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1. Introduction

Consider the initial value problem

(11) yl =f(x, y) (aé)Céb), .V(xo) =1,

where the function f(x, y) is continuous and satisfies a Lipschitz condition with
respect to y in I xR, I=[a, b], R=(— 00, o). Let y(x) be the solution of this
problem and let

(1.2) X, =a + nh (n=0,1,..,;h>0),

where h is a stepsize. We are concerned with the case where the approximations
y; (j=1,2,..) of y(x;) are computed by step-by-step methods. Most of the
conventional step-by-step methods such as one-step methods, linear multistep
methods [1], hybrid methods [3], pseudo-Runge-Kutta methods [3, 4] and two-
step methods [5] are of the form

(1'3) z‘;=0 ajyn+j = h¢(xm Yuseevs Vntkos h) (n = 0’ 1"")’

where a; (j=0, 1,..., k) are real constants. Methods of this type determine
Ya+r for given y,.; (i=0, 1,..., k—1) and require starting values y; (i=0, 1,...,
k-1).

To achieve higher order with no increase in stepnumber, in this paper, besides
the step nodes (1.2) we introduce m —1 sets of subsidiary nodes

(1.4) Xpty; = a + (n+vph (h=0,1,.;i=23,..,m)

and the approximations y;, of y(x,.,), and consider the system of difference
equations

(1'5) Z'in=1 Z?éo aiquin+j = h¢q(xm YVinseos y1n+kl9-“’ YVmns«-+» ymnq-_k,,,; h)
(n=0,1,.,N;q=1,2,..,.m),

where v, =0, y,,=y, (n=0, 1,...), v; (i=2, 3,..., m) are nonnegati've numbers and
a;; (j=0, 1,..., ki3 i, q=1, 2,..., m; k;2 1) are real constants. Methods of this



90 Hisayoshi SHINTANI

type determine y;, ., (i=1,2,...,m) for given y,.; (j=0,1,.,k~—1;i=1,
2,...,m) and require starting values y;; (j=0,1,...,k;—1;i=1,2,..,m). v
(i=2, 3,...,m) need not be integers and it is not required that k;+v;<k,
(i=2, 3,...,m). The node x,,, is called an off-step node if v is not an integer.
Clearly the method (1.5) reduces to (1.3) when m=1.

Urabe’s compound multistep method [9] and his implicit one-step method
[10] can be considered as methods (1.5) with m=2, k, =k, and v,=1. Two-step
methods with one and two off-step nodes have been studied by the author [6, 7, 8].

In section 2 assumptions on @,(x, u; v) (=1, 2,..., m) are stated, the con-
sistency condition for (1.5) is introduced and the root condition is stated for the
characteristic equation defined in terms of the coefficients a;;,’s.

In section 3 convergence of the method (1.5) is defined and it is shown that
under certain conditions the method (1.5) is convegent if and only if it satisfies
the consistency condition and the root condition.

In section 4 stability of the method (1.5) is defined as the boundedness of the
effects of perturbations in @,(x, u; v) (9=1, 2,..., m) and in starting values. It is
shown that under certain conditions the method (1.5) is stable if and only if it
satisfies the root condition.

In section 5 an a priori error estimate of the method (1.5) is obtained and the

order of the method (1.5) is defined.

2. Preliminaries

2.1. Notation

Let & be the set of all functions f(x, y) which are continuous and satisfy
Lipschitz conditions with respect to y in I x R. For fe # and neR denote by
y(x) the solution of the initial value problem (1.1). This solution exists over the
interval I [1]. Let v; (i=2, 3,..., m) be nonnegative numbers if m>1, h, be a
positive number, H =[O0, h,], v, =0, and

(2.1) Xppv, =a+m+v)h (n=0,1,..5i=1,2,..,m;0<h < hy).

To obtain the approximations y;, of y(x,.,,), we consider the system (1.5) of dif-
ference equations. Unless stated otherwise, N denotes a positive integer such that
a+(N+ph<b, where p=max, <;<,, (k;+v,).

Let

(22) k= Z’t”=1 ki, k* = max1§i§m ki’ k* = lninléiém ki’ Q=1x R¥+m x H’
M, (p=0, 1,..., k*) be the m x m matrices with (i, j) entries a,, _ ,; and let

(23) - 'un = (uln-rkp uili+k2s"-: umﬁ+km)t (n = - k*a —k* + 1’“', N)9
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where u;,=a;;=0 for g<0. Assume that M, is nonsingular. Denote by
D (xy, Uy h)

DXy Ugpyevvs Uintipseees Upmseres Upnt ks 1)
and let
(2.4) D(xy, s h) = (D1(xp, Uy h),s...r DXy U3 B))'.
Then (1.5) can be written as
(2.5) koM;y,_; = h®(x,, y,; h) (n=0,1,...,N).

In the sequel > ¥ stands for 37, > %, and | .| denotes the 1-norm of a m-
vector or an m X m matrix.
Now we introduce the following

CONDITION A.  P,(x, u;v) (q=1, 2,..., m) are continuous in Q and there
exists a positive constant L such that

(2.6) |‘1’q(xs u;v) — ‘I’q(x, i,v)] <L 22|uij—ﬁij
for all (x, u,v), (x,i,0)eQ (q=1,2,...,m).

THEOREM 1. Suppose that Condition A is satisfied. Then there exists a
positive number hy (hy < hy) such that for any xel and u;;e R (j=0, 1,..., k;—1;
i=1, 2,..., m) the system of equations

.7 Yyagu;=ho(x,u; h)(qg=1,2,.,m) for h<h,
has a unique solution uy, (i=1, 2,..., m).
Proor. Denote u, in (2.3) by v and let

0,(0) = DX, Uygsens Uy —15 Vyseres Upgy— 15 Ui 1) g=12,..,m),
8(v) = (0,(v), 0,(v),..., 0,(v))".
Then (2.7) can be written as
(2.8) Moo + XX, Mu_; = h6(v).
For any v‘® € R™ consider the iteration
Mov™"*t) + 3k Miu_; = h@(v™) (n=0,1,...).
Then
My(o"* ) — pM) = A{B(v™) — B(v\"~ D)} (n=1,2,..),
and by condition A with K=mL |Mg!||
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ot — | < AK|jotM — v D (n=1,2,...).
Choose h; (O<h; < hg) so that p=Kh<1 if 0<h=h, and we have
[t — oM < prllo™ — @ (n=0,1,...) for h=h,.
Hence for any positive integer p
[op) — oW < pflo) — v /(1-p)  (n=0,1,...) for h=<hy.

Thus {v™} is a Cauchy sequence and there exists v*=lim,,, v™. By con-
tinuity of @ v* is a solution of (2.8).
Suppose that @ is also a solution of (2.8). Then we have

M(7—v*) = h{6(D)—0(v*)},

so that ||§ —ov*||<p|d—v*||. Since 0=Zp<l, it follows that |§—ov*|=0 and
the solution of (2.7) is unique. This completes the proof.

Let
(29 T(x; ) = XX a;5,y(x+(j+v)h)
— h®(x, y(x+vih),..., y(x+(kp+Vv)h); h) (@=1,2,...,m),
(2.10) T (x; h) = (Ty(x; h), Tp(x; h),..., T,(x; h)),
(2.11) (%) = Xkiga;x? (i,j=1,2,..,m).

Denote by A(x) the matrix with the (i, j) entry ¢;;(x) and by ¢;;(x) (i, j=1, 2,..., m)
the cofactor of ¢;(x). Put

(2.12) A(x) = [@1(x), 92(X),..., Pu(x)],
(2.13) p(x) = det A(x) = X k_o b;xJ.

Then b, =det M0 by the assumption.
Let E be the operator such that

(2.14) Ex=x+h,  Eyy,= yis1

Then (1.5) can be rewritten as

(2.15) 2Tt QifE)yjn = hPd(Xy, yus b)) (i=1,2,..., m).
Eliminating y;, (j#1) from the left side of (2.15), we have

(2.16) ko biVinsj = h¥(Xp, Va3 h) (i=12,..,m),

where



Step-by-step methods for ordinary differential equations 93

(2.17) Vi(Xn Yu3 B) = =1 0 EYD (X, Vi h)
(n=0,1,..,N—k;i=1,2,...,m).
Let
(2.18) Ri(x; h) = X" ¢;{E)Tj(x; h) (i=1,2,.,m),
(2.19) R(x; h) = (Ry{(x+kyh; h),..., R(x+k,h; h)),
(2.20) T (X Va3 1) = (FiCss Va3 Maees PGt Insions MY

where ¥ (x,, ¥.; h)=0 for n<0 and R(x; h)=0 for x<a. . Then (2.16) can be
rewritten as

(2'21) Z§=0 bjyn+j = hw‘(xm Yns h) (n = - k*, — k* + 1,~'~9 N — k)'

Let {y;,} (n=0, 1,..., N+k;; i=1, 2,..., m) be the solution of (1.5) such that

(2.22) Yin— N (j=0,1,..,k;—1;i=1,2,..., m) as h—0
and let
(2.23) e = Yij — MXjsy,) (j=0,1,.., N+ k;;i=1,2,..,m).

Then we have
2.24) X*oMe,_; = h®(x,, y(x,)+e,; h)
— h®(x,, ¥(x,); h) — T(x,; h) (n=0, 1,..., N),
(2.25) Thoobjens; = h¥(x,, y(x,)+ex; h) — h¥(x,, y(x,); h)
— R(x,;h) (n=—k* —k*+1,.,N—k).
2.2, Conditions
We introduce the following five conditions:
CONDITION B. If f=0, then ¢,=0 (g=1,2,...,m).
ConpITiON C1.  2Xa;;,=0 (q=1,2,..., m).
ConDITION C2. Y (x, y,..., y; O)=p' (D) f(x, y) (g=1, 2,..., m).

ConpITION R, The modulus of no root of p({)=0 exceeds 1 and the roots
of modulus 1 are simple.

ConpITION C2. @ (X, ¥,..., y; )= 3 (j+v)a;;of (x, ¥) (@=1,2,..., m).
We say that the method (1.5) is consistent if Conditions C1 and C2 are satisfied.
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LEMMA 1. Suppose that Conditions A, C1 and C2 are satisfied. Then
there exist r{h) (i=1, 2,..., m) such that

(2.26) |IR(x; W =hr(h), r(h) —0 as h—0 (i=1,2,.,m).

Proor. Since X7, ¢;(1)=0 (i=1, 2,..., m) by Condition C1, it follows
that p(1)=det A(1)=0. Let L, be a Lipschitz constant of f(x, y), Go=
MaXyer ly,(x)l and

W(h) = maxx,x+ts!,|t| <h If(x+ t ,V(x)) - f(x’ y(X))l .

Then, by continuity of f(x, y), w(h)—0 as h—0.
For xel and x+hel

YO+ h) = y(x) = by () = [ e ) = yColdr.

Since

[fGe+2, y(x+0) — f(x, yO) = | f(x+12, y(x+1) — f(x+1, y(x))
+f(x+1, y(x) = f(x, y()| = wh) + hL,G,  (0=t=h),

for some 6 (|6] <1) we have
(2.27) Y(x+h) = y(x) + hy'(x) + Oh[w(h)+hL,G,].
Let

(2.28) s(h) = max,; [¥i(x, y(x+v1h),..., y(x+(ky +v; +k—=k)h),...,
Y(x+ K+ v+ k—k)h); )= ¥ (x, p(x),..., ¥(x); O)} (i=1,2,..,m),

where J=[a, b—(p+k—ky)h]. As Y(x, u; v) is continuous in its arguments by
(2.17) and Condition A, it follows that s, (h)—0 as h—0. Since by (2.18), (2.9),
(2.15) and (2.16)

(2.29) Ri(x; h) = 3 h_o by(x+(j+v)h)
- Y’i(x’ y(x+v1h),..., y(x+(km+vm+k_kt)h)a h);

by (2.27), (2.28) and Conditions C1 and C2 we have
|Ri(x; W) £ Xk olbjl[W((j+v)h) + (j+Vv)hL Go] + hs(h) (i=1,2,...,m).
Hence there exist r(h) (i=1, 2,..., m) satisfying (2.26).
LeEMMA 2. Condition C2 follows from Conditions C1 and C2’.

PROOF. As has been shown in the proof of Lemma 1, p(1)=0 follows from
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Condition C1. Setting x,=x and y,,;=y (j=0,1,.,k;q=1,2,..,m) in
(2.17), and letting h—0, we have

Yi(X, Yooy ¥50) = X7y 9(DPi(x, ..., y35 0).
Denote by §;; the Kronecker’s delta. Then since
271 0(0)e(x) = bup(x) (i, g=1,2,...,m),
we have
271 65(D@]i(1) = 6,p"(1) — X7y ¢7,(1)ep;(1).
Hence by Condition Cl1
Ty @D [25=1 @5,(1) + 25y vePj(1)]
= p'(1) = 20y @5 ey 9;(1) + Xy vep(1)d, = p'(1).
Since by Condition C2’
Pi(x, 5ees 3 0) = 2y {@5:(D) + vip(D}f(x, ),
Condition C2 follows.

ReMARK. From this proof it is seen that Condition C2 follows also from
Condition C1 and the condition

(Dq(x, Vseeis Vs 0) = ZZjaijqf(x’ y) (q = 11 2""5 m)

It is also seen that, if Condition A is satisfied and e,=o(h) (n=—k*,
—k*+1,..., N), then Conditions C1 and C2 are satisfied by (2.24), (2.25) and
(2.29). Under Condition Cl, Condition C2 coincides with Condition C2’ if
m=1.

2.3. Systems of difference equations

Let {U'"} be the set of k* solutions of the homogeneous matrix difference
equation

(2.30) oMU,_;=0 (n=0,1,...,N)
satisfying the initial conditions

(2.31) U9 =1, UD=0 (j#iji,j=1,2,.,k*.
Then the solution {z,} of the system of difference equations

(2.32) _’;;0 szn—j = c,, (n = 0, 1,..., N)
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can be written as
(2'33) = i‘;l Uﬁli)z—i + 23!=0 Ejncj (n == k*> —k*+ 19--~a N)9
where

234)  E,=UL,_Mz' (j=0,1,.,n;n=0,1,.,N).

J
Now consider the system of difference equations

(235) Zzaijqnzin+j = cqn (n = Oa 17'“’ N, q= 1, 2a-'-a m),
where i

(236) a,-jq,,=aijq-—hbijq,, (j=0, 1,-.., kl; l,q = 1, 2,..., m;n=0, 1,-.-, N),
(227) 'anl ‘g C, 'bijqnl é L’

¢ bijgn and C are constants. Let M,, (p=0, 1,..., k*) be the matrices with
(i, ) entries aj i, and let ¢,=(cqns C2py--+5 Cn)', Where b, =0 for g<0. Then
(2.35) can be rewritten as

(2.38) oMz,_;=c¢c, (n=0,1,...,N).

LEMMA 3. There exist matrices V& (i=1,2,..., k*; n=—k*, —k*+
1,...,.N) and F;, (j=0,1,...,n; n=0, 1,..., N) and positive constants c, d and
h, (h, £ hy) such that for h<h, the system (2.38) has a solution {z,}, which can
be expressed as
(2.39) =X VP2 i+ o Fjue; (n=—k* —k*+1,..,N),
where
(2.40) [VO—-UD|<ch (i=1,2,.,k* n=0,1,..,k—1) for h < h,,

V@ =U% (4,j=1,2,..,k*),
(2.41) |Fn—Eml <dh (q=0,1,...,n;n=0,1,..., k — 1) for h < h,.

PrROOF. Set M,,=M,—hK,, (p=0, 1,..., k*). Then |K,|SmL. Let K=

mL||Mg!| and h, (h,<h,) be a positive number such that 2Kh,<1. Then Mg}
exists for h< h, because h|Mg51K,,[|<1/2. Put Mgl=Mg'+hD,(n=0, 1,..., N).

Then ||D,|| 22||Ms!|K (n=0, 1,..., N). Setting
N;=M5'M;, N;,=MziM;,, N; =N;+ hL,, for h<h,
(=12,.,k*;n=0,1,..,N),
we have

ILjall < IDall (Ml +homL) + K (j=1,2,...,k*;n=0,1,..., N).
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Let {V?} (n= —k*, —k*+1,..., N; i=1,2,..., k*) be the set of k* solutions
of the matrix difference equation 3%¥2o M;,V,_;=0 (n=0, 1,..., N) satisfying the
initial conditions V&) =1, V4)=0 (j#i; i, j=1, 2,..., k*). Then the solution of
(2.38) is given by (2.39), where

Fj, = Ve, Mg) (j=0,1,.,n;n=0,1,...,N).
Let for n=0, 1,..., N
242 VWO=UW4+hG, (i=1,2,.., k*), Fpu=E,+hH, (q=0,1,...,n).

Then we shall show that for n=0, 1,..., k—1 there exist constants ¢, and d,
such that

(2'43) ”Gln" é Cn (i = 1, 2"", k*)s "an” é dn (q = 0’ 15--'a n) for h é h2'

Since G;o=—Ljo (j=1, 2,..., k¥) and Hyo=D,, there exist ¢, and d, satisfying
(2.43) for n=0. Assume that (2.43) holds for n=0, 1,..., p—1 (p<k). Then
since

Gjp = - Zli‘:‘-l [LiijJi)i-}_NiGjp—i] (j = ls 2,---, k*)9
an = VSn}-)q—an + Gln—q—lM(_)-1 (q = 0, 1, seey n);

there exist constants c, and d, satisfying (2.43). Hence for some constants ¢ and
d (2.40) and (2.41) hold. Thus the lemma is proved.
Consider the system of difference equations

(2.44) Yk oMz, =h6(z,) (n=0,1,..,N),

where 6(z,)=(0,(z,),..., ©,,(z,))". Then we have the following
COROLLARY. Suppose that for some constant C,

(2.45) [0,z)] £ Co + LY X|zin4 (n=0,1,...,N;g=1,2,..., m).

Then the system (2.45) has a solution {z,} for h<h,, and there exist constants
Ao and A, such that

(246) liz,ll £ Codoh + A; Tk llz_;l  (n=0,1,...k —1) for h<h,.

ProOOF. By (2.45) there exist constants b;;,, and d,, such that

ijqn
@4(Zn) = Zzbijqnzin+j + dqn (n = 09 1:--'9 Ns q= 1’ 2s--~’ m)a
where |b;;,,| <L and |d,,|<Co. Let d,=(d,,, dsp,..., dp,)’. Then (2.44) can be

written as Y%, Mj,z,_;=hd,. By Lemma 3 this system has a solution {z,}
for h< h,, which can be expreesed as
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Z, = {‘;1 Vsii)z_,- + hz;=’0 Fq"dq (n=0, 1,..., k"“l).
From this (2.46) follows. This completes the proof.

Let {uP} (n=0, 1,...;i=0, 1,..., k—1) be the set of k solutions of the
difference equation

(2.47) Tkoobug; =0 (n=0,1,.)

satisfying the initial conditions u{’=46;; (i, j=0, 1,..., k—1), and let u{¥~V=0
for j<0. If Condition R is satisfied, then there exists a constant G [2] such that

(2.48) P <G (n=0,1,.;i=0,1,...,k—1), 2kG=1.
Eliminating z;, (j#i) from (2.35), we have

(2.49) 2hobiZiprj=h Xk odijnZinsj + Gin
(n=0,1,.,N—-k:i=1,2,..,m),

where d,;,’s are polynomials in h with bounded coefficients,
(2.50) Gin = ZP=1 Q;(E)c;y + h X7y 03(E; h)C)n,

0;is(x; h)’s are polynomials in x and h with bounded coefficients. Hence there
exist constants d, g and g; (i=1, 2,..., m) such that

2.51) |dyl=d for h<h, (j=0,1,.,k),

2.52) |gml=g9:=9C for h<h, (n=0,1,..,N—k;i=1,2,..., m).
LemMA 4. Let {z;,} be the solution of (2.49) and suppose that

(2.53) Izl £ Z; (j=0,1,.,k—1;i=1,2,..,m).

Let the constants d and g; (i=1, 2,..., m) satisfy (2.51) and (2.52) respectively.
Then there exists a positive constant hy (h3 < h,) such that

(2.54) |z;,| £ KiemtL* (n=0,1,.., N+ k;;i=1,2,....,m) for hZhs,
where
(2.55) K;=2G[kZ;+B(N+k)g;] (i=1,2,..., m), L¥=2B(k+1)dG, B=|bz|.
PrOOF. Put w;,=h 3 %_d;j,Zinsj+9gin- Then z,, can be expressed as
zp= 2E bz, ul) + bt Ttk w,jul, (n=0, 1,..., N+k).

Hence



Step-by-step methods for ordinary differential equations 99
zin = Thzbziud + bt T2k g ult,
+ kbt Yoo (T misted dy i w0z,
from which we have
(1=hd)|z,| < G X421z + BG(n—k+1)g;

+ hB(k+1)dG X524 |zl  for h £ h,.
Choosing hy (0<hy=<h,) so that 2dh,; <1, we have

|zl < K; + hL* 28|zl (n=0,1,..,N+k) for h<hs.
We shall show that
(2.56) [Zial < Ki(1+hL*)"

holds for n=0, 1,..., N+k; For j=0, I,..., k—1 we have by (2.53), (2.48) and
(2.55)

lzijl £ Z; £ 2kGZ; £ K; £ K(1+hL*).
Assume that (2.56) is valid for n=0, 1,..., p—1. Then
Iz;pl £ K; + hL*K; 3528 (1+hL*)) < Ki(1+hL*)?.
Hence (2.56) holds for n=0, 1,..., N+k; and (2.54) follows.

3. Convergence
The method (1.5) is called convergent if for any fe # and neR
(3.1 MaXognsN+ky,1sisml€nl —> 0 as h—0

for all x e (a, b), all g (1<qg=<m) and all solutions {y;,} of (1.5) satisfying (2.22),
where

3.2 h = (x—a)[(N+k,+v,)
and N is a positive integer such that
3.3) h=<h,, a+(N+ph<=<b>.

THEOREM 2. The method (1.5) is convergent if Conditions A, C1, C2 and R
are satisfied.

Proor. By (2.17) and Condition A Y(x, u;v) (i=1,2,..., m) satisfy
Lipschitz conditions with respect to u with a Lipschitz constant L,. By Lemma 1
there exist r(h) (i=1, 2,..., m) that satisfy (2.26). Let
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r(h) = (ry(h), ry(h),..., ru(h))',
6(e)) = T(x;, y(x;) + e;3 b) — T(x;, y(x)); h),

and for any x € (a, b) and q (1<q<m) choose N so that (3.2) and (3.3) are satisfied.
Then by (2.25) we have

= Yhihe;- kUi Pee + b1 1 ke [he(e,) — R(x;; h)]ug,ill—)
(n=—k*, —k*+1,..., N),
16(e)ll < mLo Xk, s €l (=—k* —k*+1,.),
IR(x;; W < hlr(D).
Hence it follows that
(1—-hd)|e,| = G X4} llej-isll + BG(n—k+k*)h|r(h)]|
+ hdG(k+k*—ky) Ti=Le le)l,

where d=mBL,. Choosing h; (0<h;=<h,) so that 2dh; <1, and setting

34 K* =2G 3%} | e;_pll + 2BG(b—a)|r(h)|,
(3.5) L* = 2d(k+k*—k,)G,
we have

leal < K* + hL* Y121, el for h<h,.
It can be shown by induction that
leul < K*¥(14+hL*)"*¥*  (n= —k*, —k*+1,...,N),
so that
(3.6) le ] < K*et-®L*  (n= —k*, —k*+1,...,N).
By Conditions A and C1 from (2.9) we have for some constant C*
IT(x; )| £ C*h (i=1,2,.,m) for hZ<h,
By Corollary to Lemma 3 for some constants C; and C,
ledl £ Cy Thiolle—ll + Coh (g =0,1,...,k—k*—1) for h<h;.

Suppose that (2.22) is satisfied. Then since y(x;,,)—n (j=0, 1,.... k;—1;
i=1,2,..., m)as h—0, we have [e_;[|-0(j=0, 1,..., k*), so that by (3.6) and (3.4)
max_j<msn lles]—0 as h—0. Hence the method (1.5) is convergent.

By Lemma 2 we have the following
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CoROLLARY. The method (1.5) is convergent if Conditions A, C1, C2' and
R are satisfied.

THEOREM 3. If Condition B is satisfied and the method (1.5) is convergent,
then Condition R is satisfied.

Progr. Consider the initial value problem y'=0, y(a)=0. Then by
Condition B the method (1.5) reduces to

3.7 XY gV =0 (n=0,1,...,N;q=1,2,..., m).

Let {y;,} be the solution of (3.7) satisfying

(3.9 yiy—0 (j=0,1,.,k—1;i=1,2,..,m) as h—0.
Suppose that {o=re!? (r>1, 05 <2n) is a root of p({)=0. Then since

3.9 det [¢1({0); 92({0)s--+» Pm({0)] = O,

there exist constants c¢; (i=1, 2,..., m) such that 3™, c;p({o)=0 with c,=1
for some g (1=g<m). Hence 37, c;{o){6=0 (n=0, 1,..., N+k;i=
1, 2,..., m) and {c{3} is a solution of (3.7). Since {¢,En} is also a solution of (3.7),

(3.10)  yn.=hRe(els) (i=0,1,.,N+k;i=1,2,.,m)

is a solution of (3.7) satisfying (3.8). Choose h and N so that (3.2) and (3.3) are
satisfied, and put M=N+k,. Then since the method (1.5) is convergent,

Vau = (x—a)cos Mp(rM|(M +v,))) — 0 as M — oo,

so that cos Mp—0 as M— oo because r>1. But then [sin Mp|—>1 as M— o0 and
we have sin ¢ =0, because

|cos (M +1)¢ — cos (M —1)¢|=2]| sin Mg|| sin ¢|.

It follows that ¢ =0 or n and so |cos M@|=1. This is a contradiction. Hence
the modulus of no root of p({)=0 exceeds 1.

Next suppose that {o=e'* (0<¢@<2r) is a multiple root of p({)=0. Let
Afx) (j=1,2,..., m) be A(x) with ¢ ;(x) replaced by ¢j(x). Then

(3.11) P'(Lo) = Sy det ALo) = O.

We consider first the case rank A({;)=m—1. Assuming that ¢;({o)
(i=1, 2,..., m—1) are linearl_y independent, we have for some ¢; (i=12,..,m-1)
emlo)=— T cipi{o), and by (3.11)

(3.12) det [91((0)s > Pm-1(C0)s 11 cipi(C0)] = 0,
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where ¢,,=1. From (3.9) and (3.12) it follows that
det [¢1(o)s--s Pm-1(0), Xty ci{neilo)(s" + 9i({o)}] = 0.
Sinée |
npO! + IO = (@ADL,
for some constants a; (i=1, 2,..., m—1) we have
T apLo)l8 + X7=1 i@ (Lo)8) = 0.
Hence
(3.13) y;,,=hRe(al8+ncldH(i=1,2,..,m—1),y,,=hncos(n—1)p

is a solution of (3.7) satisfying (3.8). For any xe(a, b) let h=(x—a)/(M +v,,)
and M=N+k,. Then since the method (1.5) is convergent,

Vmm = [(x—a)M[(M +v,)]cos(M—1)¢p — 0 as M — 0.

As has been shown, this is impossible.

We consider next the case rank A({;)<m—1. In this case it follows that
det A({p)=0(j=1, 2,..., m). From det 4,({,)=0 and (3.9) we have (3.13) with
a;=1and ¢;=0(i=1, 2,..., m—1), and this also leads to a contradiction. Hence
the root of p({)=0 of modulus 1 must be simple. '

THEOREM 4. If Conditions A and B are satisfied and the method (1.5) is
convergent, then Conditions C1 and C2 are satisfied.

Proor. Consider the initial value problem y’=0, y(a)=1. Then by Con-
dition B (1.5) reduces to (3.7). For any x €(a, b) and q (1 <q<m) choose h and
N so that (3.2) and (3.3) are satisfied. Let {y;,} be the solution of (3.7) satisfying
yi;=1(j=0,1,..., k;; i=1, 2,..., m). Then since the method (1.5) is convergent,
Ym—=1 (n=0, 1,..., N+k;; i=1,2,..., m) as h—0. Hence Condition Cl1 follows
from (3.7), and we have p(1)=0 as has been shown in the proof of Lemma 1.
By Theorem 3 Condition R is satisfied, so that p’(1)#0. Let

gj(x’ y) = lIlj(xa Vsers V5 0)//),(1) (j = 1, 2a~“’ m)'

Then by Condition A g(x, y) € F (j=1, 2,..., m).

- Suppose that there exist g (1<g=<m), X e(a, b) and j € R such that g (%, y)#
Sf(%, 7). Let y(x) be the solution of y'=f(x, y) satisfying y(X)=j and let y(a)=n.
For any x€(a, b) choose h and N so that (3.2) and (3.3) are satisfied and put
M=N+k, Let z(x) be the solution of z'=g,(x, z) satisfying z(a)=n. Let
{y:s} be the solution of (1.5) satisfying (2.22) and let {z;,} be the solution of
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3.14) ko bDiZgnsj = hp' (DG (Xny 2g)  (n=0,1,.... M — k)
satisfying z,;=y,; (j=0, 1,..., k=1).

Let
(3.15) Ao = Yn = Zgn (n=0,1,.,M)),
(3.16) e(h) = maxXo g, <Nk 1zism €l 5

(3.17)  Cdy) =¥ (Xn, Yimeoos Ymnsts 1) — ¥ (Xns Zgnso s Z4n3 0),
s(h) = max,; [P (x, y(x+vyh),..., y(x+(+v,)h); h)
— Y (x, y(x+vgh),..., y(x+v.h); 0)],
where I=k+k,,—k,, J=[a, b—(u+k—ky)h]. Then
Sk objdg.; = hC(d,) (n=0,1,...,. M — k).

By Condition A ¥ (x, u; v) is continuous in its arguments, so that s(h)—0 as h—0.
From (3.17) it follows that

|IC(d,)] = s(h) + Lo X7y 25267 (leins | + 1dgal)
d(h) + Cld,l,

A

where
C = {m(k+1—k,) + k}Lo, d(h) = s(h) + Ce(h).
By the same argument as in the proof of Lemma 4, we have
|dgl £ G X528 1dy;l + hB(n—k+1)d(h) + hBCG X528 1d,l,
which can be written as

(3.18) d,| < K* + hL* Y2k |d (n=0,1,.., M),
q J

qil
where K*=BG(b—a)d(h), L*=BGC, because d ;=0 (j=0,1,..., k—1). From
(3.18) we obtain |d,,| < K*e" L* (n=0, 1,..., M) and d ,,—0 as M—co.

By Theorem 2 z,,—2z(x) and y,u—y(x) as M—o0, so that y(x)=z(x) for
all xe(a, b). But

V'(X) = f(X, §) # g%, §) = 2'(X).
This is a contradiction. Hence
(3.19) fGx, ) =g4x,y) (G=12,..,m

is valid in (a, b) x R, and by continuity of f(x, y) and g (x, ) (3.19) is valid in
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IxR. Thus Condition C2 is satisfied.
By Theorems 2, 3 and 4 we have

THEOREM 5. Suppose that Conditions A and B are satisfied. Then the
method (1.5) is convergent if and only if Conditions C1, C2 and R are satisfied.

4. Stability
For any fe & let {u;,} and {v;,} be the solutions of
4.1) XX aijltinsj = hP(xy, uy; B) + hp,, (n=0,1,...,N;g=1,2,...,m),
4.2 22 ijlinsj = h®y(x,, v,; h) + hoy,

The method (1.5) is called stable if there exist positive constants h* and M such
that

(4'3) |uin—vin| éME (n=0’ 19,N+k1; i= 1’ 21'“9 m) for héh*’

whenever
“4.4) lu;;—v;l S & (j=0,1,.,k;—1;i=1,2,...,m),
4.5) [Pan— 0Ol < & (n=0,1,..,N;q=1,2,..,m).

THEOREM 6. If Condition B is satisfied and the method (1.5) is stable,
then Condition R is satisfied.

Proor. Choose f=0, p,=0,=0 (n=0,1,..,N;q9=1,2,...,m), v;;=0
(j=0,1,..., k;—1; i=1, 2,..., m) and ¢>0. Then by Condition B, (4.4) and (4.2)

(4.6) 2 ijglhinsj =0 (n=0,1,..,N;qg=1,2,...,m),
4.7 lu l e (j=0,1,.,k;—1;i=1,2,..., m),
4.8) Vi =0 (n=0,1,....N+k;;i=1,2,.,m).

Suppose that {y=re!? (r>1; 0S@<2n) is a root of p({)=0. Then by the
same argument as in the proof of Theorem 2,

Uy = 5RC(C,¢6) (n =0,1,.,.N+ ki; i=1,2,..,M; cg= 1)

is a solution of (4.6) satisfying (4.7) if 6>0 is chosen so that d|c;r¥"1|<e
(i=1, 2,..., m). As the method is stable, there exist h* and M such that

Uiy — Vil = |tiiel SMe (n=0,1,...., N+ k;i=1,2,.,m) for h<h*

so that
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BRe(clA) S Me (i=1,2,...,m).
where N;=N+k;(i=1, 2,..., m). Since c,=1, we have
|cos N,o| < Me/|or¥e| — 0 as N,— oo.

which is impossible as has been shown in the proof of Theorem 3. Hence the
modulus of no root of p({)=0 can exceed 1.

Assume next that {,=e'? (0< ¢ <2n) is a multiple root of p({)=0. In the
case rank A({o)=m—1 by the same argument as in the proof of Theorem 3

u, =o0Re(al+ncls™") (i=1,2,..,m—1), wu,,=dncos(n—1)e

is a solution of (4.6) satisfying (4.7) if >0 is chosen so that 6[|a;| +|c;|(k;—1)] e
(i=1,2,...,m—1) and 6(k,,—1)<e. Hence

|cos (N,,— o] £ Mg/(6N,) — 0 as N, —> o0,

which is impossible. In the same way the case rank A({y)<m—1 leads to a
contradiction. Hence the root of p({)=0 of modulus 1 must be simple.

THEOREM 7. The method (1.5) is stable if Conditions A and R are satisfied.

PrOOF. Let

dyy = Uy — Uy (n=0,1,..,N+k;;i=12,.,m),

0,d,) = DXy, ty; h) — DXy, V3 B) + 0 gy — pgu (n =0, 1,..., N).
Then
4.9) 2 aijdins j = hOL(d,) g=1,2,..,m),
and by Condition A and (4.5) we have

10 d)| £ &+ L3N+l
By Corollary to Lemma 3 there exists a constant K, such that
ldl £ Kie  (j=0,1,...,k=1;i=1,2...,m) for h £ h,.
Hence by Lemma 4
|dil £ K¥et®aLl* (n=0,1,..,N+k;;i=1,2,..,m) for h<hs,
where
K¥ = 2G{kK, + B(b—a)g}e, L* =2B(k+1)dG.

Thus the method (1.5) is stable.
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From Theorems 6 and 7 we have

THEOREM 8. Suppose that Conditions A and B are satisfied. Then the
method (1.5) is stable if and only if Condition R is satisfied.

Combining this with Theorem 5, we have the following

COROLLARY. Suppose that Conditions A and B are staisfied. Then the
method (1.5) is convergent if and only if it is consistent and stable.

5. Error estimate

In this section an a priori error estimate is obtained.

THEOREM 9. Suppose that Conditions A and R are satisfied and that there
esist positive constants K, K,, p; and q; (i=1, 2,..., m) such that

(.0) T B S Kot (i=1,2,..,m)  for h< h,,
(5.2) Ie,-jl é thqi (j = O, 1,..., ki - 1, i= 1, 2,..., m) fOr h é ha.
Let ~  p=min <Py g=MiNj<i<m(;

and assume that one of the following three conditions is satisfied:

(a) Pi=D, 4i=4q (l=1’ 29"'» m)
(b)y M; (j=0, 1,..., k*) are all upper triangular matrices and p;Sp, <

EZDm 1S42= S
() M; (j=0,1,...,k*) are all lower triangular matrices and p;=Zp,=

"'gpm’ ‘112‘1222%:
Then for some constant K

(5.3) el = Kh* (n=0,1,.,N+ky;i=12,..,m) for h<hs,

where

(5.4) t; =min(p; q;, p+1,9+1) (i=1,2,.,m).
Proor. By Lemma 3 we have

(5.5 e,=X%,VPe_,+ Xt oF,T(x;;h) (n=—k* —k*+1,..,k—1).

Suppose first that condition (a) is satisfied. Then by (5.5) for some constant
K,
le;l = Kshs  (j=—k* —k*+1,.,k=1),
where s=min (p+1, q).. By (2.18) there exists a constant K, such that |Ry(x; h)| =
K hritt (i=1, 2,..., m), where r;,=min(p;, p+1). By (3.4) (3.5) and (3.6) we
have (5.3).
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Next suppose that condition (b) is satisfied. By (2.30) and (2.34) U
(i=1,2,...,k*; n=0,1,...,k~1) and E, (¢=0,1,...,n;n=0,1,...,k—1) are
upper triangular matrices. Hence the i-th component of Y kL, U{/e_ ;is of order
h% and each component of h 3%L, G;.e_; is of order h4*!, so that the i-th
component of Y %%, V{Pe_; is of order h:, where s;=min(g;, g+1). Similarly
the i-th component of >%_, F,,T(x,; h) is of order hr*!. Hence the i-th
components of e; (j=—k*, —k*+1,..., —k*+k—1) are of order h":, where
n;=min (s;, r;+1). Since M; (j=0, 1,..., k*) are upper triangular, so are A(x)
and its cofactor matrix (¢;(x)). Hence by (2.18) Ry(x; h) is of order hPi*!,
As h¥my 0;(E; W)T{(x,, h) is of order h"*2, g, in (2.49) is of order hritl,
Hence by Lemma 4 we have (5.3).

The case where condition (c) is satisfied is treated similarly and the proof is
complete.

Since {y;,} (i#1) are subsidiary approximations and our aim is to obtain
{y1n}, the order of the method (1.5) is defined to be the greatest integer p such that

MaXo << n+k, €14l = O(hP) for h<h

for sufficiently smooth f(x, y) and ¢;;=0 (j=0, 1,..., k;—1;i=1,2,..., m).
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