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Abstract

This report studies the existence of non-constant solutions of certain two-point
boundary value problems for 3-component systems with a small parameter ε, under
homogeneous Neumann conditions at the boundaries. This problem is related
to the analysis of segregation patterns in population models of 3-competing and
spatially dispersing species. It is shown that the reduced problem (ε =0) has many
non-constant solutions exhibiting spatial segregation. Only a few of these, however,
can serve as valid lowest-order approximations to solutions of the original problem
when ε is non-zero but small. A singular perturbation construction clarifies which
are in this category. The results of numerical computations of solutions are also
illustrated.

1. Introduction

We consider populations of N species Sl9 S2,..., SN in a bounded habitat,

and assume that the distribution of the populations are determined by competition

of Lotka-Volterra-Gause type and simple diffusion. Suppose uf(i, x)

0 = 1, 2,..., N) is the population density of the species St (Ϊ = 1, 2,..., JV). The

spatial domain is taken to be the one-dimensional interval (0, 1). Then we have

the following reaction-diffusion equations governing the evolution of the u{\

(1) ^ = rf.-gl+(r.-f^..w.)Wi)?>0,χe(0, 1),

0 = 1, 2,..., N)

where di9 rt and a^ (/, 7 = 1, 2,..., N) are non-negative constants. In ecological

terms, rf is the intrinsic growth rate of Si9 au is a measure of intraspecific com-

petition of Sh and aXi (i Φ j) is a measure of interspecific competition between the

species. The boundary and initial conditions are taken to be

(2) -^-(t,x) = 0, ί > 0 , x = 0, I

and

This work was done while the authors were at the Mathematics Research Center, Madison,
Wisconsin (June 1982).
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(3) «f(0, x) = u i0(x) ^ 0, xe[0, 1] , (i = 1, 2 ΛΓ)

The case of two competing species (N=2)

(4)
du2 , d2w2 , / Λ

^ / + (r 2 - a2 1M! - a22u2)u2

has been studied extensively. When rf and α l 7 (i, j = l, 2) are fixed arbitrarily

except that the inequalities

are not both satisfied, the solution of (4), (2), (3) tends to a constant steady state

solution (for instance, [2]). That is, there never appears any spatial segregation

for large time. Furthermore, in the remaining case

βη < rt < a12

a2ί r2 a22 '

Kishimoto [5] showed that even if there exist non-constant nonnegative steady

state solutions, these are unstable. This result indicates that the simple diffusion-

competition model (4) cannot explain spatially segregated distributions of two

competing species. The situation is different when one introduces the effect of

cross-population pressure [14] into (4). It is shown in [12] that there occur

non-constant steady state solutions exhibiting spatial segregation on the basis of

cross-diffusion-induced instability (see also [10]).

These results motivate us to study whether or not systems with more than two

components ( N ^ 3 ) can exhibit spatial segregation. In this connection, Evans

[3] and Kishimoto [6] have already presented some examples of competition

and/or prey-predator systems in the case N = 3 which show diffusion-induced

instability. This phenomenon has usually been associated with activator-inhibitor

systems, but competitive interaction does not fall into that category. A few

examples of systems with stable non-constant bifurcating steady state solutions

were given in [6].

Furthermore, Kishimoto, Mimura and Yoshida [7] have studied the system

(1) with N = 4 and have shown that there appear time-periodic, spatially non-

constant solutions.

In this paper, we will be interested in the stationary problem (1) and (2) with

N = 3 under the conditions that two of the diffusion coefficients are sufficiently

small. We show the existence of non-constant, nonnegative solutions by a singular

perturbation construction.
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2. Ecological background and assumption

Uncovering the mechanisms for spatial patterning of ecological communities
has been a very active line or research in population biology. Most often, spatial
diversity in connected habitats has been assumed to be linked to some heterogeneity
in the environment, but it has also been recognized (Levin [9], for example) that
stable patterns can exist in otherwise homogeneous environments. A celebrated
mathematical model displaying such features in the analogous context of chemical
interaction (and diffusion) was presented by Turing [16] in 1954, and model
systems of this general type have been elaborated extensively since then.

Our context, of course, is a continuous space-time population model in-
corporating species interaction and dispersal. Interactions of prey-predator type
are analogous to those of "activator-inhibitor" type occurring in other disciplines,
and are most reminiscent of the type of chemical interaction that Turing postulated.
And, in fact, small amplitude patterns for two-species prey-predator situations
with spatial dispersal modelled by diffustion operators can, in many cases, be
constructed by standard bifurcation techniques.

Competition-type interactions between two species are not of activator-
inhibitor type, however, and so it is not too surprising that bifurcation techniques
provide no stable patterns for two competing species models. Kishimoto and
Weinberger [8] showed that no stable non-constant solutions of the corresponding
boundary value problem (bounded and convex domain in one or more dimensions)
with no-flux boundary condition can exist. To the contrary, Matano and Mimura
[10] constructed stable non-constant solutions in suitable nonconvex domains.
These raise the question as to whether patterns are possible in more than two-
species competition systems in convex domains.

The present paper shows that patterns are possible in three-species competition
systems with diffusion. The technique used is not bifurcation, but rather formal
singular perturbation layer analysis, utilizing large differences in the diffusion
rates.

In practical terms, these results simply serve to point out yet another
mechanism for stable spatial diversity in homogeneous environments. There
has been, of course, no experimental or observational studies which clearly
demonstrate the action of this mechanism in nature, although segreagtion phe-
nomena in communities of three species, possible competing, have been studied.
For example, Tragardh [15] studies the interaction of three (and more) species of
pine beetles. When Blastophagus pinίperda and B. minor were present on a
tree, their ranges were observed to be segregated: B. piniperda occupied the
lower, and B. minor the upper region of the trunk. But on a small island B.
minor was not seen, and the range of the other species was enlarged. A third
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species, Ips longicollis, living more in the outer part of the bark, coexisted

throughout the ranges of both Blastophagus species. Crombie [1] observed a

similar ecosystem with Rhίzoperta dominica, Sltotroga cerealella, and

Oryzaephίlus surinamensis. Competition among three or more species, ir-

respective of spatial distribution considerations, is recently under investigation

by many researchers; for a survey of some of this work, see Schoener [13].

We shall investigate three-species competition systems, and shall look for

spatial distributions similar to those mentioned above, observed by Tragardh and

Crombie.

Consider the stationary version of (1) and (2) with N = 39

(5)

d2u
= d1 -j-± + (rt - aίluί - a12u2 - a13u3)uu

0 = d2-j^τ + (r2 ~ 021^1 - a22u2 - cι23u3)u29 xe(0, 1),

d2u
0 = d £dx2 ' v 3

and the boundary conditions

We impose some conditions on rf and au (ι, j = 1, 2, 3);

(HI) < < .

In ecological terms, this implies that when St is absent, S2 can survive and S3

becomes extinct in competition. That is, when wt =0,

lim(ι/2(ί, x), w3(ί, x)) =

(de Mottoni [2]).

(H2) _^i2_<Zi_<^i i_ and ^i3_ < Zi_ < _^J_?

a 2 2 r2 a2ί a33 r3 a3ί

which imply that in the absence of S3 (resp. 52), S x and S2 (resp. S3) may coexist

in competition. (See Figure 1).

REMARK 1. The argument in this paper will also handle the case when S 2

survives to the exclusion of Sί9 when S3 is absent, the other asumptions above

remaining unchanged.
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Figure 1. Location of the null planes of the dynamics gi=rt—
(/=1, 2, 3). means the trivial critical points of (5).

(H3) S2 and S3 are both slowly diffusing, that is, d1 = 1, d2 = ε2

and d3 = dε2 for some constant d > 0 (0 < ε « 1).

We will impose some conditions on rf and au (i, j = 1, 2, 3) in addition to (HI)

and (H2) later. Note that the question as to whether all three species can coexist

in the absence of diffusion is not relevant to the present study.

3. Singular perturbation problem

In this section, we consider the reduced system corresponding to (5):

(7)

xe(0,

0 =

0 =

(r 2 - - a23v3)υ2,

subject to the boundary conditions
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(8) *£- = 0, x = 0, 1.

From the second and the third equations of (7), we have four possibilities

( ! ) v2 = v3 = 0,

(Π) P 2 =
 r2

(ΠI) v2 = 0,v3 =
#33

and

(IV) v2 = &
^22^33-^32^23

v . (

Substituting the relations ( I )-(IV) into the first equation of (7), we obtain scalar

equations for vv

(9)ί ° &
subject to the boundary condition (8), where fj[v) ( i = I , H, m, IV) take the

forms

and

/l(»)

/m(f)

(\aT~alr2

\ #33

~ a 2ίa 33)

It is obvious that the forms of / i / π and / m are all convex from above

(Figure 2). Therefore, the problems (9)f ( i = I , Π, IΠ) subject to (8) have no

non-constant nonnegative solutions. (However, (9)^ may indeed possess such

solutions for suitable rt and α^ (i, 7 = 1, 2, 3). Our solutions will be constructed

differentily.)
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y

Figure 2. Functional forms of /,(©) (/=1, 2, 3). Pi=r 1/β l l s P2=κ1(12\3)
andP3="i(13\2).

We now assume

(H4) S1(12\3) = ^1^33-^13^3 _ Π= δi(13\2),

where M 1(12\3) is the first component of the solution (μl9 u2) of r1 — aίίuί —
= r 2 — α 2 i u i —Λ22W2 = ^ "i(13\2) is similarly understood. We take

«1(12\3)>δ1(13\2).

Here we construct a new function / π m(v) defined by

fφ) for ξ <v

fm(v) for 0 < v < ξ,

where ξ(iϊ1(12\3)<ξ<M1(13\2)) is arbitrarily fixed, and consider the problem

(10) 0 =

subject to the boundary condition (8).

THEOREM 1. Fix ξ arbitrarily so that max(u±(i3\2)9 yW!(12\3))<^<

M1(12\3). Then the problem (10), (8) has a non-constant nonnegative solution
v^x; ξ) satisfying
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nί(13\2)<vί(x;ξ)<uί(12\3).

PROOF: See Mimura [11].

Using this function vx{x\ ξ), we obtain a solution of the problem (7), (8) as

follows:

Ί = »i(*; ξ),

(ID
v2 =

0

0

(Pi<ξ),

(Vl>ξ)

(Figure 3A).

The solution (11) shows that S2 and S3 are coexisting with spatial structure of

segregation. This is an interesting phenomenon because, in the absence of Sί9

S3 always becomes extinct under the assumption (HI). That is, the presence of

S x makes the coexistence of S 2 and S3 possible.

We next consider the problem of whether the solution of the reduced problem

(11) becomes a lowest order approximation to a solution of the original problem

(5) when ε is sufficiently small but non-zero. The solution will be sought in

separate regions named "inner" and "outer" regions and then matched

appropriately. It is expected that the function (11) becomes an "outer" solution

outside a neighborhood of x=x*, where x* is a point where v^x*) = ξ. Therefore

we seek here an "inner" solution in the neighborhood of x=x*. We use the

transformation z=(x — x*)/ε in (5) to obtain

1 0 1 0

ξ) v2(x\ξ) v3(x;ξ)

Figure 3A. Spatial distributions of vfa; £) for suitable £ (i = l, 2, 3).
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(12)

" 2

Figure 3B. Bold lines correspond to the outer solution.

0 = -~±

0 =

0 =

- a
ί2
u
2
 -
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2
 - a

2ί
u
ί
 - a

22
u
2
 - a

23
u
3
)u

2
,

+ (r
3
 - a

3ί
u
ί
 - a

32
u
2
 - 0331*3)1*3.

" 3

By putting ε = 0 and then uί(z) — vί(x*) = ζ9 we obtain a 2-component system with

respect to u2 and u3, which is an approximation to (12):

(13)

0 = - a22U2 - a23U3)U2

0 =

d2U,
zeR,

where R^ξ)=rf - an ξ ( i = 2 , 3). The boundary conditions at z = ± oo are specified

as

(14)
t/2(-α>) = R2(ξ)la22

[/3(-oo)=0
and

= 0
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We must study the existnce of a nonnegative solution (U2(z), U3(z)) to the pro-

blem (13), (14).

Here we assume

(H5)

which implies that the surfaces r2 — a2ίuί — a22u2 — a23u3=0 and r3 — i
Λ32w2~β33M3 = 0 intersect in R | = {(M1? U2, t ι 3 ) | u ^ 0 (ί = l, 2, 3)}. That is, two

lines R2(ξ) — a22u2 — a23u3 = 0 and R3(ξ) — a32u2 — α3 3w3 = 0 intersect in R+ =

{(u2, fi 3) |tι 2^0, w3^0} for each ξ satisfying ΰ1(23\2)<^<ΰ1(23\3). Thus, we

find that as ξ increases, the kinetic system of (13) takes the form of a monostable

system (0<ξ<w1(23\2)), a bistable one (w1(23\2)<ξ<ΰ1(23\3)) and then a

monostable one (ΰ1(23\3)<ξ) again.

THEOREM 2. There exists a value ξ* satisfying i/1(23\2)<ξ*<M1(23\3)

such that the problem (13), (14) has a solution (U2(z; ξ*)9 U3(z; £*)). (Figure 4).

Figure 4. Bold line corresponds to the inner solution.
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PROOF: This is a consequence of Theorem A2 in the Appendix, with the fol-

lowing notational changes: subscripts 1 in that theorem are to be replaced by 3

for the present context; rt is to be R3/d, r2 is R2, and aίJ is a3jjd.

REMARK 1. Theorem 2 does not show explicitly the value of ξ*. However,

when #22 = 033 a n c * α32 = β23> t h e n £* = ( r 2 — r 3)/(α 2 1 — a3ί) (Gardner [4]).

REMARK 2. The uniqueness of such a ξ* is not known, but has been

confirmed numerically.

Thus, when we assume

(H6) (S1(23\2), ΰ1(23\3)) , t/1(12\3)),

we obtain "outer" solutions (v^x; ξ*)9 v2(x; ξ*), v3(x; ξ*))9 as well as "inner"

solutions (Ut(x*; ξ*), U2(x-x*)/ε; ξ*)9 U3(x-x*)/ε; £*)), where ζ* is determined

by Theorem 2 and x* is found from v^x*; ξ*) = ξ*.

The final task is to obtain a solution of the original problem (5), (6) when ε

is sufficiently small but nonzero which corresponds to the "outer" solution of

(7), (8) and the "inner" solution of (13), (14) constructed above. Unfortunately

we have not yet been able to prove the existence of this solution. We show,

however, numerical experiments to supplement the analysis given in this paper,

thus further confirming the existence of solutions exhibiting spatial segregation

between two of the species (Figure 5).

d i = 1 . 5
<f2=0.005
d3=0.0025

u2(t, U3(t, X)

d2=0.05
d3=0.0025

y x) u2(t, x)

Figure 5. Spatial distributions of (uu u2. w3)

, x)
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4. Concluding remark

We have discussed non-constant steady state solutions of a three component
system of competition and diffusion. In this system, we have assumed that species
1 and 2, as well as 1 and 3, can coexist, but 2 and 3 are of exclusive interaction,
that is, either 2 or 3 becomes extinct. Thus, a singular perturbation technique
constructs non-constant steady state solutions exhibiting a striking segregated
pattern in the species when species 1 diffuses fast but 2 and 3 diffuse slowly. The
argument presented here is also valid in the situation where species 2 and 3 coexist,
but 2 eliminates 1 as well as 3.

Appendix.

Consider the system

+ uf(u, v) = 0

+ vg{u, v) = 0,

whereyWjL — aίtu—aί2v and g = r2 — a21u — a22v. (All of the following extends
easily to a much wider class of functions (/, g). We shall not pursue that gen-
erality.)

DEFINITION. The pair (/, g) of this form with r f >0 and α l 7>0 (i,j = l, 2)
is said to belong to class sf if r2\τγ>a22\a12.

For (/, g) e J/ , we shall be concerned with conditions under which there
exists a solution of (Al) for x e R satisfying

(A2) (ιι, i?)(-oo) = (0, τ2\a22\ (u, !>)(+OO) = (rjall9 0).

With no loss of generality we shall assume, for simplicity, that r2 = a22 and r1 =
Λn. This may always be achieved by rescaling u and v. Written as a system of
4 first order equations, (Al) becomes

ί ύ = p, p = - uf(u, v)
(A3)

I.v = q, q = - vg(u, v)

with (/, g) e s/, where = -r—. Solutions of the system will be denoted by X(x)

where x=(w, p, v, q). Clearly the points ^ = (0,0,1,0) and 5 = (1, 0, 0, 0)
are rest points. Our main question will be whether there exist trajectories con-
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necting them. The projection of X(x) onto the (u, v) plane will be denoted by

U(x)9 where U = (u, v).

PROPOSITION 1. The rest point A has a local two-dimensional unstable

manifold M which may be parameterized by points in the (u, v) plane in a

neighborhood of (0, 1). More precisely, to each such point (w, i>)^(0, 1), there

corresponds exactly one trajectory on M, and there exist no other trajectories

issuing from A, The trajectories themselves may be parameterized by a single

real parameter.

PROOF. The system (A3), linearized about A, can be written as

(A4) * = Hx,

where H has two positive eigenvalues λί=y/aί2 — rί and λ2 = N/r^and two negative

ones. The unstable manifold for (A4) is the plane

p = λx U, q = ^21 ft + ^

λί-\-λ2

Its trajectories, projected on the (ΰ, v) plane, are the solutions of

A - ^ = y + μ ^ with y= , «" and μ=-φ-
p du ' ^ u ' 1̂(̂ 1 + ̂ 2) λi

and can therefore easily be investigated. For ε>0, they cross transversally the

line segment

7C: ΰ = ε( l-s ) , v = - aεs(0^s ^ 1),

provided that a>y. Therefore s is a parameter for those trajectories entering the

quarter-plane {M^O, V ̂ 0 } which cross lε; the rest cross the w-axis between 0 and

ε, and can be parametrized by the point at which they do so.

Because of this transversality, if we define the similar segment in the (u, v)

plane:

lε: u = ε(l -s) , v - 1 = - aεs (0 ^ s g 1)

for small enough ε, then 5 can be used to parameterize the trajectories on M whose

projections cross lε from left to right or top to bottom. We denote these trajec-

tories by Xs(x) = (us(x), ps(x), vs(x)9 q£x))9 and their projections by Us(x). The

latter are pictured in a neighborhood of A in Figure 6.

We are concerned with elucidating conditions under which, for some s, Xs

is a connection from A to B. We shall denote by Q the square Q = [0, l ] x

[0, 1] in the (u, v) plane.

We shall need to account for sign changes of p and q along Xs:
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(0,1) (e, 1)

(0, 1-αε)

(0,1)

(0, l-aε)

Figure 6. Projection of Trajectories of (A3) onto (u, ι>)-plane.

DEFINITION. The point U is a turning point for Xs if it lies on the trajectory
Us, and if ps or qs vanishes there. (If both ps and qs vanish at that point, it is
counted twice in the following proposition.)

PROPOSITION 2. // Us has two or more turning points before leaving Q,
then the first two are well defined and isolated from the rest. Immediately after
the second, ps<0 and gs>0.

PROOF. If ps(xt) = 0 for some xt, it cannot be true that ps(x1) = 0, for other-
wise Φ J Ξ U / X J ) , P(X) = 0 would be a solution of the first two equations in (A3),
and by uniqueness of the initial value problem for that subsystem (v(x) being
considered known), would equal the first two components of Xs(x). This is
impossible because our construction does not allow u to be constant. Therefore,
p or q (or both) changes sign at each turning point.

Each fixed trajectory Xs has p>0, q<0 near to (0, 1). Suppose p changes
sign at the first turning point, and q does not. Since p=—uf<0 there, that
point must lie where / > 0 , i.e. below the line/=0. Since q>0, the trajectory
stays below at least until the second turning point. Therefore p cannot change
sign at the second point, since p would have the wrong sign, and it must be q
that changes. The other possible cases are analyzed in the same way. In
particular, although the first two turning points may coincide, the first three may
not. This completes the proof.

PROPOSITION 3. // Us does not exit Q and does not have more than one
turning point, then it has none, and Xs is a connection to B.

PROOF. There being at most one turning point, us(x) and vs(x) are eventually
monotone, so Xs(x) must approach a rest point as x->oo. There are four rest
points A, B, O = (0, 0, 0, 0) and E = (ύ, 0, ϋ, 0) where (ύ, ϋ) is the intersection
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point of/=0 = O. The proof consists in eliminating all except B. A is excluded
because it would require two turning points. We show why E is also excluded:
the argument for O is similar. If Us-*(ύ, ϋ) as x->oo, the approach must be
monotone. It cannot be from the left and above/=0, because then p>0 and
p=— uf>0, contradicting the requirement that p-»0. Similarly it can not
approach from above, but remaining below g = 0. This excludes all approaches
from above left. Approaches from below left are impossible because on the
approach, we would have q >0. Since only one sign change was allowed, it must
have been q, and the turning point must have been below / = 0 and g = 0. But
that is impossible because q would have the wrong sign there. The other directions
of approach may be eliminated for similar reasons. This completes the proof.

DEFINITION : J / 0 c= jtf is the class of functions (/, g) such that for some
s e (0, 1), Us has two or more turning points before leaving Q.

PROPOSITION 4. Suppose (/, q)^s/0, and there is no monotone connection,
A to B. Then every Us exits Q transυersally.

PROOF. By Proposition 3, Us must exit Q before its second turning point (if
it has one). If it exits through the interior of the bottom of Q, then q^O just
before and after exit; if ^ = 0 at exit, then q=Q there, and the last two equations
of (A3) would attain a rest point at exit, which is impossible. Therefore q<0.
Similarly exit through the interior of the right side can not be achieved unless
p>0 there. The other cases are handled in the same way.

PROPOSITION 5. s/0 is an open set in the space of parameters r{ and a^

0,7 = 1,2).

PROOF. Consider a trajectory Xs with two turning points. The proof of
Proposition 4 also shows that sign change of ps can not occur on the lateral sides
of Q, nor those of qs on the top or bottom. If ps changes sign before qs9 it must
therefore do so in the interior of Q, and then the second turning point must be in
the interior or on the left side. The latter is excluded because qs= —vsg<0 there.
A similar argument holds if the order is reversed. Therefore, both turning points
occur in the interior. Now it is easy to see that the trajectory Xs with s fixed,
depends continuously on the parameters of the equation. It therefore continues
to have two turning points before exiting Q when the parameters are changed by
a small amount.

THEOREM Al. Let the family (/, q)rejtf depend continuously on the real
parameter r. Assume {f,g)res/0 for r = 0, but not for all positive r. Let
r* = sup{r: (/, g)res/0for O^r^r} . Then A is connected to B for r = r*.
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PROOF. Our trajectories now depend on two parameters, that is, Usr. Let
{rn} be a sequence with rn ΐ r*9 and let sn be such that USntrn has two turning
points before leaving β. By possibly taking a subsequence, we may assume
that sn^s* as «->oo. Now s* e (0, 1), because it is easily seen that any trajectory
Usr with 5 in a neighborhood of 0 or of 1 does not have two turning points before
leaving β. Consider the trajectory Xs*ίF*. By Propositions, (/, g)r*^s/0,
hence by Proposition 4, either there exists a connection for r = r*, or every trajec-
tory Usr* leaves β transversally, before experiencing two turning points. The
proof of the theorem consists in excluding the second case. That case would
imply, in particular, that Us*tr* exits transversally, and that while Us*tr*(x) e β,
either p or q remains of one sign and is bounded away from zero near the exit
point. By continuity of trajectories with respect to parameters, Xs*yr* can be ap-
proximated by portions of the trajectories XSn,rn f°r large n. Therefore for such
n, the USnyTn also exit transversally before experiencing a second turning point.
This contradicts their construction and finishes the proof.

COROLLARY TO PROPOSITION 4. //(/, g)ξ jtf0, then there exists a monotone
trajectory which attains or approaches (1, 0). //, in addition, no connection
exists, then any given point on the bottom or right side of Q is attained by some
trajectory Us.

PROOF: If there exists a monotone connection, we are done. If not, Pro-
position 4 shows that every Us exits transversally. For small s, the exit point is
on the top of β. For 5 = 1 the trajectory lines on the v axis and the exit point is
the origin. By transversality, a standard argument shows that the exit point
depends continuously on s. Therefore the range of exit points must include
every point between those for 5 near 0 and s near 1, proceeding either clockwise
or counter. But (0, 1) is not an exit point (it would require two turning points),
so we proceed clockwise, and cover all of the sides indicated.

For the following proposition, we divide β into four regions

I = {/< o < g} n β, π = {/> o, g > 0} n ρ,

ΠI = {g < 0 </} n Q, IV = {/< 0, g < 0} n β.

For a monotone trajectory Us from (0, 1) to (1, 0), we denote

r = {us(χ)} n Q,

Jlf = \\ uf(u> v)du >JIg= I \ ^ ( M ' v)dv

and similarly for J π / , etc.

PROPOSITION 6. Let there exist a monotone trajectory Us approaching or



A 3-component system of competition and diffusion 205

attaining (1, 0). Then the following estimates hold, where the symbols c and C

denote positive constants depending only on lower and upper bounds for the

constants ri9 ai} (ΐ, 7 = 1, 2), and a, where we define a = the length of dJR Π {v — 0}.

They do not represent the same constants in each instance. Here b is the dia-

meter of the region I.

(a) Jlf + JϊgύCb\

(b) JWg^ cJNf - Cb;

(c) the inequality Jmf + JNf = s <c implies Jmg + Jjyg > c and JUg ^

(d) Jif -f- Jjyf ^ ^Uf ~^~ *MH/ >
(Q) J _I_ J > J 4- J

PROOF: (a) follows immediately from the fact that the length of Γ()I is

bounded by 2b.

(b) In the limiting case / = φ, we have vg-+cuf in IV, from which the result

follows in that case with C = 0. When IΦ φ, this inequality is violated only near

the intersection δl Π dffl> which has length ^ b.

(c) The following sketched argument can easily be quantified. The inter-

gral \ \uf\du = Jmf + JWf can be made small only by requiring that
JΓΠ(IΠuIV)

Γ n (ΠI UIV) lie mostly in some small enough neighborhood of {/=0}, the size of

the neighborhood depending on a lower bound for a. But lying in this neigh-

borhood forces \i?0dt? to be larger than some minimum amount, since \υg\ is

not also small in that neighborhood. It, together with the monotoncity of Γ,

also forces Γ n Π to lie near d I n dΠ, hence the final estimate in (c).

(d) Multiply the second equation of (A3) by p and integrate from — oo

until (1, 0) is attained. We find that the value of p at (1, 0) satisfies

1 _ 2 _

The integral appearing here is equal to - J I / - J I V / + J π / + J ] i I / , hence (d).

(e) is proved in the same manner.

For purpose of the following theorem, we remove the restriction r2la22 =
rilau = l Proposition 6 is clearly valid without it.

THEOREM A2. Let the coefficients r f>0 and α ι 7>0 (i, j = l, 2) depend con-

tinuously on a real parameter ξ for ξ in some interval Λ. Assume that for all

ξeΛ

a12
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Assume that for some ξeΛ, r2/r1^a22/aί2, and for another value,
a2ilaiι Then for some ξeΛ, there exists a solution of (Al), (A2).

PROOF. For values of ξ such that r2/rί^a2ίlalί9 we have that (/,
but ĉQ̂ o To see the latter, observe from the proof of Proposition 2 that if a
trajectory has two turning points, they must lie in the region Π where / > 0 and
g <0. But the assumed inequalities imply that region is empty.

On the other hand, by continuous dependence on ξ, there are values of ζ for
which a22/a12<r2lr1<a2ί/aίί and r2/rί is arbitrarily close to a22/a21. When
it is close, the size of / is small, the parameter a, remaining bounded away from
zero. For sufficiently small b, we show (/, g) e e s/. This, together with Theorem
Al will establish the desired result. It suffices to show there exists no monotone
trajectory attaining or approaching (r^a^, 0). Suppose there were. A straight-
forward calculation shows that Γ must be concave upward in IV and downward
in Π It follows from this and the fact that Γ must reach (rί/alί, 0) that either
Γ Π Π or Γ n IV must be empty. Suppose it is the former. For some <5>0, let
Λo be the set of ξ for which a22laί2<r2/rί<a22laί2 + δ. In the following, the
constants c and C are uniformly bounded from below and above for ξ e Λo, and
do not necessarily denote the same constant, even within a single context. From
(a) in Proposition 6, we have Jif + J\g^Cb, and from (e), Cb^J ig*zJmg + JWg.
Hence if b is small enough, the inequality in (c) regarding Jmg + Jwg *s violated,
hence Jmf +Jjyf}£c. From this and the fact (d) that Jlf +Jjyf ^Jmf> w e have

^.Jmf + JTVf}Zc, so JWf^-y(c — Cb). The same type of inequality

also holds (b) for JWg: Jτvg^^Ac — Cb)^c2/4 (for b small enough). From (e),

this implies Jlg^c2/4, which for small b contradicts the fact that Jlg^Cb.
The other case is when Γ njy = φ. Again, we have Jίf ^Cb. From (d),

we obtain Cb>Jϊf ^ / π / = ^π/ + ̂ iv/> s o t ' i e hypothesis of (c) is fulfilled for small
b. Hence

But this contradicts (e), whose left side is bounded by Cb, and right side (by (c)) is
bounded from below. Therefore, no such Γ can exist. This completes the
proof.
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