Kaplansky's radical and Hilbert Theorem 90 III

Tatsuo Iwakami, Daiji Kijima and Mieo Nishi

(Received July 24, 1984)

Let F be a field, $R(F)$ be Kaplansky's radical of F and $K=F(\sqrt{a})$ be a quadratic extension of F. We showed in [4], that if F is a quasi-pythagorean field and K is a radical extension (i.e. $a \in R(F)-\dot{F}^{2}$), then K is also quasi-pythagorean and the ' H-conjecture' $N^{-1}(R(F))=\dot{F} \cdot R(K)$ is valid, where $N: K \rightarrow F$ is the norm map.

In this paper we generalize the above results and show that the H-conjecture is valid whenever K is a quasi-pythagorean field.

§1. Preliminaries

Throughout the paper, let F be a field of characteristic different from two and \dot{F} be the multiplicative group of F. We introduce in this section some subgroups of \dot{F}, and study their properties.

First, we put for $a \in \dot{F}, I_{a}=\left\{x \in \dot{F} ; D_{F}\langle 1,-a\rangle \subseteq D_{F}\langle 1,-x\rangle\right\}$.
Proposition 1.1. $I_{a}=\cap D_{F}\langle 1,-x\rangle$, where x runs over $D_{F}\langle 1,-a\rangle$. So I_{a} is a subgroup of \dot{F}.

Proof. If $b \in I_{a}$, then $D_{F}\langle 1,-a\rangle \subseteq D_{F}\langle 1,-b\rangle$ and we have $x \in D_{F}\langle 1,-b\rangle$ for all $x \in D_{F}\langle 1,-a\rangle$. Then $b \in D_{F}\langle 1,-x\rangle$ for all $x \in D_{F}\langle 1,-a\rangle$. So $b \in \cap$ $D_{F}\langle 1,-x\rangle$, where x runs over $D_{F}\langle 1,-a\rangle$. Now, all the implications can be reversed and the proposition follows.
Q.E.D.

Proposition 1.2. Let $K=(\sqrt{a})$ be a quadratic extension of F. Then the following statements hold:
(1) $I_{a}=\left\{x \in \dot{F} ; \dot{F} \cdot D_{K}\langle 1,-x\rangle=\dot{K}\right\}$.
(2) $I_{a} \supseteq R(F), \quad I_{a} \ni a$.
(3) $I_{a} \supseteq R(K) \cap \dot{F}$.
(4) $R(K) \supseteq R(F)$.

Proof. Let $N: K \rightarrow F$ be the norm map. Then $N(\dot{K})=D_{F}\langle 1,-a\rangle$ and, by the norm principle ([3], 2.13), we have $N^{-1}\left(D_{F}\langle 1,-x\rangle\right)=\dot{F} \cdot D_{K}\langle 1,-x\rangle$ for $x \in \dot{F}$. So, $D_{F}\langle 1,-a\rangle \subseteq D_{F}\langle 1,-x\rangle$ if and only if $\dot{K}=\dot{F} \cdot D_{K}\langle 1,-x\rangle$. This shows (1). The assertion (2) is clear and (3) follows from (1). The assertion (4)
follows from (1) and (2), since $\dot{F}=D_{F}\langle 1,-x\rangle \subseteq D_{K}\langle 1,-x\rangle$ for $x \in R(F)$.
Q. E. D.

Proposition 1.3. Let F be a quasi-pythagorean field and $x, y \in \dot{F}$. If $x \in D_{F}\langle 1, y\rangle$, then $D_{F}\langle 1, x\rangle \subseteq D_{F}\langle 1, y\rangle$. Moreover, if F is formally real, then $D_{F}\langle 1,-a\rangle$ is a preordering of F for every $a \notin R(F)$.

Proof. $D_{F}\langle 1, y\rangle \cup\{0\}$ is closed under addition, since we have $D_{F}\langle 1, y\rangle=$ $D_{F}\left\langle r_{1}, r_{2} y\right\rangle$ for $r_{i} \in R(F)=D_{F}(2)(i=1,2)$. From this, the assertions follow immediately.
Q.E.D.

Proposition 1.4. I_{a} is a subgroup of $D_{F}\langle 1, a\rangle$. Moreover we have $I_{a}=$ $D_{F}\langle 1, a\rangle$ if F is a quasi-pythagorean field.

Proof. By Proposition 1.1, we have $I_{a} \subseteq D_{F}\langle 1, a\rangle$, since $-a \in D_{F}\langle 1,-a\rangle$. Suppose that F is quasi-pythagorean and $x \in D_{F}\langle 1, a\rangle$. Then $-a \in D_{F}\langle 1,-x\rangle$ and we have $D_{F}\langle 1,-a\rangle \subseteq D_{F}\langle 1,-x\rangle$ by Proposition 1.3. This shows $D_{F}\langle 1, a\rangle \subseteq I_{a}$.
Q.E.D.

Now for $a \in \dot{F}$, we put $H_{a}=\left\{x \in \dot{F} ; D_{F}\langle 1,-x\rangle D_{F}\langle 1,-a x\rangle=\dot{F}\right\}$. We note that $H_{a}=H_{-1}$ for $a \in-R(F)$. Moreover, if F is formally real and quasi-pythagorean, then H_{-1} is the group $H(P)$ for $P=D_{F}(\infty)$ defined in $\S 2$ of [5]. In this case H_{-1} is denoted by H. By Remark 2.3, (1) of [5], we have $H=\dot{F}$ if and only if the space $X(F)$ of orderings in F satisfies SAP.

Proposition 1.5. If $K=F(\sqrt{a})$ is a quadratic extension of F, then we have $H_{a}=\left\{x \in \dot{F} ; D_{K}\langle 1,-x\rangle \supseteq \dot{F}\right\}$.

Proof. Since we have $D_{K}\langle 1,-x\rangle \cap \dot{F}=D_{F}\langle 1,-x\rangle D_{F}\langle 1,-a x\rangle \quad$ ([1], Lemma 3.5.), the assertion follows immediately.
Q.E.D.

Proposition 1.6. $\quad H_{a}=\cap_{x \in \dot{F}} D_{F}\langle 1,-x\rangle D_{F}\langle 1,-a x\rangle . \quad$ So H_{a} is a subgroup of \dot{F}.

Proof. If $a \in \dot{F}^{2}$, then we have $H_{a}=R(F)$ by the definition of H_{a}. So the assertion is valid. Suppose $a \notin \dot{F}^{2}$. Then for $x \in \dot{F}, x \in H_{a}$ is equivalent to $x \in$ $D_{K}\langle 1,-y\rangle \cap \dot{F}$ for all $y \in \dot{F}$. Hence we have the desired equality which clearly implies that H_{a} is a subgroup of \dot{F}.
Q.E.D.

Proposition 1.7. The following statements hold:
(1) $H_{a} \supseteq R(F), \quad H_{a} \ni a$.
(2) If $K=F(\sqrt{\bar{a}})$ is a quadratic extension, then we have $H_{a} \supseteq R(K) \cap \dot{F}$.

Proof. The assertion (1) follows from the definition of H_{a}, and (2) follows from Proposition 1.5.
Q.E.D.

Proposition 1.8. If F is a quasi-pythagorean field, then $H_{a} \subseteq D_{F}\langle 1, a\rangle$.
Proof. For $x=-1, D_{F}\langle 1,-x\rangle D_{F}\langle 1,-a x\rangle=D_{F}\langle 1,1\rangle D_{F}\langle 1, a\rangle=$ $D_{F}\langle 1, a\rangle$, since $D_{F}\langle 1,1\rangle=R(F) \subseteq D_{F}\langle 1, a\rangle$. From this, the desired inclusion follows by Proposition 1.6.
Q.E.D.

Proposition 1.9. If $K=F(\sqrt{a})$ is a quadratic extension of F, then we have $R(K) \cap \dot{F}=I_{a} \cap H_{a}$.

Proof. By (1) of Proposition 1.2 and Proposition 1.5, we have $I_{a} \cap H_{a} \subseteq$ $R(K) \cap \dot{F}$. The other inclusion follows from (3) of Proposition 1.2 and (2) of Proposition 1.7.
Q.E.D.

For a quadratic extension $K=F(\sqrt{a})$ of F, we defined the set $\bar{R}(K)=\{x \in \dot{K}$; $\left.\dot{F} \cdot D_{K}\langle 1,-x\rangle=\dot{K}\right\}$ and the subgroup $I_{K}(\dot{F})=\cap_{x \in \dot{F}} D_{K}\langle 1,-x\rangle$ of \dot{K} in $\S 2$ of [4] and showed $R(K)=\bar{R}(K) \cap I_{K}(\dot{F})$.

We note that $\bar{R}(K) \cap \dot{F}=I_{a}$ and $I_{K}(\dot{F}) \cap \dot{F}=H_{a}$. Proposition 1.9 follows again from these relations.

Now the following result is essentially contained in the proof of Theorem 2.13 of [4]. But we state and prove it for completeness.

Proposition 1.10. The notation being as above, if F is a quasi-pythagorean field, then we have $D_{K}(2) \subseteq \bar{R}(K)$ and therefore $R(K)=I_{K}(\dot{F})$.

Proof. Let x be an element of $D_{K}(2)$. For any $y \in \dot{K}-(\dot{F} \cup x \dot{F})$, we can write $x=\left(b_{1}+c_{1} y\right)^{2}+\left(b_{2}+c_{2} y\right)^{2} \quad\left(b_{i}, c_{i} \in \dot{F}\right)$. Then $x=\left(b_{1}^{2}+b_{2}^{2}\right)+\left(c_{1}^{2}+c_{2}^{2}\right) y^{2}+$ $2\left(b_{1} c_{1}+b_{2} c_{2}\right) y$. By Lemma 2.11 of [4], we have $f_{y}\left(y^{2}\right)=\operatorname{Im}\left(y \cdot \bar{y}^{2}\right) / \operatorname{Im}(y)=$ $N(y) \operatorname{Im}(\bar{y}) / \operatorname{Im}(y)=-N(y)$ (see $\S 2$ of [4] for notation involved), and this implies that there exists $\alpha \in F$ such that $y^{2}=-N(y)+\alpha y$, and hence there exists $\beta \in F$ such that $x=\left(b_{1}^{2}+b_{2}^{2}\right)+\left(c_{1}^{2}+c_{2}^{2}\right)(-N(y))+\beta y$. Namely $f_{y}(x)=\left(b_{1}^{2}+b_{2}^{2}\right)+\left(c_{1}^{2}+c_{2}^{2}\right)(-N$ $\left.(y)) \in D_{F} 《 1,-N(y)\right\rangle$. Since F is quasi-pythagorean, we have $\left.D_{F} 《 1,-N(y)\right\rangle=$ $D_{F}\langle 1,-N(y)\rangle$ and $x \in \bar{R}(K)$ by Lemma 2.12 of [4]. Hence we have $D_{K}(2) \subseteq \bar{R}$ (K). Then $R(K)=D_{K}(2) \cap R(K)=D_{K}(2) \cap \bar{R}(K) \cap I_{K}(\dot{F})=D_{K}(2) \cap I_{K}(\dot{F})=I_{K}(\dot{F})$.
Q. E. D.

§ 2. The main theorem

In this section we show the theorem stated in the beginning of the paper, and deduce several consequences from it.

Theorem 2.1. For a quadratic extension $K=F(\sqrt{a})$ of F, K is quasi-pythagorean if and only if F is quasi-pythagorean and $H_{a}=D_{F}\langle 1, a\rangle$. Furthermore, if these conditions are satisfied, then we have $N^{-1}(R(F))=\dot{F} \cdot R(K), N$ being the norm map, and $I_{a}=H_{a}=D_{F}\langle 1, a\rangle=R(K) \cap \dot{F}$.

Proof. Suppose that K is quasi-pythagorean. Then we have $D_{K}\langle 1, a\rangle=$ $D_{K}(2)=R(K)$. It follows that $D_{F}\langle 1, a\rangle \subseteq \dot{F} \cap D_{K}\langle 1, a\rangle=\dot{F} \cap R(K)$. By Proposition 1.9, we have $\dot{F} \cap R(K)=I_{a} \cap H_{a}$. Hence $D_{F}\langle 1, a\rangle \subseteq I_{a} \cap H_{a} \subseteq I_{a}$. But $I_{a} \subseteq D_{F}\langle 1, a\rangle$ by Proposition 1.4. Therefore we have $D_{F}\langle 1, a\rangle=I_{a} \subseteq H_{a}$, and $\dot{F} \cap R(K)=D_{F}\langle 1, a\rangle$. By Proposition 1.8 we see that $H_{a}=D_{F}\langle 1, a\rangle$. On the other hand, we have, by Lemma in $\S 2$ of [2], $D_{F}\langle 1, a\rangle \cap D_{F}\langle 1,-a\rangle=D_{F}\langle 1, a\rangle \cap$ $D_{F}\left\langle 1, a^{2}\right\rangle=D_{F}(2)$ since $D_{F}(2) \subseteq D_{K}(2) \cap \dot{F}=D_{F}\langle 1, a\rangle$. So in particular $D_{F}(2) \subseteq$ $D_{F}\langle 1,-a\rangle$.

Let $N: \dot{K} \rightarrow \dot{F}$ be the norm map. The image of N is $D_{F}\langle 1,-a\rangle$. Since $N(R(K)) \subseteq R(F)$ always holds, we have $N(\dot{F} \cdot R(K)) \subseteq R(F)$ and therefore $N^{-1}(R(F)) \supseteq \dot{F} \cdot R(K)=\dot{F} \cdot D_{K}(2)$. However, by the norm principle (2.13 of [3]), $\dot{F} \cdot D_{K}(2)=N^{-1}\left(D_{F}(2)\right)$. So we have $N^{-1}(R(F)) \supseteq N^{-1}\left(D_{F}(2)\right)$, which implies $R(F)=D_{F}(2)$ and $N^{-1}(R(F))=\dot{F} \cdot R(K)$.

Conversely, suppose that F is quasi-pythagorean and $H_{a}=D_{F}\langle 1, a\rangle$. We shall prove that K is quasi-pythagorean. By Proposition 1.10, we have only to show that $D_{K}(2) \subseteq D_{K}\langle 1,-x\rangle$ for all $x \in \dot{F}$. So let γ be any element of $D_{K}(2)$. Since $D_{F}(2)=R(F) \subseteq D_{F}\langle 1,-x\rangle$, we have, by the norm principle (2.13 of [3]), $\dot{F} \cdot D_{K}(2) \subseteq \dot{F} \cdot D_{K}\langle 1,-x\rangle$ for all $x \in \dot{F}$. So there exists $f \in \dot{F}$ such that $f \gamma \in$ $D_{K}\langle 1,-x\rangle$. Then $f \in D_{K}\langle 1,1\rangle D_{K}\langle 1,-x\rangle \cap \dot{F} \subseteq D_{K}\langle 1,-x\rangle \cap \dot{F}$, and we can write $f=\left(b_{1}+c_{1} \sqrt{a}\right)^{2}+\left(b_{2}+c_{2} \sqrt{a}\right)^{2}-x\left(b_{3}+c_{3} \sqrt{a}\right)^{2}-x\left(b_{4}+c_{4} \sqrt{a}\right)^{2} \quad\left(b_{i}, c_{i} \in F\right)$. Then we have $f=b_{1}^{2}+b_{2}^{2}+a\left(c_{1}^{2}+c_{2}^{2}\right)-x\left(b_{3}^{2}+b_{4}^{2}\right)-a x\left(c_{3}^{2}+c_{4}^{2}\right)$. Now for a moment, we assume, in the last equality, each of the four sums of two squares is not zero. Then as these sums are in $D_{F}(2)=R(F)$, we have $f=b^{2}+a c^{2}-$ $x\left(b^{\prime 2}+a c^{\prime 2}\right)$ for some $b, c, b^{\prime}, c^{\prime} \in F$. Since $b^{2}+a c^{2}, b^{\prime 2}+a c^{\prime 2} \in D_{F}\langle 1, a\rangle \cup\{0\}$, and $D_{F}\langle 1, a\rangle=R(K) \cap \dot{F}$, we have $f \in D_{K}\langle 1,-x\rangle$. If some of the four sums are equal to zero, we see readily $f \in D_{K}\langle 1,-x\rangle$. So we have $\gamma \in D_{K}\langle 1,-x\rangle$ for all $x \in \dot{F}$.

Considering Proposition 1.4, Proposition 1.8 and Proposition 1.9, we see easily that the last statement holds.
Q.E.D.

Remark 2.2. In the notation of Theorem 2.1, the assertion that F is quasipythagorean if K is so, has already been proved in Proposition 4.10 of [3], in a more general form.

In all the rest of the paper, let K denote a quadratic extension $F(\sqrt{a})$ of F. The following proposition is a strengthenning of Theorem 2.13 of [4].

Corollary 2.3. Suppose K is a radical extension of F. Then, K is quasipythagorean if and only if F is so.

Proof. Suppose F is quasi-pythagorean, then $R(F)=D_{F}(2)=D_{F}\langle 1, a\rangle$ since we have $a \in R(F)$. On the other hand, recalling the definitions of I_{a} and
H_{a}, we see easily that $I_{a}=R(F)=H_{a}$. So the assertion follows from Theorem 2.1. Q.E.D.

Corollary 2.4. The following statements are equivalent:
(1) K is a quasi-pythagorean field which is not formally real.
(2) $R(K) \supseteq \dot{F}$.
(3) F is a quasi-pythagorean field, $a \in-R(F)$, and $H=\dot{F}$.

Proof. (1) $\Rightarrow(2)$: This is clear since $R(K)=\dot{K}$ in this case.
(2) \Rightarrow (3): Since we have $R(K) \cap \dot{F}=I_{a} \cap H_{a}$, (2) implies that $I_{a}=H_{a}=\dot{F}$. In particular $D_{F}\langle 1,-a\rangle \subseteq D_{F}\langle 1,-x\rangle$ for all $x \in \dot{F}$. It follows that $-a \in R(F)$ and $D_{F}(2)=D_{F}\langle 1,-a\rangle=R(F)$. So F is quasi-pythagorean. Since $H=H_{a}$ for $a \in$ $-R(F)$, we have $H=\dot{F}$.
$(3) \Rightarrow(1)$: We have $D_{F}\langle 1, a\rangle=\dot{F}$ and $H_{a}=H=\dot{F}$. So (1) follows from Theorem 2.1.
Q.E.D.

Using the above corollary and the theorem of Tsen-Lang, we can prove the following result (see Theorem 17.9 and Corollary 17.8 of [6]): Let k be a real closed field and L is a formally real field over k with $\operatorname{tr} . \operatorname{deg}_{k} L=1$. Then L is a quasi-pythagorean field which is a SAP field. In particular the rational function field $\boldsymbol{R}(X)$ in one variable X over the real number field \boldsymbol{R} is a quasipythagorean SAP field.

If F is a quasi-pythagorean field which is not formally real, then K is also such a field by Corollary 2.4 and (4) of Proposition 1.2.

In the following, we consider the case in which F is formally real.
Corollary 2.5. Let F be a formally real, quasi-pythagorean field and $a \in H$. We assume $\pm a \notin R(F)$ and denote the preorderings $D_{F}\langle 1, a\rangle, D_{F}\langle 1,-a\rangle$ by T, T^{\prime} respectively. Then K is quasi-pythagorean if and only if the preordering T^{\prime} is SAP.

Proof. Since a is an element of H, we have $T T^{\prime}=\dot{F}$. So any $b \in \dot{F}$ can be written as $b=x y$ where $x \in T, y \in T^{\prime}$. Then $D_{T},\langle 1,-b\rangle=D_{T},\langle 1,-x\rangle$ and $D_{T^{\prime}}\langle 1, b\rangle=D_{T^{\prime}}\langle 1, x\rangle$. But by Lemma 2.6 below, $D_{F}\langle 1,-x\rangle D_{F}\langle 1, x\rangle=$ $\left.\left.D_{T^{\prime}}<1,-x\right\rangle D_{T}<1, x\right\rangle$ for any $x \in T$. Hence $T=H_{a}$ i.e. $D_{F}\langle 1,-x\rangle D_{F}\langle 1,-a x\rangle=$ \dot{F} for all $x \in T$ if and only if $D_{T},\langle 1,-b\rangle D_{T},\langle 1, b\rangle=\dot{F}$ for all $b \in \dot{F}$. The last condition is equivalent to T^{\prime} being SAP, by Remark 2.3, (1) of [5]. Q.E.D.

In the following lemma and its proof, we use freely the notation of [5], $\S 1$, $X(P)$ being an abbreviation for $X(F / P)$.

Lemma 2.6. Let F be a formally real, quasi-pythagorean field. We assume $\pm a \notin R(F)$ and denote the preorderings $D_{F}\langle 1, a\rangle, D_{F}\langle 1,-a\rangle$ by T, T^{\prime} respectively. Then for $x \in T$, the following statements hold:
(1) $D_{F}\langle 1, x\rangle=D_{T},\langle 1, x\rangle \cap T$.
(2) $D_{F}\langle 1,-x\rangle=D_{T},\langle 1,-x\rangle$.
(3) If we further assume $a \in H$, then we have

$$
D_{F}\langle 1, x\rangle D_{F}\langle 1,-x\rangle=D_{T^{\prime}}\langle 1, x\rangle D_{T^{\prime}}\langle 1,-x\rangle .
$$

Proof. We first note that, for any preordering P of F, and for any $z \in \dot{F}$, we have $D_{F}\langle 1, z\rangle=(H(z))^{\perp}, D_{P}\langle 1, z\rangle=(H(z) \cap X(P))^{\perp}$. Now for $x \in T$, we have $H(x) \supseteq X(T), H(-x) \subseteq X\left(T^{\prime}\right)$.
(1) $D_{F}\langle 1, x\rangle=(H(x))^{\perp}=\left(X(T) \cup\left(H(x) \cap X\left(T^{\prime}\right)\right)\right)^{\perp}$

$$
=(X(T))^{\perp} \cap\left(H(x) \cap X\left(T^{\prime}\right)\right)^{\perp}=T \cap D_{T^{\prime}}\langle 1, x\rangle .
$$

(2) $D_{F}\langle 1,-x\rangle=(H(-x))^{\perp}=\left(H(-x) \cap X\left(T^{\prime}\right)\right)^{\perp}=D_{T^{\prime}}\langle 1,-x\rangle$.
(3) We have $T^{\prime} \cdot D_{F}\langle 1, x\rangle=T^{\prime} \cdot\left(T \cap D_{T^{\prime}}\langle 1, x\rangle\right)$

$$
\begin{array}{ll}
=\left(T^{\prime} \cdot T\right) \cap D_{T^{\prime}}\langle 1, x\rangle & \\
\left.=\text { (since } T^{\prime} \subseteq D_{T^{\prime}}\langle 1, x\rangle\right) \\
\left.=D_{T^{\prime}}<1, x\right\rangle & \\
\text { (since } \left.T \cdot T^{\prime}=\dot{F}\right) .
\end{array}
$$

Therefore we have $D_{F}\langle 1, x\rangle D_{F}\langle 1,-x\rangle=D_{F}\langle 1, x\rangle D_{T^{\prime}}\langle 1,-x\rangle=D_{T^{\prime}}\langle 1, x\rangle$ $\left.D_{T}<1,-x.\right\rangle$
Q.E.D.

As an application of Corollary 2.5, we have the following result.
Corollary 2.7. Let F be a formally real field. Then F is quasi-pythagorean and SAP if and only if every quadratic extension K of F is quasipythagorean. Moreover, when these conditions are satisfied, K is also SAP if it is formally real.

Proof. The first assertion is obvious. To show the second assertion, let F be a formally real, quasi-pythagorean and SAP field. Then, by Corollary 2.4, $F(\sqrt{-1})$ is a quasi-pythagorean field which is not formally real. So, for any formally real quadratic extension K of $F, K(\sqrt{-1})$ is quasi-pythagorean by Corollary 2.3. Theorefore K is SAP by Corollary 2.4.
Q.E.D.

Lemma 2.8. Let F be a formally real, quasi-pythagorean field. We assume $\pm a \notin R(F)$ and denote the preorderings $D_{F}\langle 1, a\rangle, D_{F}\langle 1,-a\rangle$ by T, T^{\prime} respectively. Then we have $H\left(T^{\prime}\right) \cap T=H_{a}$.

Proof. For any $x \in T, D_{F}\langle 1,-x\rangle=D_{T}\langle 1,-x\rangle$ and $D_{F}\langle 1,-a x\rangle=$ $\left.D_{T^{\prime}}<1,-a x\right\rangle$ by Lemma 2.6, (2). So we have $H\left(T^{\prime}\right) \cap T=H_{a}$ by Proposition 1.8 Q.E.D.

In the proof of the following lemma, we use the translation group $\operatorname{gr}(X(P))$ of the space $X(P)$ defined in [7]. Namely $\operatorname{gr}(X(P))=\{\alpha \in \chi(F / P) ; \alpha X(P)=X(P)\}$, where $\chi(F / P)=\operatorname{Hom}(\dot{F} / P,\{ \pm 1\})$ is the character group of \dot{F} / P. For a preorder-
ing P of finite index, $X(P)$ is connected if and only if $|X(P)|=1$ or, $|X(P)| \geqq 3$ and $\operatorname{gr}(X(P)) \neq 1$.

Lemma 2.9. Let F be a formally real,quasi-pythagorean field and assume that $X(F)$ be finite and connected. Then we have $H_{a}=R(F) \cup a R(F)$.

Proof. If $a \in R(F)$, we have $H_{a}=R(F)$ and the assertion holds. If $-a \in R(F)$, we have $H_{a}=H$. Hence $\operatorname{dim} H_{a} / R(F)=1$ by Theorem 2.5 of [5]. So the assertion holds by Proposition 1.7 and Proposition 1.8. Since the case $|X(F)|=1$ is included in the above ones, we suppose that $\pm a \notin R(F),|X(F)| \geqq 3$ and $\operatorname{gr}(X(F)) \neq 1$. Let α be an element of $\operatorname{gr}(X(F))$ such that $\alpha \neq 1$. We consider two cases.

Case 1: $\alpha(a)=1$. We have $\alpha X\left(T^{\prime}\right)=X\left(T^{\prime}\right)$. First we assume $\left|X\left(T^{\prime}\right)\right| \geqq 3$. Then $X\left(T^{\prime}\right)$ is connected. By Theorem 2.5 of [5], $\operatorname{dim} H\left(T^{\prime}\right) / T^{\prime}=1$. So we have $H\left(T^{\prime}\right)=T^{\prime} \cup a T^{\prime}$. Thus we have $H_{a}=R(F) \cup a R(F)$ by Lemma 2.8, by noting $T \cap T^{\prime}=R(F)$. Next we assume $\left|X\left(T^{\prime}\right)\right| \leqq 2$. Since $\alpha X\left(T^{\prime}\right)=X\left(T^{\prime}\right)$, we see that $X\left(T^{\prime}\right)$ consists of even number of orderings and so $\left|X\left(T^{\prime}\right)\right|=2$. If we write $X\left(T^{\prime}\right)=\left\{\sigma_{1}, \sigma_{2}\right\}$, we see that $\alpha=\sigma_{1} \sigma_{2}$. Since $\alpha X(T)=X(T)$, we take a set $\left\{\tau_{1}, \ldots, \tau_{n}, \alpha \tau_{1}\right\}$ as a basis of $X(T)$ and it is easy to see that $\left\{\tau_{1}, \ldots, \tau_{n}, \alpha \tau_{1}, \sigma_{1}\right\}$ is a basis of $X(F)$. This implies that $\operatorname{dim} X(T)=\operatorname{dim} X(F)-1$, and so dim $T / R(F)=1$. From this the assertion follows by Proposition 1.7 and Proposition 1.8.

Case 2: $\alpha(a)=-1$. We have $\alpha X\left(T^{\prime}\right) \subseteq X(T)$ and $\alpha X(T) \subseteq X\left(T^{\prime}\right)$. Hence $\alpha X(T)=X\left(T^{\prime}\right)$. If we take a basis $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ of $X(T)$, then $\left\{\sigma_{1}, \ldots, \sigma_{n}, \alpha \sigma_{1}\right\}$ is a basis of $X(F)$. Thus $\operatorname{dim} X(T)=\operatorname{dim} X(F)-1$, and so $\operatorname{dim} T / R(F)=1$. The assertion follows similarly to case 1 .
Q.E.D.

Corollary 2.10. Let F be a formally real, quasi-pythagorean field. If a is $R(F)$-rigid, then K is quasi-pythagorean. Conversely if $X(F)$ is finite and connected, and if K is quasi-pythagorean, then a is $R(F)$-rigid.

Proof. If a is $R(F)$-rigid, we have $D_{F}\langle 1, a\rangle=R(F) \cup a R(F)$. So we see easily that $D_{F}\langle 1, a\rangle=H_{a}$, which implies that K is quasi-pythagorean by Theorem 2.1.

Conversely assume that K is quasi-pythagorean. In case $a \in R(F)$, the assertion is trivial. If $-a \in R(F)$, then $H_{a}=D_{F}\langle 1, a\rangle=\dot{F}$ by Theorem 2.1; also $H_{a}=H$ and, since $X(F)$ is finite and connected, we have $\operatorname{dim} H_{a} / R(F)=1$ by Theorem 2.5 of [5]. This implies that a is $R(F)$-rigid. Hence we may suppose $\pm a \notin R(F)$. Then we have $D_{F}\langle 1, a\rangle=H_{a}=R(F) \cup a R(F)$ by Theorem 2.1 and Lemma 2.9. So a is $R(F)$-rigid.
Q.E.D.

References

[1] L. Berman, Pythagorean fields and the Kaplansky radical, J. Algebra 61 (1979), 497-507.
[2] C. M. Cordes and J. R. Ramsey, Jr., Quadratic forms over fields with $u=q / 2<\infty$, Fundamenta Math. 99 (1978), 1-10.
[3] R. Elman and T. Y. Lam, Quadratic forms under algebraic extensions, Math. Ann. 219 (1976), 21-42.
[4] D. Kijima and M. Nishi, Kaplansky's radical and Hilbert Theorem 90 II, Hiroshima Math. J. 13 (1983), 29-37.
[5] D. Kijima and M. Nishi, On the space of orderings and the group H, Hiroshima Math. J. 13 (1983), 215-225.
[6] T. Y. Lam, Orderings, valuations and quadratic forms, regional conference series in math., number 52, Amer. Math. Soc., 1983.
[7] M. Marshall, Classification of finite spaces of orderings, Can. J. Math. 31 (1979), 320-330.

Faculty of Integrated Arts and Sciences, Hiroshima University,
Department of Mathematics, Faculty of Science, Hiroshima University and
Department of Mathematics, Faculty of Science, Hiroshima University

