc* = min 1^ ί g m/c ί, Ω = IxRk+mxH9

Mp (p = 0, 1,..., fc*) be the mxm matrices with (/, j ) entries ajk._pi and let

(2.3) un = (u l π + k l, w2;ι+fc2,..., umn+kmγ (n= - k*, -fc* + 1,..., N),
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where uiq = ajqi = 0 for g<0. Assume that M0 is nonsingular. Denote by

Φίfan "n; Λ)

Φq(xn9 M l n,..., u l n + f c l,..., MmM,..., ww / J+ f c m; ft)

and let

(2.4) Φ(xM, M M ; Λ) = (Φ^x,,, M Π ; Λ),..., Φm(xM, wn; Λ))'.

Then (1.5) can be written as

(2.5) Σΐ-oMjy.-j = hΦ(xn, yn; h) (n = 0, 1,..., N).

In the sequel ΣΣ stands for ΣΓ=ι Σy=o and II • II denotes the 1-norm of a m-
vector or an m x m matrix.

Now we introduce the following

CONDITION A. Φq(x,u',v) (q = l, 2,..., m) are continuous in ί2 and there

exists a positive constant L such that

(2.6) \Φq(x, u; v) - Φq(x, ϋ; ι;)| ^ L ΣΣI"ιy-βyl

for all (x, M, i;), (x, M, ι;)eΩ (q = 1, 2,..., m).

THEOREM 1. Suppose that Condition A is satisfied. Then there exists a

positive number hΛ (hΛ^ho) such that for any xel and u^eR (j=0, 1,..., k{— 1;

ί = l, 2,..., m) the system of equations

(2.7) ΣΣflιΛ«ιy = hΦq(x, u\ h) (q = 1, 2,..., m) /or Λ ̂  Λ j

has a unique solution uiki (ί = l, 2,..., m).

PROOF. Denote w0 in (2.3) by t; and let

θq(*>) = Φ/Λ, "!<>»•••» H i i c i - i . ϋi,..., wM J k m-ι, ^w; Λ) (^ = 1, 2,..., m),

Then (2.7) can be written as

(2.8) M0v + Σί=ι My«_y

For any #(0) e Rm consider the iteration

M0ι;
("+1) -f ΣT=ιMju-j = hθ(ϋ^) (π = 0, 1,...).

Then

M0(t/"+1) - ί^(M)) = A{β(t;(»)) - tfίt^-1))} (n= 1, 2,...)

and by condition A with K = mL HMo 1 ! !



92 Hisayoshi SHINTANI

II^K+D _ 000U g hκ\\vw - ^"-^H (n = 1, 2,...) .

Choose h1 (0</ι1^/ι0) so that p = Kh<l if 0<h^hί and we have

Hud.*!) - <,(»)|| g p«||t?(D - 0(0) i i (w = o, 1,...) for A ̂  A! .

Hence for any positive integer p

p) (n = 0, 1,...) for A ̂

Thus {ι;(M)} is a Cauchy sequence and there exists v* = limn_00v
(n\ By con-

tinuity of Φ v* is a solution of (2.8).
Suppose that ϋ is also a solution of (2.8). Then we have

M0(v -v*) = h{θ(ϋ) -θ(v*)},

so that ||ό-»*||^p||ϋ-»*||. Since 0^p<l, it follows that ||c-β*||=0 and
the solution of (2.7) is unique. This completes the proof.

Let

(2.9) Tq(x;h)

- hΦq(x, y(x+v1h),..., y(x+(km + vjh); h) (q = 1, 2,..,, m),

(2.10) T(χ-K) = (Tί(χ-h), Γ2(x; Λ),..., Γm(x; fc))',

(2.11) φ,/*) = Σίί-o βy,ιx* (i, 7 = 1, 2,..., m) .

Denote by A(x) the matrix with the (ί, j) entry (py(x) and by Φu(x) (i, ; = 1, 2, . . . , m)
the cofactor of φi}(x). Put

(2.12) ^(x) = [>,(*), ί92(x),..., ίθm(x)] ,

(2.13) p(x) = det X(x) = Σ5-o MJ-

Then fck=det M0,^0 by the assumption.
Let E be the operator such that

(2.14) Ex = x + h, Eyin = yίn+1.

Then (1.5) can be rewritten as

(2-15) ΣT-i fit®?* = **«(*., Λ ϊ Λ) (i = 1, 2, . , m) .

Eliminating yjn (j^i) from the left side of (2.15), we have

(2.16) ΣJ=o bjyln+j = hΨfa, yn; h) (i = 1, 2,..., m),

where
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(2.17) n*.,:v.;Λ) = Σ7-ι
(n = 0, ί,...,N-k; i = l,2,...,m).

Let

(2.18) R{x; h) = Σ?=o Φj{E)T{x; h) (i = 1, 2,..., m),

(2.19) R(x; h) = (^(x + M; h),..., Λm(x + fcmΛ; A))',

(2.20) r(xB, y,,; Λ) = (^(x.̂ ,, JWIM h),..., !P(x.+*m, JWm; *))',

where Ψ^x,,, JM; ft) = 0 for n<0 and Rt{x; h)=0 for x<α. Then (2.16) can be
rewritten as

(2.21) Σ5=o bjy^, = Λ?F(xn, yn; h) (n = - fc*, - fc* + 1,..., N - fc) .

Let {yίn} (n = 0, 1,..., N + /c,-; i = l, 2,..., m) be the solution of (1.5) such that

(2.22) yίn - >η (j = 0, 1,..., fc, - 1; i = 1, 2,..., m) as h - >0

and let

(2.23) eu = ytj - y(xj+vι) (j = 0, 1,..., N + k,; i = 1, 2,..., m) .

Then we have

(2.24) ΣJlo MA-; = Aφ^»' X*.) + β-ί Λ)
- Λ*(x., y(xn); Λ) - Γ(x.; Λ) (n = 0, 1,..., N),

(2.25) Σ5=o bjen+J = Λr(x., Xxπ) + cπ; Λ) - hΨ(xn, y(xn); h)

-R(x,,;h) (n=-fc* , -fc* + l,...,N-k).

2.2. Conditions

We introduce the following five conditions :

CONDITION B. If / = 0, then Φq = 0 (q = 1 , 2, . . . , m).

CONDITION Cl. ΓΓαiΛ=0 (q = l, 2,..., m).

CONDITION C2. Ψq(x, y,..., y; 0) = p'(l)/(x, j>) (β = 1, 2,..., m).

CONDITION R. The modulus of no root of p(C)=0 exceeds 1 and the roots
of modulus 1 are simple.

CONDITION C2'. Φq(x, y,..., y; 0)=ΣΣ(j + vί)αί;ς/(x, y) (q = ί , 2,..., m).
We say that the method (1.5) is consistent if Conditions Cl and C2 are satisfied.
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LEMMA 1. Suppose that Conditions A, Cl and C2 are satisfied. Then
there exist rf(Λ) (i = l, 2,..., m) SMC/I

(2.26) I Λ j f o J O I ^ Λ r r f Λ ) , rt(h) - »0 as /? - > 0 (i = 1, 2,..., m).

PROOF. Since Σ7=ι<Pι/l) = ° O' = l, 2,..., m) by Condition Cl, it follows
that p(l) = deM(l) = 0. Let Lί be a Lipschitz constant of /(x, y), G0 =

maxxe/ 1 y'(x)\ and

, X*)) -/(x, Xx))| .

Then, by continuity of /(x, >>), w(h)->0 as
For Λ: e / and x + hel

- y'(x)]dt.
O

Since

|/(x + ί, Xx + 0) -/(x, Xx))l ^ l/(x + ί, X* + 0) -/(^ + ί, X^))l

+ |/(x + ί, Xx)) - /(x, Xx))| ^ w(Λ) + ΛL t Co ' (0 ̂  ί ̂  Λ) ,

for some Θ (\Θ\ ̂  1) we have

(2.27) Xx + Λ) = yW + hyf(x) +

Let

(2.28) s^/i) = max^l^x, Xx + v^),...,

Xx + (fcm + vm + k~k i)fc); Λ)- Ψfc, Xx),..., Xx); 0)| (i = 1, 2,..., m),

where J = [α, b—(μ + k — k*)K]. As ?Pf(x, M ; i?) is continuous in its arguments by
(2.17) and Condition A, it follows that s,(/ι)->0 as h-^Q. Since by (2.18), (2.9),
(2. 15) and (2. 16)

(2.29) /tfx; Λ) = ΣJ=o fry

- ^(x, Xx + v1/ί),...,Xx-f(/cm4-vm4-k-/c ί)/ι); Λ),

by (2.27), (2.28) and Conditions Cl and C2 we have

\Rfa Λ)| ^ hΣkj-o\bj\lw((j + vύh) + O' + v^ΛLiGo] + Λs,(Λ) (i = 1, 2,..., m).

Hence there exist rt(h) (ί = l, 2,..., m) satisfying (2.26).

LEMMA 2. Condition C2 follows from Conditions Cl and Cl' .

PROOF. As has been shown in the proof of Lemma 1, p(l) = 0 follows from
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Condition Cl. Setting xn = x and yn+j = y (7 = 0, 1,..., kq\ q = l, 2,..., m) in
(2.17), and letting /z->0, we have

, y,...9 y; 0) = Σ?=ι ΦjMΦfa JV-, J>; 0).

Denote by <5t-y the Kronecker's delta. Then since

Σ;=ι Φj£x)<Pjfa) = δqip(x) (/, g = 1, 2,..., m),

we have

Σ7=ι

Hence by Condition Cl

= P'd) - Σ7=ι Φ}ί(D Σ J=ι

Since by Condition C2'

Φ/x, y,..., y; 0) = ΣΓ=ι ίφiι(l) + v/φyί(l)}/(x, y),

Condition C2 follows.

REMARK. From this proof it is seen that Condition C2 follows also from
Condition Cl and the condition

Φ/x, y,..., y; 0) = Σ Σ J a t j q f ( x , y) (q = ^ 2,..., m).

It is also seen that, if Condition A is satisfied and en = o(h) (n=— fe*,
-fc* + l,...,N), then Conditions Cl and C2 are satisfied by (2.24), (2.25) and
(2.29). Under Condition Cl, Condition C2 coincides with Condition C2' if

m = l.

2.3. Systems of difference equations

Let {U(

n

i}} be the set of fc* solutions of the homogeneous matrix diίference
equation

(2.30) ΣΪ-oMjU^j = 0 (n = 0, 1,..., N)

satisfying the initial conditions

(2.31) l/(-'ί = J, t/l ' j^O ( j ^ / ; i , . / = l,2,...,/c*).

Then the solution {zn} of the system of difference equations

(2.32) Σkj=oMjZn-j = cn (n = 0, 1,..., JV)
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can be written as

(2.33) zn = ΣKi E/i°*-, + Σj-o£jΛ (n = - k*, - fc* + 1,..., JV),

where

(2.34) Ejn = l/'L^Mo1 (7 = 0, 1,..., n; n = 0, 1,..., N).

Now consider the system of difference equations

(2.35) ΣΣ*umZtn+j = cqn (n = 0, 1,..., N; q = 1, 2,..., m),
where

(2.36) αov, = aijq - A& |Λ|I (7 = 0, 1,..., fc£; f, 4 = 1, 2,..., m; n = 0, 1,..., ΛΓ),

(2.27) IcJ^C, |6 ί ΛJ£L,

c ,̂ bfj-gn and C are constants. Let Mpn (p=0, l,...,fe*) be the matrices with

(i, 7) entries αyjkj_p/M and let cn = (cίn, c2n,..., cmπ)
r, where bjqin = 0 for ςf<0. Then

(2.35) can be rewritten as

(2.38) Σ?-oMjHzΛ-j = cn (n = 0, 1,..., N).

LEMMA 3. There exist matrices V(

n° (/ = !, 2,..., /c*; n= -/c*, -fc*-|-
1,..., TV) and F^ (7=0, 1,..., n; n = 0, 1,..., AT) and positive constants c, d and

h2 (h2^hι) swc/ί that for h^h2 the system (2.38) Aas a solution {zn}9 which can
be expressed as

(2.39) zn = ΣKi n°«-ί + Σnj=oFjΛCj (n = - fe*, - fc* + 1,., N),

w/z^rβ

(2.40) IIF^-C/^II g ch (i = 1, 2,..., fc*, n = 0, 1,..., k - 1) for h ̂  h2,

(2.41) IIF^-^H g dfc fa = 0, 1,..., n; n = 0, 1,..., fc - 1) /or λ ^ Λ 2.

PROOF. Set Mpn=Mp-hKpn (p = 0, 1,..., /c*). Then ||KPJ gmL. Let K

mLUMo1!! and A2 (^2^^ι) be a positive number such that 2Kh2^l. Then M
exists for ft ̂  Λ 2 because A || MO 1K0n || ^1/2. PutMow

1 = Mό1 + /ιDw(n = 0, 1,..., N

Then ||Dw||^2||Mo1|l^ (n = 0, 1,..., N). Setting

Nj = M?Mp Njn = M^Mjn9 NJU = Nj + hLjΛ for fc g Λ2

we have

\\LJΛ\\ ^ ||/)J(||My||+fc2mL) + X (7 =1, 2,..., fc*; n = 0, 1,..., N).
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Let {V™} (n= -fc*, -fc* + 1,..., N; i = l, 2,..., fc*) be the set of fc* solutions
of the matrix difference equation Σ*j=oMjnVn-j = Q (w = 0, 1,..., N) satisfying the
initial conditions F(_!)=/, F</j = 0 (;Vi; ί,y = l, 2,..., fc*). Then the solution of
(2.38) is given by (2.39), where

Fjn = Vgj^Mti (j = 0, 1,..., w ; it = 0, 1,..., N).

Let for n = 0, 1,..., N

(2.42) Fω-l/ω + ΛGfc (/ = l,2,...,fe*),FβII = £fΛ + /iflίll (<7 = 0, 1,..., n).

Then we shall show that for n=0, 1,..., fc-1 there exist constants cn and dw

such that

(2.43) | |GJ£c,(i = l,2,...,fc«), ||H,J| £ 4, (« = 0, 1,..., n) for Λ g f t 2 .

Since Gy0= ^^-o 0" = 1» 2,..., fc*) and fί00 = D0, there exist c0 and J0 satisfying
(2.43) for n=0. Assume that (2.43) holds for n=0, l,...,p-l (p<fc). Then
since

i> +NίGyp.ί] (y = 1, 2,..., fc*),

there exist constants cp and ίίp satisfying (2.43). Hence for some constants c and
d (2.40) and (2.41) hold. Thus the lemma is proved.

Consider the system of difference equations

(2.44) ΣT=QMjZn-j = Aβ(zπ) (n = 0, 1,..., N),

where β(zw) = (Θ1(zw),..., 6)m(zn))f. Then we have the following

COROLLARY. Suppose that for some constant C0

(2.45) \Θq(zn)\ ί C0 + LΣΣ\Zin+j\ (n = 0, 1,..., N',q = l, 2,..., m).

TΛen ίΛe system (2.45) /ιαs α solution {zn} for h<h2, and there exist constants
AQ and Aί such that

(2.46) llz.ll ^ C0A0h + A,. Σf-j Ik-yll (n = 0, 1,..., k - 1) for h g Λ2.

PROOF. By (2.45) there exist constants bίjqn and dίπ such that

β,(zn) = ΣΣ^Zίπ+j + dqn (n = 0, 1,..., N; q = 1, 2,..., m),

where |&|Λ|| £L and |dj gC0. Let rf.=(dlB, d2,,..., dmn)'. Then (2.44) can be
written as Σ.j=oMjnZn-j=hdn. By Lemma 3 this system has a solution {zn}
for h ̂  Λ2, which can be expreesed as
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Zn = ΣKl V^Z-t + k Σn

q=*Fqndq (Λ = 0, 1,..., *-l) .

From this (2.46) follows. This completes the proof.

Let {M<°} (n = 0, l,...;i = 0, 1,..., k-1) be the set of k solutions of the
difference equation

(2.47) Σί=o *>,•»„+, = 0 (« = 0, 1,...)

satisfying the initial conditions u^ — δ^ (i,7 = 0, l,...,k — 1), and let w^~1) = 0
for 7<0. If Condition R is satisfied, then there exists a constant G [2] such that

(2.48) \u(

n

i}\ ^ G (n = 0, 1,...; ί = 0, l,...,k- 1), 2kG ̂  1.

Eliminating zjn (j^i) from (2.35), we have

(2.49) Σί=o bjZίn+j = h Σ}=0 dijnzin+j + gin

(n = 0, l,...,N-k: i = 1, 2,..., m),

where ί/fj-n's are polynomials in h with bounded coefficients,

(2.50) gin = Σ7-ι 0y/(£)0« + h Σ?=ι σyiB(£; ft)cjlp

σjίn(x; /ι)'s are polynomials in x and /ι with bounded coefficients. Hence there
exist constants d, g and Q{ (i = l, 2,..., m) such that

(2.51) I d y j g d for λ g Λ2 (j = 0, 1,..., k),

(2.52) \gin\^g^gC for Λ ^ Λ a (n = 0, 1,..., ΛΓ-k; i = l, 2,..., m).

LEMMA 4. Lei {zίM} fee the solution of (2.49) and suppose that

(2.53) |zy| ^ Zt. (7 = 0, 1,..., k - 1 ; i = 1, 2,..., m).

Lei ί/ie constants d and 0f (i = l, 2,..., m) satisfy (2.51) and (2.52) respectively.
Then there exists a positive constant h3 (/ι3^/ι2) such that

(2.54) |zj g K^""^ (« = 0,l,...,JV + fcl;ί = l,2,...,ιn) /or λ S Λ3,

(2.55) X^ΣGCfcZί + BίΛΓ + Jk^J (i = l, 2,..., m), L* =

PROOF. Put wίΛ = /ι Σj=o^ϋπzi«+j + ^i«- τ^en zm can ^e expressed as

Hence
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from which we have

.3=J|zyl f o r Λ £ Λ 2 .

Choosing /13 (0<Λ 3^ft 2) so that 2d/ι3gl, we have

|zj £ X, + AL* ΣJPJ l*ιyl (n = 0,l,...,N + fcf) for Λ ^ . Λ 3 .

We shall show that

(2.56) I z J ^ K

holds for n = 0, 1,..., N + fc£. For 7 = 0, 1,..., fe-1 we have by (2.53), (2.48) and
(2.55)

Assume that (2.56) is valid for n = 0, 1,..., p- 1. Then

Hence (2.56) holds for n = 0, 1,..., JV + fc, and (2.54) follows.

3. Convergence

The method (1.5) is called convergent if for any /e & and f/ e .R

(3.1) maxo^N+^i^mkJ - ̂ 0 as h - > 0

for all xe(α, b\ all f̂ (Ig^f^m) and all solutions {yin} of (1.5) satisfying (2.22),

where

(3.2) fc = (x

and N is a positive integer such that

(3.3) h£hl9 a +-(N + μ)h ^ b.

THEOREM 2. The method (1.5) is convergent if Conditions A, Cl, C2 and R
are satisfied.

PROOF. By (2.17) and Condition A Ψ£x9u;v) (ι = l, 2,..., m) satisfy
Lipschitz conditions with respect to u with a Lipschitz constant L0. By Lemma 1
there exist rt(h) (i = 1, 2,. . ., m) that satisfy (2.26). Let
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θ(ej) = Ψ(xp y(Xj) + βji ft) - r(xj, y(xj); ft),

and for any x e (a, b) and q (1 ̂  q ίΞ m) choose JV so that (3.2) and (3.3) are satisfied.
Then by (2.25) we have

(«=•-**,-** + !,...,

0 = - fc*, - fc* + 1,...),

Hence it follows that

^ G

where d = mBL0. Choosing h3 (0 < Λ3 g h2) so that 2d/ι3 g 1 , and setting

(3.4) X* = 2G Σ}=έ lky-*.|| + 2BG(fc-β)||r(Λ)|| ,

(3.5) L* = 2d(k+k*-k#)G,

we have

IkJI £K* + hi* Σj=i*. Ikjll for A ̂  h3 .

It can be shown by induction that

fle.ll g K*(1 + ΛL*)"+*' (n = - fc*, - fc* + 1,..., N),

so that

(3.6) |k.|| ^ JKV*--)1-* (n = - fc*, -k* + ί,...,N).

By Conditions A and Cl from (2.9) we have for some constant C*

|Γ((x; Λ)| g C*Λ (i = 1, 2,..., m) for ft g Λ3.

By Corollary to Lemma 3 for some constants Ct and C2

• lk ffl £ Ci Σ$lo Ik-yll + CaΛ <ί=0,l,. . .,fc-fc*-l) for ft ^ ft3 .

Suppose that (2.22) is satisfied. Then since y(xj+v)-*η O'=0, 1,.... kt— 1;
i=l, 2,...,m)asft->0, we have lk_,||->0(./=0, 1,..., fc*), so that by (3.6) and (3.4)

*gmgjv |kJ|.-*0 as A-»0. Hence the method (1.5) is convergent.
By Lemma 2 we have the following
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COROLLARY. The method (1.5) is convergent if Conditions A, Cl, C2' and

R are satisfied.

THEOREM 3. // Condition B is satisfied and the method (1.5) is convergent,

then Condition R is satisfied.

PROQF. Consider the initial value problem / = 0, Xα)=0. Then by
Condition B the method (1.5) reduces to

(3.7) ΣΣaίjqyin+j = Q (" = 0, 1,..., N; 4 = 1, 2,..., m).

Let {yin} be the solution of (3.7) satisfying

(3.8) yu - > 0 (7 = 0, 1,. .., fef- l ; i = 1,2,..., m) as h - > 0.

Suppose that ζ0 = reiφ (r> 1, 0^φ<2π) is a root of p(C) = 0. Then since

(3.9) det OΛCo), ?>2(Co),..., < (̂Co)] = 0,

there exist constants ct (ί = l, 2,..., m) such that Σ7=ι c^/C0) = 0 with cq = l

for some q (l^g^m). Hence Σy=ι c^/ίo)Co = 0 (n = 0, 1,..., N + k^ i=*
1, 2,..., m) and {c;Co} is a solution of (3.7). Since {c/ξg} is also a solution of (3.7),

(3.10) yin = h RefeCS) (n = 0, I,:.., N + /cf; i = 1, 2,..., m)

is a solution of (3.7) satisfying (3.8). Choose h and N so that (3.2) and (3.3) are
satisfied, and put M = N+kq. Then since the method (1.5) is convergent,

yqM = (x - d) cos Mφ(rMl(M + vq)) - > 0 as M - » oo,

so that cos M<p-»0 as M->oo because r> 1. But then |sin Mφ\-+l as M->oo and
we have sin <p = 0, because

|cos(M + l)φ — cos(M — l)φ|=2| sinM<p| | sinφ| .

It follows that φ = 0 or π and so |cosMφ| = l. This is a contradiction. Hence
the modulus of no root of p(0 = 0 exceeds 1.

Next suppose that ζ0 = eiφ (Q^φ<2π) is a multiple root of p(C) = 0. Let

AJ(X) (j = 1, 2,..., m) be A(x) with φj(x) replaced by φ'j(x). Then

(3.11) p'(Co) = Σ7=ι det Aj(ζ0) =* 0.

We consider first the case rank >l(ζ0) = m — 1. Assuming that y>i(Co)
(i = l, 2,..., m — 1) are linearly independent, we have for some ^(1 = 1, 2,..., m — 1)

?>m(Co)= - Σ^1 ̂ £(ζ0)5 and by (3.11)

(3.12) det [>i(Co),".> 9m^(CoX ΣJLi c ί̂(C0)] = 0,
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where cm = 1. From (3.9) and (3.12) it follows that

det [^(Co),..., ί^-iίCo), ΣΓ=ι ^{n^ίίoKό1 + *>ί(Co)}] = 0.

Since

n^iίOf""1 + ?>ί(0ί" = (PiίOί")',

for some constants α f 0 = 1, 2,..., ra — 1) we have

ΣEΓi1 <W<ίo)C8 + Σ7=ι c/9/Co)C8)' = 0.

Hence

(3.13) ^ = /iRe^CS + nCfζg-1) (i = 1, 2,..., m - 1), >;w/l = hncos(n-l)φ

is a solution of (3.7) satisfying (3.8). For any xe(a, b) let h = (x — a)/(M +

and M = N + km. Then since the method (1.5) is convergent,

Λ.M = K* ~ a)M/(M 4- vj] cos (M - l)<p — > 0 as M - > oo .

As has been shown, this is impossible.
We consider next the case rank ^4(£0) < m — 1. In this case it follows that

det^/ζ0) = 0 0/ = 1, 2,..., m). From det,4m(ζ0) = 0 and (3.9) we have (3.13) with
α f = l and cf = 0 (/ = !, 2,..., m — 1), and this also leads to a contradiction. Hence
the root of p(C) = 0 of modulus 1 must be simple.

THEOREM 4. // Conditions A and B are satisfied and the method (1.5) is
convergent, then Conditions Cl and C2 are satisfied.

PROOF. Consider the initial value problem / = 0, y(α)=l. Then by Con-
dition B (1.5) reduces to (3.7). For any x e (α, b) and q (1 g q ̂  m) choose h and
N so that (3.2) and (3.3) are satisfied. Let {yin} be the solution of (3.7) satisfying
ytj = l (7 = 0, 1,..., kt; i = l, 2,..., m). Then since the method (1.5) is convergent,

yin-+l (n = 0, l9...,N + kt; i=l, 2,..., m) as /ι->0. Hence Condition Cl follows
from (3.7), and we have p(l) = 0 as has been shown in the proof of Lemma 1.
By Theorem 3 Condition R is satisfied, so that p'(l)^0. Let

g{x, y) = Ψj(x, y,...9 y\ 0)/p'(l) (j = 1, 2,..., m).

Then by Condition A #/x, j) β & (7 = 1, 2,..., m).
Suppose that there exist q(l^q^m),xe (α, b) and j; 6 R such that 0g(x, j;) ̂

/(Jc, j;). Let Xx) be the solution of /=/(*, jO satisfying y(x) = y and let y(a) = η.
For any xe(α, ί?) choose h and N so that (3.2) and (3.3) are satisfied and put
M = N + kq. Let z(x) be the solution of z' = gq(x, z) satisfying z(ά) = η. Let
{yin} be the solution of (1,5) satisfying (2.22) and let {zin} be the solution of
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(3.14) Σί=o bjz^j = hp'(l)gq(xn, zqn) (n = 0, 1,..., M - k)

satisfying zgj = ygj (;=0, 1,..., /c-1).
Let

(3.15) dqn = yqn-zqn (n = 0, 1,...,M),

(3.16) e(h) = maxo^gjv+^ig.-gjej,

(3.17) C(dn) = Ψq(xn, yίn,..., ymn+l; h) - Ψq(xn, zqn,..., zqn; 0),

s(h) = max^gj \Ψq(x, y(x + vlh)9...9 y(x + (l + vm)h)'9 h)

where / = k + km - kq, J = [α, b - (μ + k - kq)h~]. Then

Σkj=o bjdqn+j = hC(dn) (n = 0, 1,..., M - k).

By Condition A Ψq(x, M; v) is continuous in its arguments, so that s(/ι)-»0 as /ι-*0.
From (3.17) it follows that

\C(dn)\ ^ s(K) + LO ΣΓ=ι ΣJiδ'"*' (ki«+yl + I<U)

where

C = {m(k + 1 - k,) + k}L0, d(fc) = s(h) + Ce(h) .

By the same argument as in the proof of Lemma 4, we have

\dqn\ ^ G ΣJ.J 1̂ 1 + hB(n-k + l)d(h) + hBCG Z?=§ \dqj\ ,

which can be written as

(3.18) \dqn\ < K* + ΛL*Σj»8l<y (w = 0, 1,...,M),

where K* = BG(b-a)d(h)9 L* = 5GC, because dβj = 0 (jί = 0, 1,..., k-1). From
(3.18) we obtain \dqn\^K*enhL* (n = 0, 1,...,M) and i/4M-^0 as M->oo.

By Theorem 2 zqM->z(x) and ^βAf->Xx) as M-^oo, so that y(x) = z(x) for
allxe(α, b). But

This is a contradiction. Hence

(3.19) /(*, jO = flf/x, y) U = 1, 2,..., m)

is valid in (α, b)xR, and by continuity of/(x, y) and #7-(x, 3;) (3.19) is valid in
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/ x R. Thus Condition C2 is satisfied.
By Theorems 2, 3 and 4 we have

THEOREM 5. Suppose that Conditions A and B are satisfied. Then the
method (1.5) is convergent if and only if Conditions Cl, C2 and R are satisfied.

4. Stability

For any/eJ^ let {uin} and {vin} be the solutions of

(4.1) ΣΣdijquin+J = hΦq(xn9un'9h) + hpqn (n = 0, l,...,N;g = l,2,...,m),

(4.2) ΣΣ

The method (1.5) is called stable if there exist positive constants ft* and M such
that

(4.3) l i i f a - i f c l ^ Λ f β (n = 0, 1,...,N + /ct.; i = l,2,.. .,m) for ft = ft*,

whenever

(4.4) |κy-i>y| ^ β 0' = 0, 1,..., fc, - 1; i = 1, 2,..., m),

(4.5) \pqn~<rqn\ = ε (n = 0, 1,..., N; 9 = 1, 2,..., m) .

THEOREM 6. // Condition B is satisfied and the method (1.5) is stable,
then Condition R is satisfied.

PROOF. Choose /=0, pqn = σqn = Q (n = 0, 1,..., N; g = l, 2,..., m), ϋίy=0
0 = 0, 1,..., Jk f -l ; z = l, 2,..., m) and ε>0. Then by Condition B, (4.4) and (4.2)

(4.6) ΣΣ aijquin+j = 0 (n = 0, 1,..., N;q = l, 2,..., m),

(4.7) |ιiy| ^ ε (j = 0, 1,..., fc, - 1; i = 1, 2,..., m),

(4.8) ι;ta = 0 (n = 0, 1,..., N 4- fc,; i = 1, 2,..., m).

Suppose that ζ0 = reiφ (r>l; 0^φ<2π) is a root of p(0 = 0. Then by the
same argument as in the proof of Theorem 2,

uίn = δ Re(c£ζ8) (n = 0, 1,..., N + fc,; i = 1, 2,..., M; cq = 1)

is a solution of (4.6) satisfying (4.7) if δ>Q is chosen so that 5|c ίr
fcί""1|_ε

(z = l, 2,..., m). As the method is stable, there exist ft* and M such that

|Wm~^nl = knl=Mε (n = 0, 1,..., N + fc£; i = 1, 2,.. ., m) for ft = ft*,

so that
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\δRe(cM£Mε (i = 1, 2,..., m).

where -N^ N H-fe,- (i = l, 2,..., m). Since c€=l, we have

|cos Nqφ\ ^ Mε/\δrN«\ - > 0 as Nq - > oo.

which is impossible as has been shown in the proof of Theorem 3. Hence the
modulus of no root of p(ζ)=0 can exceed 1.

Assume next that ζ0-eiφ (0^<p<2π) is a multiple root of p(0 = 0. In the
case rank A(ζ0) = m — 1 by the same argument as in the proof of Theorem 3

uin = (JReίαiCS + ttCfCg-1) (i = 1, 2,..., m - 1), umn = <5ncos(n-l)φ

is a solution of (4.6) satisfying (4.7) if δ > 0 is chosen so that (5[|αf | + [cjKfcj — 1)] ̂  ε
(i = l, 2,..., m-1) and <5(fcm-l)^ε. Hence

|cos(Nm-l)φ|:gMε/(<5Λy - > 0 as Nm— > ex),

which is impossible. In the same way the case rank A(ζo) < m — 1 leads to a
contradiction. Hence the root of p(Q = 0 of modulus 1 must be simple.

THEOREM 7. The method (1.5) is stable if Conditions A and R are satisfied.

PROOF. Let

din = uin-vin (n = 0, !,...,# + fcι; ί = 1, 2,...,m),

6>g(dn) = Φ,(xrt, M W ; ft) - Φ,(xM5 1;,; Λ).+ σqn -pqn (n = 0, 1,..., N).

Then

(4.9) ΣΣ ctijqdin+j = /ιΘ,(ί/M) (g = 1, 2,..., m),

and by Condition A and (4.5) we have

By Corollary to Lemma 3 there exists a constant Kλ such that

•\dtj\ ^K,ε 0 = 0, 1,..., k -!;/ = !, 2..., m) for /ι ^ Λ2.

Hence by Lemma 4

|<y ^ K?e(^fl)^ (n = 0, 1,,.., AT + fc£; ΐ = 1, 2,..., m) for ft ^ ft3,

where

Kf = 2G{feK1 + B(b-a)g}έ, L*

Thus the method (1.5) is stable.
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From Theorems 6 and 7 we have

THEOREM 8. Suppose that Conditions A and B are satisfied. Then the
method (1.5) is stable if and only if Condition R is satisfied.

Combining this with Theorem 5, we have the following

COROLLARY. Suppose that Conditions A and B are staisfied. Then the
method (1.5) is convergent if and only if it is consistent and stable.

5. Error estimate

In this section an a priori error estimate is obtained.

THEOREM 9. Suppose that Conditions A and R are satisfied and that there

esist positive constants Kl9 K2, Pi and qt (ί = l, 2,..., m) such that

(5.1) \Tί(x'9h)\^Kίh^l(i = l929...9m) for h ̂  Λ3,

(5.2) \etj\ ^K2h«i(j = 0, 1,..., fc, - ! ;/ = !, 2,..., m) for h ̂  Λ3.

Let p
and assume that one of the following three conditions is satisfied:

(α) PJ = P, ίi = tf (/ = !, 2,..., m).
(b) MJ (7 = 0, 1,..., fc*) are all upper triangular matrices and p^^p2^

(c) MJ (7 = 0, 1,..., fc*) are a// lower triangular matrices and pί^p2^

•"^Pm> 4l^<?2^"'^<?,n.

Then for some constant K

(5.3) toJ^XA" (n = 0, l,...,N + / c ί ; i = l, 2,...,m) /or Λ ^ Λ3,

where

(5.4) ί; = min(p£, qh p+1, ήf + 1) (i = 1, 2,..., m).

PROOF. By Lemma 3 we have

(5.5) ^=Σϊ:ιn°^ι + Σ;»oFφ,r(λg;Λ) (^ = -fc*, -fc* + ι , . . . , fc- i) .
Suppose first that condition (a) is satisfied. Then by (5.5) for some constant

K3

\\ej\\ g X3/ιs (j = - fc*, - fc* + l,..., fc - 1),

where s = min (p + 1 , q). By (2. 18) there exists a constant K4 such that \Rt(x ; /ι)| :£
X4a--f+ι (j = l, 2,..., m), where rl=mm(pi, p+\). By (3.4) (3.5) and (3.6) we

have (5.3).
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Next suppose that condition (b) is satisfied. By (2.30) and (2.34) l/<°

(i = l, 2 , . . . , f c * ; r c = 0, l,...,k-l) and Eqn (β = 0, 1,..., n; n = 0, 1,..., fc-1) are

upper triangular matrices. Hence the z'-th component of Σy=ι ^ί/^-y is °f order

/I*' and each component of h Σy=ι ^jne~j *s °f order Λ ί+1, so that the i'-th
component of Σy=ι V^e-j is of order /?Sί, where s^rnin^,-, g + 1). Similarly
the ϊ'-th component of Σq=oFqnT(xq; h) is of order hri+1. Hence the i-th
components of βj (j=— k*, —/c* + l,..-., — fc* + /c — 1) are of order ftΛ<, where
n£ = minis/, ^--hl). Since M7- (j = 0, 1,..., /c*) are upper triangular, so are A(x)
and its cofactor matrix (φjjίx)). Hence by (2.18) Rt(x; h) is of order hPi+1.

As ΛΣ;=ισ/i»(E; ^)?}(Xι> Λ) is of order /ιp+2, gf ίπ in (2.49) is of order hrt+ί.
Hence by Lemma 4 we have (5.3).

The case where condition (c) is satisfied is treated similarly and the proof is
complete.

Since {yin} (Ml) are subsidiary approximations and our aim is to obtain
{)>!„}, the order of the method (1.5) is defined to be the greatest integer p such that

\eln\ = 0(/ι") for Λ g ̂

for sufficiently smooth/(x, y) and e^ = 0 0=0,1,..., fcf—1; i=l, 2,..., m).
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