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§0. Introduction

Let T be a nonsingular transformation on the interval [0, 1]. Many authors
(cf. [2], [4], [5], [71, [12], [13], [14], [22], [25]) have investigated the following
problem: under what conditions on T and f does the sequence of random variables
{f(T*x): k=0, 1,...} satisfy a central limit theorem (c.l.t.)? Recently, J.
Rousseau-Egele ([22]) obtained a c. 1. t. for a class of transformations T and its
rate of convergence, by estimating the asymptotic behavior of the characteristic
function with the help of the Perron-Frobenius operator corresponding to T.

Generalizing his method, we can get central limit theorems of mixed type for
a certain class of transformations, which are stated in §1. That is, under suitable
assumptions on T, f and v, the distribution function v{3> 2z} f(T*x)/nt/2<z} is
asymptotically a mixed normal distribution function. Central limit theorems for
B-transformations, a-continued fraction transformations, Wilkinson’s piecewise
linear transformations and unimodal linear transformations are given as corol-
laries to our theorems.

In §1 we intrdouce the notations and the assumption (A) under which our
results are obtained. Then we state our theorems. We should remark that the
rate of convergence given in (1.9), (1.12) and (1.14) is O(1/n'/2) and it is best
possible for c. 1. t.

In §2 it is shown that the transformations, treated in the articles [2], [4], [5],
[71, [12], [13], [14], [22] and [25], satisfy the condition (A). Therefore, the
results in the above articles are given as corollaries to our Theorems 3 and 4.
Moreover the unimodal linear transformations are discussed as the concrete
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examples which do not satisfy the ordinary c. 1. t. but our c. 1. t. of mixed type.

In §3 we shall prove that under the assumption (A), for some my>0, T™ has
a finite number of weakly mixing invariant probability measures and the other
invariant probability measures can be represented as convex combinations of
them. And some spectral properties of Perron-Frobenius operators, which are
used in the proofs of our results, are also studied.

In §4 we shall investigate some perturbed operators of Perron-Frobenius
operators and show that the chraracteristic function of X" 7z} f(T*x) can be written

by iterations of them.
In §5 the theorems in §1 are proved with the help of Esseen’s inequality and

the preparations in §3 and §4.

In §6 a concrete sufficient condition to ensure the positivity of the limiting
variance is given by a method similar to that in J. Rousseau-Egele’s article.

The author wishes to express his gratitude to Professors H. Totoki and I.
Kubo for their frequent, stimulating and helpful discussions.

§1. Central limit theorem of mixed type

We denote by m the Lebesgue measure on the interval [0, 1] and by (L!(m),
Il - II,.) the Banach space of Lebesgue integrable functions. Let T be a nonsingular
transformation from [0, 1] into itself, namely m(4)=0 implies m(T-1A4)=0.
Let us write T" for the n-th iterate of T.

We shall begin by defining the Perron-Frobenius operator @: L'(m)—
L(m) corresponding to T by

[ garam = { rog(rx)am

for all g € L*(m), where L*(m) denotes the Banach space of m-essentially bounded
functions. It is well known that the operator & is linear, positive and has the
following properties:

(1.1) @ preserves integrals | ®fdm= | fdm, fe L'(m);

(1.2) |2f] < @If] m-a.e., feL'(m);

1.3) Nfllw < 1S llms

(1.4) o" = &;. (Pr~ stands for the Perron-Frobenius operator cor-
responding to T") ;

(1.5) of =&f, feL'(m);

(1.6) @((g°T)f) = g@(f), geL (m), feL'(m);

(1.7) of = fiff the measure du = fdm is invariant under T, that is W(T~1A)
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= u(A) for each measurable A.

For f: [0, 1]— C, we denote the total variation of f by var(f). Let V be
the set of functions fe L!(m) which have versions f with var(f)<ow. Vis a
subspace of L1(m), but not closed. Put

1Ay = 11w + o(f)

for fe V, where v(f)=inf {var (f): fis a version of f}.
Then we can easily prove the following

LemMma 1.1 ([4], [22]). (¥, |- lly) is a Banach space and

Ifglly < 20 fllvligly
forfeVand geV.

Now we assume that T satisfies the following condition:

(A) There exist a positive integer ny and real numbers 0<a<1, 0<f<o0
such that

W@ f) < a(f) + BllfIm
forall feV.

Note that transformations of various types satisfy this condition, as is well
known (cf. §2).

Under this assumption we can get the following proposition, which seems to
be essentially known already. But we shall prove it in §3 for completeness.

PROPOSITION 1.2. There exist positive integers mo,, M and nonnegative
functions g4, g,,..., gu, belonging to V, such that {g;>0}n{g;>0}=¢ (i#)),
du;=g;dm (j=1, 2,..., M) are invariant probability measures under T™ and
all other Tm™o-invariant m-absolutely continuous probabilities are convex
combinations of u;’s. Moreover (T™, u;) (j=1, 2,..., M) are weakly mixing.

In the sequel we shall use the following notations. For a function f we denote
S(f)=Xp=8f(T*x) and b;=pu,(f)=] fdy; if it has the meaning for each j=1,

2,...,M. Since f and b;=pu;(f) appear at the same time, there will be no con-
fusion.

LeEmMMA 1.3. Under the condition (A) it holds that for any feV the limit

lim o, {(Zteo S(T40) = by)/n¥/22dn; = 3

exists for each j=1, 2,..., M.
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This lemma will be proved in §5. We define
F(b, 6%; y) = (1/0(2n)"/?) Sy exp {—(x—b)?*/26%}dx

for 62>0 and
1 (y>d
F(b,0; y) =
0 r<b.

Using these notations we give our results. Their proofs are deferred to §5.

THEOREM 1 (Central limit theorem of mixed type). Let the condition (A)
be satisfied and v an m-absolutely continuous probability measure with
dv/dmeV. For a function f, suppose that S, (f) belongs to V. If ¢2#0 for
all 0<j<M, then

(1.8) sup, | V{S,(f)/n'? < y} — TK, a;F(n'/2 b, 03; y)| <C/n'*

for some real numbers a, >0, a,>0,...,a,, >0 (XM, a,=1)and C>0. More-
over, if v is T-invariant, we can get

1.9) sup, | v{S,(f)/n'/? < y} — T}, a;F(n'2 by, 0%; y)| < Cn'/2.
If we put a further assumption on T, we can get a simpler statement:

THEOREM 2. Assume that the conditions on T and v in Theorem 1 are
satisfied. If {I;: j=1,2,..., N} is a partition of [0, 1] into disjoint intervals,
i.e. [0, 1]=\U-,I;, and T|I; is monotonic, then for all fe V with 62#0 (all j)
the conclusions of Theorem 1 remain valid.

As corollaries to Theorem 1, ordinary central limit theorems for 1-
dimensional transformations are obtained.

THEOREM 3. If T satisfies the condition (A) and has a unique m-absolutely
continuous invariant probability measure p, and if (T, p) is weakly mixing,
then for any probability measure v with dv/[dmeV and any feV there exist
62>0 and b such that

(1.10) lim,, , v{S,(f—b)/n'/2 < y} = F(0, o%; y)
at any continuity point of F. In case 62#0,
(1.11) sup, | v{S,(f—b)/n'/? < y} — F(0, 0%; y)| < C[n'/*

and
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(1.12) sup, | u{S,(f—b)/n'/? < y} — F(0, 02; y)| < C[n'/2
for some C>0.

THEOREM 4. If T satisfies the condition (A) and p is an m-absolutly con-
tinuous T-invariant probability measure and if (T, u) is weakly mixing, then for
any feV there exists 62>0 such that

(1.13) lim, , o, u{S,(f—b)/n'/? < y} = F(0, 62; y)

at any continuity point of F, where b=[fdu. In case 62#0,
(1.14) sup, | p{S,(f—b)/n'/? < y} — F(0, a%; y)| < C/n'/?
for some C>0.
REMARK. The results obtained in [2], [5]1, [7], [12], [13], [14], [22] and

[25] follow from (1.10) of Theorem 3, and the central limit theorem in [4] can be
given as a corollary to (1.13) of Theorem 4.

§2. Examples

In this section we describe some examples which satisfy the condition (A).

(D Let {I;:j=1,2,...,N} be a finite partition of [0, 1] into intervals.
Suppose that T satisfies the following:

(2.1) T|I;is monotonic and can be extended to a C*-function on the closure
I; for all j=1,2,...,N.

(2.2) There exists a positive integer n, such that

inf, | d(T™)/dx| > 1.

Then the condition (A) in §1 is satisfied. See, for example, [15]. Various
transformations have these properties.

B-transformation: Put Tx=pfx—[fx] for 0<x<1, where f>1 and [x]
denotes the integral part of x. This mapping T clearly has the above properties.
It is already known that T has a unique m-absolutely continuous invariant measure
4 and (T, p) has weak Bernoulli property ([8]). Hence, this ensures the con-
clusions of Theorem 3, which generalize the central limit theorem obtained in [7].

Unimodal linear transformation: Let us define

ax + (a+b—ab)lb  (0< x <1 — (1/b))
— b(x—1) A=) <x<1),

Tx =
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where a>0 and b>1. In [9] and [10], Sh. Ito, S. Tanaka and H. Nakada
investigated in detail how the behavior of T depends on parameter values (a, b).
The mapping in question does not always have the property (2.2). There exists
the so-called window case, in which (2.2) is not satisfied. In this case there exists
a unique periodic orbit and all points except the fixed points approach this orbit.
Except the window case, T has a unique m-absolutely continuous invariant
measure u but (7T, u) is not always weakly mixing. It is shown in [10] that the
result in Proposition 1.2 is valid for some integer mo=M. For example, if
a=0.6 and b=3, then it is shown that my=M=3. Let (a, b)=(0.6, 3), f(x)=x
and v=m. The graph of the 11736 sample points of S,,o(f) is shown in Fig. 1
(due to I. Kubo).

5 T AT i .

Fig. 1

Wilkinson’s piecewise linear transformation: Wilkinson ([24]) studied
the following transformations. For 0=ag,<a;<--<ay=1, ;>1,0<a;<1 and
Blaj—a;_;)+a;<1(j=1,2,..., N), define

Tx=ﬂj(x—aj_1)+aj, aj_1£x<aj, ]=1, 2,...,N.

He proved that these transformations satisfy the weak Bernoulli condition under
an additional assumption. Since f;>1, we get (2.1) and (2.2). Hence Theroem
2 in §1 can be applied.

(ID) Let {I;: j=1,2,...} be a countgble partition of [0, 1] into intervals.
Suppose that T satisfies the following (2.3), (2.4) and (2.5):

(2.3) T|I; is monotonic and can be extended to a C*-function on I; for all
j=12,....

(2.4) There exists a positive integer ny such that
inf, | d(T™)/dx| > 1.

(2.5) The collection {T(I;): j=1,2,...} contains only a finite number of
intervals.

Then it was proved by J. Rousseau-Egele in [22] that T satisfies the condition
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(A). Continued-fraction type transfomations have these properties (2.3), (2.4)
and (2.5).

a-continued fraction transformation: In [19], [20] and [21], H. Nakada,
Sh. Ito and S. Tanaka have defined an a-continued fraction transformation as
follows. For 1/2<a<1, define T: [a—1, a]->[a—1, a] by

[1/x] = [I1/x] + A1—e)]  (x #0)
Tx =
0 (x =0).

Clearly, T is the classical continued fraction transformation if «a=1. They have
proved that T has a unique m-absolutely continuous invariant measure p and
(T, p) is weakly mixing. We can easily check that (2.3), (2.4) and (2.5) are valid
for T. Hence, Theorem 3 gives us a central limit theorem and its rate of con-
vergence for a-continued fraction transformations.

(IIT) A. Lasota and J. A. Yorke treated another type of transformations,
piecewise convex mappings ([16]). Let 0=a,<a,<---<ay=1. Suppose that
(2.6) T|[a;-,, a;) is continuous and convex for j=1, 2...., N,
27 T(@j-,)=0and T'(aj_,) >0forj=1,2,.,N,
and

(2.8 T'(0)> 1.

Then the condition (A) is satisfied (cf. [11]). Using the results in [11] and the
method of [7], M. Jablonski and J. Malczak ([12]) obtained a central limit
theorem, which is now given as a corollary to our Theorem 3.

§3. Perron-Frobenius operators and invariant measures

We shall show the outline of the proof of Proposition 1.2 and study some
properties of Perron-Frobenius operators, which will be used in the following
sections.

The ergodic theorem of C. Ionescu-Tulcea and G. Marinescu, given in [6],
plays an essential role in what follows.

THEOREM 5 ([6]). Let (¥, |- ll5) and (£, || &) be Banach spaces with
¥ dense in &, and T : £~ be a bounded linear map. Suppose further:

G If fiey (n=1,2,.), fe#, lim,,, |If,—fle=0 and |fl><C
for all n, then fe ¥ and | f|, <C.
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(3.2) sup{lT"flle:fe?, Ifle<l,n >0} < co.
(3.3) There are a nonnegative integer n, and real numbers 0<a<1 and
0<p< oo such that
7 flly <alflly + Blflle
for all fevy .

(3.4) If B is a bounded subset of (¥, ||-|l»), then T ™B is relatively
compact in (&, | - | &)

Then we get the following:

(3.5) T : %> has only a finite number of eigenvalues Ay, 2,,..., 4, of
modulus 1.

(3.6) Set 6(A)={feL:Tf=2A;f}for1<j<r. Then &(A;)c¥ and
dim &(4;) < oo.

(3.7) The operator I can be represented as

where 2 is the projection onto &(%)), | 2| #<1, and ¥ is a linear operator on
& with sup {|¥"||¢: n>1}<co. Furthermore 2;2,=0 (i#j) and 2;¥=0
(all j).

(3.8) Y(¥)<v¥ and, considered as a linear operator on (¥, ||-|s), ¥
satisfies |¥"||,- <Hq" (n>1) for some constants H and q with H>0and 0<g<1.

Applying Theorem 5, we get the following properties of the Perron-Frobenius
operator @ corresponding to (T, m).

LeMMA 3.1. Under the assumption (A) we have the following:
(3.9) @: L'(m)—>L'(m) has only a finite number of eigenvalues Ay, A,,..., A,
of modulus 1.

(3.10) Set E(A)={feL'(m): &f=4;f} for 1<j<p. Then E(A)<cV
and dim E(4;) < co.

(3.11) The operator ® can be represented as
Or= 3P, MP;+¥" (nx1)

where P; is the projection onto E(4;), |P;|,.<1, and ¥ is a linear operator on
LY(m) with sup {|¥"||,: n>1}<oo. Furthermore P,P;=0 (i#j) and P;¥=
YP;=0 (all j).

(3.12) ¥Y(V)<V and, considered as a linear operator on (V, | -|y), ¥
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satisfies |¥"|y, <Hq" (n>1) for some constants H>0 and 0<qg<1.

(3.13) A,=1 is an eigenvalue of ®; and P, is a positive operator and
| Pyfdm=(fdm for all fe L\(m).

PROOF. Let us put (¢, |- |5)=(¥, | -Iy), (&, I -I£)=(L(m), | -|I) and
J=®. From Lemma5 in [4], it follows that for every C>0 the set
E={feL'(m): || flly<C} is compact in L!(m). (3.1) follows immediately from
this. (3.2), (3.3) and (3.4) follow from this and properties (1.1), (1.2) and (1.3)
and the assumption (A). Hence we get (3.9), (3.10), (3.11) and (3.12) from
Theorem 5. (3.13) can be obtained by the same method as in the proof
of Theorem 1 in [15].

We denote N=dim E(1). The following lemma is a direct modification of
a result in [17], so we shall omit its proof.

LeMMA 3.2. There exists a base {g,, g,,..., gy} of E(1) such that g;eV,
g;>0, [g;dm=1 (all j) and {g;>0} n {g;>0} =g (i# j).

Let u; be a probability measure defined by du;=g;dm, which is T-invariant.
Let (L'(u;), | - || o,) be the Banach space of u;-integrable functions and

(3.14) Vi={feLYu)): fg;eV}.
for j=1,2,..., N. We define a norm | -||; by
(3.15) Wf1; = N fg;llys feV;.

Then we have

LemMa 3.3. (Vj, |l II;) is a Banach space and V<V, for every j=1, 2,..., N.

Proor. Let {f,} be a Cauchy sequence in (V}, ||-|l;). Then {f,g;:
n=1, 2,...} is a Cauchy sequence in (V, ||-||y). Hence Lemma 1.1 shows that
there exists a function F € V with lim,_, , || f,g;—F|ly=0. The inequality | - ||, <
|- lly clearly holds, so there is a subsequence {f,g;} of {f,g;} which is m-a.e.
convergent to F. If we set f(x)=F(x)/g (x) for g (x)>0 and f(x)=0 for g ,(x)=0,
then we get fg;=F and lim,_, || f,—fll;=0. This shows that the normed space
(V;, Il - 1) is complete. The relation V< V; immediately follows from Lemma 1.1.
So we get the desired results.

For each j=1,2,..., N, we consider the Perron-Frobenius operator & it
LY(uj)— L'(u;) corresponding to (T, u;) defined by

(3.16) S h,fdu, = S FOOR(Tx)dp,
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for all he L*(u;), where L*(u;) stands for the set of all uj-essentially bounded
functions. The next lemma will provide a description of @; in terms of ®.

LemMma 3.4, For fe L'(u;) we have
,f=D(fg)lg;  (ua.e).

ProoF. It is easily seen that T-1{g #0} > {g#0} holds for g € E(1). There-
fore we have

[ hspau; = § 1GOOI = FCOMTRIg x)dm

= f(x)gj(x)h(Tx)IT-l(gj>0) dm

160 TN 20, (T
S ‘D(fgj)hl{gpm dm

= { @(fa,)1g phan;

for all he L*(u;), where I, stands for the indicator function of A. This implies
the desired result.

The operator @; has properties similar to the properties (1.1)-(1.7) of &.

LeMMA 3.5. The operator ®; is positive, bounded and linear, and has the
following properties:

(3.17) ®; preserves integrals Séjfduj = Sfd,uj, feL'(y));
(3.18) |®;f| < Pj|f| pjae, feL'(u);

(3.19) 11D;f Nl <S5

(3.20) P"=®; 1 (P; 1~ stands for the Perron-Frobenius operator cor-
responding to (T", u;));

(B21) &;f=9,f, feL'(w);
(322) 9,(g°T)f) = g@Lf), geL)), feL'(n);
(3.23) @,f=f(feLl(y)) if and only if f is p;-a.e. equal to a constant.

Proor. The results (3.17) - (3.22) are immediately derived from (1.1) - (1.6),
(3.16) and Lemma 3.4. If ®;f=f, then Lemma 3.4 implies that fg;e€ E(1). On
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the other hand, it is trivial that {fg;#0} ={g;#0}. Therefore Lemma 3.2 asserts
that f is equal to a constant u;-almost everywhere. Since the converse is trivial,
this completes the proof.

The relationship between the eigenvalues of modulus 1 of @ and those of
@; can be described as follows.

LEMMA 3.6. If ®f=Af for |A|=1 and a nonzero element f of L'(m), then
there exists an integer j (1< j< N) such that f|g; is a nonzero element of L(u;)
and @,(fg)=A(flg;)-

Proor. Combining the assumption @f=Af and the property (1.2), we can
get |fl=|Af|=|®f|<P|f|. Hence, the property (1.1) of & shows that |f|=
®|f| and |f| € E(1). On the other hand, since {g,, g,,..., gy} is a base of E(1),
[fl=2X,a;g; for some (a,, a,,..., ay)#(0, 0,...,0) and {f#0}<={3>%., g;>0}.
This allows us to define

JIE=19,x), if X),g;x)>0

, otherwise.

fe) =

Noticing (1.6) and that T~1{h#0} = {h#0} holds for h € E(1), we can get
lf27=1gj =Af=0f = ‘p(lefﬂ gj) = ?’=1¢(fg,-)
= Z'f=1 ¢(fgjlr-1(g,>0)) = Zf:l ¢(fgj)1(g,>0} .

Since {g;>0} n {g;>0} =g, we have lfgj=d5(fgj)l{gj>0,. This and Lemma 3.4
imply that ®,(f/g;)=A(f/g;), because f/g;=f (u;a.e). Since |fl=3N.;a,9;
for some (a;, a,,..., ay)#(0, 0,..., 0), the proof is completed.

It is clear that the converse statement of this lemma is also valid.

Lemma 3.7. If @;f=Af for |A|=1 and a nonzero element fe L'(u;), then
we have D(fg;)=Afg;.

Let us write U; for the isometric operator on L!(u;) defined by
(3.24) U x) = f(Tx).
Then we have the following

LeMMA 3.8. The following (i) and (ii) are equivalent.
(i) @;f=Affor |A|=1 and a nonzero element fe L'(u;).

(i) U;f=4f for a nonzero element fe L(y).

Proor. (This proof is due to T. Morita (private communication and [18]).)
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Let # be the Borel o-field on [0, 1] and #,=T""%. Then we have

(3.25) Uoif) = E,Lf12]  (urae)

for all fe L(u;), where E, [ f|#] denotes the conditional expectation of f relative
to the o-field # by the probability ;. In fact we have

(. . woxndu, = 330 Tr-nadny
"4
= {ux@3() 1) dn,
= [ @30) L,

= Sf-IT_,.Aduj = S Mfd#j

-
for all Ae #. Therefore, the property (i) implies
E,[f|#.] = U3®3(f) = UNA"f) = 2" U3(f)-
On the other hand, using Doob’s theorem, we can get
lim, ., E, [f|%,] = f*

for some f* € L'(u;) in the sense of L!(u;) and also u;-almost everywhere. Hence,
we get

f*oT = lim,. , UT*1d%(f)
= lim, ., A"UT*(f)
= 1lim,_, , A™1U1(f)
= I lirnn—'oo Euj[flgn+ l] = If*'

Moreover, we have

f1r=rr1au; = § 1wicn - vicrian,
= {3 - wusridy,

AR

for all n. Hence, Ilf—f*lduj=lim,,_.w [} |E,,[f|#,]—f*du;=0.  Thus the
statement (i) implies (ii).
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Conversely, if we assume U;f=1f for some fe L!(u;), then we have f=
f®,(1)=0,(f-T)=®,U,;f)=DAf)=19,(f), using the property (3.22). Because
U is an isometric operator, we can get |1|=1. The proof is therefore completed.

Now we can describe the outline of the proof of Proposition 1.2. It is well
known that the set A; of eigenvalues of U is a subgroup of S* and hence it consists
of roots of unity. Combining Lemmas 3.1, 3.7 and 3.8, we get that 4; is a finite
set and so A;={1, n;, n},..., 7771} (y77=1). Now using also Lemma 3.6, we
see that @™ has only the unique eigenvalue 1 of modulus 1 for mo=m m,---my.
Notice that T™ also satisfies the condition (A). For simplicity of notations,
we shall assume m,=1 and use the same notations as in the case of Tin what fol-
lows, where no danger of confusion exists. Then Lemma 3.1 can be modified
as follows:

(3.26) @ has only the unique eigenvalue 1 of modulus 1.
(3.27) Set E(1)={feL'(m): ®f=f}. Then E(1)cV and dim E(1)=M < 0.
(3.28) The operator " can be represented as

o" =P, + P n=1,

where P, is the projection onto E(1), |P,|,.<1, and ¥ is a linear operator on
LY(m) with sup {|¥"||,,: n>1} <0 and P,¥=¥P,=0.

(3.29) ¥Y(V)<V and, considered as a linear operator on (V, |-|y), ¥
satisfies | Y|y < Hq" (n>1) for some constants H>0 and 0<qg<1.

(3.30) [P fdm=| fdm and | Yfdm=0 for all fe L\(m); and f >0 implies
that P, f >0.

Now Lemma 3.2 applies and we have the following:

(3.31) There is a base {gy, g,,.... g} of E(1) such that g;>0, [g;dm=1
(all j) and {g;>0} n {g;>0} =g (i# ).

For each j (j=1, 2,..., M) we define y;, ®; and etc. in the same manner as
before. Applying Theorem 5 and the above results, we can get results analogous
to (3.26)-(3.30).

LemMMA 3.9. Under the above assumptions and notations we have the
following :

(3.32) @, has only the unique eigenvalue 1 of modulus 1.

(3.33) Set E{1)={feL'(u;): ®;f=f}. Then E{1)cV; and dimE;1)=1.

(3.34) The operator ®% can be represented as
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Qp=p+ ¥ (21

where p; is the projection onto E(1), pu(f)={fdu; and ¥; is a linear operator
on LY(u;) with sup {||¥}|lu,: n>1}<oco. Furthermore u;¥ ;=¥ ;ju;=0.

(3.35) WV, <V; and, considered as a linear operator on (V, |-|)),
¥, satisfies || !I’;!iljgﬁtj" (n>1) for some constants H>0 and 0<j<1.

(3.36) [¥;fdu; =0 forall feL'(w).

Proor. The property (3.32) follows from (3.26) and Lemmas 3.6 and 3.7.
If ®;h=h holds for some he L'(u;), Lemma 3.4 shows that &(hg;)=hg; (u-a.e.).
On the other hand, (3.31) implies that hg;=a;g; (m-a.e.) for some a;#0. Hence,
the property dim E;(1)=1 follows. In order to prove (3.33) -(3.35), we apply
Theorem 5. Remember the definitions (3.14) and (3.15). Iff,eV; (n=1, 2,...),
feL'(uy), lim,, . || f,—fll,;,=0 and || £,[;<C for all n then f,g;eV (n=1, 2,...),
fg;€L¥(m), lim,., | f,9;—f9,lm=0 and | f,g;ly<C. We can prove fg,eV
and | fg;|ly < C as in the proof of Lemma 3.1, and hence we have fe V; and|| f| ;< C.
This implies that the condition (3.1) of Theorem 5 is satisfied for "=V, and
& =LYu;). The condition (3.2) is an immediate consequence of (3.19). To
show (3.3) we first remark that g;®%(f)=®"(fg;) (m-a.e.) for all n. In fact
Lemma 3.4 implies that g;®%(f)=®"(fg;) (u;-a.e.). So it is sufficient to show
{®"(fg,)#0}={g;#0} (m-a.e.). Remember that g;e E(1) implies T~'{g;#0} >
{9;#0}. Then we have

S (b"(fgj)l(gﬁemhdm = Sf(x)gj(x)lr—n(gj%m (x)h(T"x)dm
= (g, om(Tr)dm

= { @r(tg pham

for all he L®(m). This shows that {®"(fg;)#0}<{g;#0} (m-a.e.) and hence
g,9%(f)=2"(fg;) (m-a.e.). Therefore we have
7NN = 11g,;27(NNv = 2™ (fg)ll¥
= u(®"(fg,)) + [P"(fg)lm
< au(fg;) + (B+ DI Sgllm
= alfg;ly + B+1-0)1fg;ln
=alfll; + B+1-D)| Sl

This implies the condition (3.3). Because (3.4) can be proved by the same method
as in Lemma 3.1, Theorem 5 shows that (3.33)-(3.35) are valid. Since (3.36)
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immediately follows from (3.34), the proof is completed.

The results (3.26) and (3.27) imply (3.31) with the help of Lemma 3.2. For
each j (j=1, 2,..., M), (3.32) and (3.33) show that ®; has the unique and simple
eigenvalue 1 of modulus 1. Hence, it follows from Lemma 3.8 that 1 is the unique
and simple eigenvalue of U; and that (T, u;) is weakly mixing for each 1< j<M.

§4. Perturbed operators

In this section we shall investigate the perturbed operators of & and &,
which play an essential role to prove our theorems in the next section. We can
follow very closely to the technique of Rousseau-Egele’s article [22]. Remember

that we have assumed my=1. First we define the perturbed operator &(0; f)
of @ by

4.1 ?(0; f)(g) = P(g - exp {iff })
for fe L(m), ge L'(m) and 6 e R. Then we can get the following

LEMMA 4.1. For all 6 e R and n>0 we have

®7(0; f)(9) = 2"(g -exp {i6S,(f)})  (m-a.e)

and hence

[ 20: 1)@m= { g-exp ti05,(3am.
ProOOF. Using the property (1.6), we have
®*(g - exp {i0S,(f)}) = H(P" (g - exp {if0f - T""'} - exp {i0S,_ ()}))
= P(exp {ibf } - "~ '(g - exp {i0S,-,(/)})
= D(0; /) (2"~ (g - exp {i0S,- ((/)})).
This implies the desired results.

Thus the behavior of the characteristic function { g - exp {i6S,(f)}dm can be
described by the iteration of @(6; f) and hence by the spectrum of &(0; f). We
can also get the following lemmas for &(0; f) as an operator on V.

LeMMA 4.2. If feV, then ®(0; f): V-V is a bounded linear operator and
analytic in 0.

PrROOF. We get that g -exp {iff} e V for fe V and g € V by means of Lemma
1.1. Noticing also that @: V-V is a bounded linear operator, we have
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1900 )@y < [Pllvllg-exp {ibf }Hv
< 2| ®llvllgllvllexp {ibf v

Hence &(0; f) is a bounded linear operator on V. Clearly, Lemma 1.1 implies
that X2, {(i6)"/n!}®(f"g) converges to ®(0; f)g in the sense of | -|,-norm.
Therefore, &(0; f) is analytic in 6.

Now we have the following key lemma.

LeMMA 4.3. For feV there exists d>0 such that if |0|<d, then we have
the following :

(i) ForallgeVand n>1
o™(0; f)g = D"(0; f)P1(0)g + ¥"(6)g

holds, where P(0) is the projection onto the M-dimensional subspace of V with
P,(0)=P, and &0, f)P,(0)V<=P,(0)V, and ¥(0) is a bounded linear operator
on V with :

lim sup,, , (| POl < 1+29)/3 < 1
and Y(O)P,(0)=P,(60)¥P(0)=0. Here q is the constant given in (3.29) for ¥.
(ii) P, (0) and ¥(0) are analytic in 0.
(iii) There exists C>0 such that
| @)gam| < cior @ +2a3171ly
forallgeVand n>1.

PrOOF. Let R(z) be the resolvent operator of #. Noticing (3.28), we have
for |z|>q and z#1

4.2) R(2) = (z2I—9)7 = {Py/z(z— 1)} + Ti2o (¥7[2"*1).
It is easy to see that
4.3) R(8; z) = R(2) 230 (9(6; f) — P)R(2))"

converges in the sense of | - ||,-norm for small |0] with ||®(0; f)— D], <|R()|y!;
and that R(0; z) is the resolvent operator of ®(0; f) and analytic in 6. Let I,
be the circle of center 1 and radius p, =(1—gq)/3; let I, be the one of center 0 and
radius p, =(1+24q)/3. Choose §>0such that 6<p, and g+J<p,. Let usdefine
M(@S)=sup {|R(2)|ly: |z| >q+3, |z—1|>6}. Then we can get 0<M(5)< co from
(4.2). 1If |0] is sufficiently small, then || ®(0; f)—®||, <1/M(J), and hence I, and
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I, are contained in the resolvent set of @(6; f). Define the projections

4.4) Pi(0) = (1)2m) | RO 2)dz

(4.5) 0(6) = (1/2ri) S:; R(; 2)dz.

Because R(0; z) is analytic in 6, P,(0) and Q(0) are also analytic. Therefore, for
any 0 with sufficiently small |6|, we have ||P,(8)— P, ||y <1 and hence dim P,(8)V=
dim P,V (cf. Chap. VII, [1]). We get for all n>1

7(0; f) = ™(6; )P1(0) + 2"(0; £)Q(6)
= @7(0; f)P,(6) + ¥"(6),

putting

(4.6) wn(0) = (12mi) g 2°R(6; 2)dz.

I
Since R(0; z) is analytic in 6, we have the expansion
R(8; z) = R(z) + 6-RM(0; 2)

for some bounded linear operator R(\)(0; z). Hence, from (4.6), we get

Pr(6)g =(1/27zi)g 2"R(z)gdz +(0/271:i)g 2RO 2)gdz

12 12

=Yg + (0/21ti)g z"RW)(0; z)gdz.

Iy

Therefore, the property (3.30) shows that

|[#r@gdm| < cior a+20/3)7141,
holds for
C = sup {|[RMV(0; z)||y/2n: ze1,, |0] < d}.
This completes the proof.

Now we define the perturbed operator ®;(0; f) of ®; for each j=1, 2,..., M
as follows:

4.7) D05 f) = Dg-exp {iff})

for fe Vand geV;. Then we have a lemma analogous to Lemma 4.2.
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LemMma 4.4. For feV, ®,0; f): V;-»V, is a bounded linear operator and
analytic in 6.

Proor. If we remark the fact that h-geV; holds for he V and g € V; and
that ||gll;=lg - g;lly, then the proof can be copied from the proof of Lemma 4.2.

Using Lemma 3.9 and remembering that @; has only the unique and simple
eigenvalue 1 of modulus 1, we get stronger results than those of Lemma 4.3.

LEMMA 4.5. For feV there exists d>0 such that for |0|<d we have the
following :

(i) ForallgeV;and n>1
D7(0; fg = ANOM (0)g + P5(0)g

holds, where 2(0) is the unique eigenvalue of @ (0; f) with the maximum absolute
value and |A(0)|>(2+§)/3; M (0) is the projection onto the 1-dimensional
eigenspace corresponding to A{(0) with M (0)=pu;; and ¥ 0) is a bounded linear
operator on V; with

lim sup,.., (|Z3O)I)/"<(1+29)/3 < 1
and ¥ (O)M (0)=M (0)¥ (6)=0.
(ii) A,0), M 0) and ¥ (0) are analytic in 6.

(iii) There exists C>0 such that

| wi©r9dn,

< CIOH{(1+29)/3}"lg1l;

forallgeV;and n>1.

Proor. If we use the properties (3.32) - (3.36) instead of (3.26)-(3.30), this
lemma can be proved similarly to the proof of Lemma 4.3. We have to prove
only that ®%6; f)M (6)=A%(0)M ;(0) for some A 0)e C and A,0) is analytic.
In fact dim M (6)V;=dim u;V;=1 holds, if |0] is sufficiently small. And hence
there is 1;(6) € C such that

dij(e;f)g = ‘pj(g;f)Mj(e)g = )-j(e)g
holds for all ge M(0)V;. Because ®0; f)lu,@yv,=450), A;(0) is analytic in
0 (cf. Chap. VIII, 8.5, [1]).
The relationship between &(0; f) and @ ,(0; f) can be described as follows.

LemMA 4.6. For each j=1,2,..., M, all n and 6 € R we have
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@(0; N)g; = 9,230 1 (m-a.e).

PrROOF. Lemma 3.4 applies and we have ®(h-g;)=g,;®;(h) (m-a.e.) for
heL'(u;). So we get

D7(0; f)(g,;) = 2"71(0; /)P(g; exp {iff })
= 0""1(8; f)(9,246; /)(1)
= @""%(0; /)P(g; exp {ibf }@,0; f) (1))
= 0" %(0; f)(g9,236; f)(1)

=g;970; /) (D).
From this lemma we can get the following

LEMMA 4.7. For any geV with ¢>0 and [gdm=1, there exist a;>0,
a,>0,...,a, >0 (XM, a;=1) for which we have

|| @mr2; 1) @)am — £, a,  @3m72; 1) Wiy | < Clem21- g1l

for some constant C>0.
ProoF. Lemma 4.3 applies and we have the expansion
Py(t/n''?) = P4(0) + tP1(0)/n'/? + o(t?/n)

and hence we get the inequality
|| @rtmrz; 1) @yam — § @xaimiiz; )Py @)

< (It/n'2 - | PY(O)ly + Clt/n'72|-{(1+29)/3}" + C|?n]) liglly .

On the other hand P,(0)g=P,g € E(1) can be represented as P,(0)g=23,a;9;
for some ay, a,,..., ay. Since g >0, we have P;(0)g >0 from (3.30). Therefore,
remarking (3.31), we get that a;>0 for all j. The assumption [ gdm=1 shows
that Y M, a;=1, because [g;dm=1 for all j=1,2,...,M. Thus Lemma 4.6
applies and we have

[ @xain; PO @)m = T3, 0, | @302 1) Wiy

The proof is therefore completed.
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§ 5. Proofs of theorems

In this section we shall prove our theorems using the previous preparations.
The ergodic theorem implies the following

LeMMA 5.1. The equality Aj(0)=i|fdu; holds for feV and each
j=12,., M.

PrOOF. We have for all n>1

| @3tin; £)(Dau; = { @7(ein; 1)(g pam

= {lexp {Citms.ndn;.
Lemma 4.5 applies and we get the equality
GO (@sms N Odus = 23 | M) (s + § 27 m) iy
and

|{ w3m Oy | < crm g1 +22)33

On the other hand, we have the expansion for |0| <d
(5.2) My0) = u; + 6M;(0) + (0%/2)M}(0) + 62M*¥(6),

where M;(0), M(0) and M}(0) are operators on V with lim,_q [[M¥(0)];=0.
Therefore we get

lim, , . SMj(t/n)(l)dyj -1
Analogously we have the expansion
(5.3 210) = 1 + 625(0) + (6%/2)27(0) + 624%(6),
where lim,_, o A¥(6)=0; and so we get

lim,_, , A%(t/n) = exp {tA;(0)}.

Since lim,, o, (1/n)S,(f)=[fdu; (u;-a.e.), we can derive for all te R

exp {12)(0)} = lim, ., { exp {(it/n)S,(N}dn; = expit | fau;} ;
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and hence we have the desired result A}(0)=i { fdu,.
In the sequel we shall denote 1 (@) =41,0) exp {—i0b;} with b;= j fay;.
LeMMA 5.2. For fe Vand each j=1, 2,..., M we have
20)=0
and

75(0) = —limy {(Sy(f=B,)n1/2)2dn;.

Proor. It is easy to see that 11’-(0)=0 follows from Lemma 5.1. Let us
remark that the equality

a2j0r2 ({ exp {(itn/2)S,(f= b}t ) ewo = — { (S.(/=bm*12d

holds for all n>1. From Lemmas 4.1, 4.5, and 4.6 we can derive
{lexp tCitm,07~ bydu; = Tt § Mgmir2) (),
+ exp { — ithn!/2} S Wi (t/nt/2) (1)dy;

Writing R(8; z) for the resolvent operator of ® (0; f) and I, for the circle in C
with center 0 and radius (1+24)/3, we have

wr(e/n1/2)(1) = (1/2ni) S} 2"R(t/n12; z) (1)dz

analogously to (4.6). Since R;(0; z) is also analytic in 6, we have the expansion
Rj(1/n/%; 2) = Ri(2) + (t/n"/)R§D(2) + (1]2n)RP(2) + (12[n)R}(t/n'/2; 2),

where Rj(z) stands for the resolvent operator of ®;, and R{’(z), R?(z) and
R%(0; z) are bounded linear operators on V; with

limg .o [|R¥(6; 2)II; = O.
Hence, by means of elementary computations, we can get
(0?/0t%) (exp {—itb;n'/2} S P3(t/n'2) (1)dp) le=o = O(n{(1+23)/3}").

With the help of the expansions (5.2) and the property 1j(0)=0, we obtain also
that
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lim, . o, (9%/013) (A(t/n/?) g M (¢/n/2)(D)dpy) li=0 = 47(0).

Therefore the limit of [ (S,(f—b;)/n'/?)2dy, exists and is equal to —15(0). The
proof is therefore completed.

Let us denote o2 = —1’;(0). Then we have the following estimation.

LemMA 5.3. If 63>0 for fe V, then there exists d>0 such that for all |t| <
dn'/?2 we have

|{ @scmr2: £)(an; — exp titbni2 - 232y

< exp { = 203/4} ({A)t* + Blf]}/n') + (Cltl/n*/)p"
for some constants A>0, B>0, C>0, and 0<p<1.

PrOOF. Let d be so small that for |#|<d Lemma 4.5 can apply. Then we
have

D(t/nt/2; £) (1) = AXt/n* )M (t/n'12) (1) + ¥2(t/n1/2)(1)
= exp {ith;n!/2}1(t/nV2)M (t/nV/2) (1) + P2(t/n1/2) (1)

for [t|<dn'/2. The property (iii) of Lemma 4.5 shows that
’Stp;(t/"”z)(l)dﬂj < (Clt|/n112)pn

holds for some C>0 and 0<p<1. Using Lemmas 4.5 and 5.2, we obtain the
expansion

I{(t/n112) = 1 — 126%/2n + 377 (0)/6n3/2 + 132%(t/n'/2),

where lim,, ,, 1¥(t/n1/2)=0. If we substitute t/n/2 for 0 in the expansion (5.2),
we get

M(t[n'12) = p; + (t/n'*)M}(0) + (/2n)M(0) + (2/n)M}(t[n'/?),
where lim,, , |[M¥(t/n'/2)| ;=0. Therefore, the inequality
[S ®1(t/n1/2; £) (Ddp; — exp {ithn1/? — 12632}

< 4,(1) + B,(1) + (Cltl/n*/?)p"

holds, where
A(0) = 1(t/n*12) — exp {—120%/2}|
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and
B,(1) = I43(t/n/2) {(t/n"/>)M(0) + (£2/2n)M(0) + (12/n)M}(t/n/2)} ;.
Since (1+z)"=exp {n(z+Log(1+z)—z} and Log(1+z)—z= —z2/2+0(z%) as
|z|—0, we obtain
T3(1/m112) = exp {— 1263/2} exp {C(n; 1)}

for |t|<dn'/2, where C(n; t)=t31’}’(0)/6n1/2+t3D(t/n1/2)/n1/2 with  supje <4
|D(B)| < oo. If we choose so small |d| that |C(n; f)| < t26?/4 holds for [t|<dn'/?,
then we get

|4,(01 < lexp {C(n; )} — 1] -exp {—t?03/2}
< |C(n; O] -exp {|C(n; D)} - exp { —1?03/2}
< (A]t]/n'/?) exp { — 20} /4}
for some A>0. Analogously, we have
IB.D] < (Bltl/n1/2)- | 13(t/n112)|
< (Blt|/n'/?)-exp {—120}/2} - exp {|C(n; D)}
< (BIt|/n'/?)-exp { — 1?0}/4}
for some B>0. The proof is therefore completed.

We can now prove our theorems.

Proor of THEOREM 1. If we regard T and f as T™ and S, (f) respectively,
it is enough for us to prove Theorem 1 in the case of my=1. Let T and v satisfy
the assumptions in Theorem 1, and f be a function of bounded variation. Esseen’s
inequality (cf. §39, [3]) shows that

(5.4)  supyer V{SA(f)n'2<y} — M a;F(b;n''2, 6%; y)| < K|U + (1/m)
x S[_’U /]t [ g exp {(it/n!/)S,(f)}dv — £, a;exp {ithn1/2 — 12632} | dt
forall U>0and n>1. From Lemmas 4.1 and 4.7 we obtain
(5.5 |{exp tGmtms,(n1ay - T3, 4, § @372 1) (Daw,|
< Clt[n'/2] - ||h]ly,

where h denotes the density function of v with respect to the Lebesgue measure m.
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If we put U=dn!/4 in (5.4) and combine Lemma 5.3 and the inequality (5.5),
we get the inequality

SuPyer [V{S,(f)/n'/? < y} — T, a;F(b;n'2, 63; )|
< Kfdn's + ) (" (Clhlyfn1?
+ T4, a;exp {~ 2034} (A2 + BliDJnt/2 + (Cltl/nt1pr)dr.

And hence the result (1.8) is obtained. If we assume further that v is T-invariant,
we get for some a, >0, a,>0,..., a, >0 (XX, a;=1)

flexp (Gt 25,03y = (@n(eints2; £) (m
= 310, | 0mt; 1) (g dm
= Tla; | O3/ 1) (D,

from Lemmas 4.1 and 4.6. Hence, putting U=dn'/2 in (5.4), we obtain the
result (1.9).

PrOOF OF THEOREM 2. If we assume the assumptions of Theorem 2, then
it is clear that (S, (f))<N™.v(f). Therefore, Theorem 2 is immediately
derived from Theorem 1.

PROOF OF THEOREM 3. The arguments in §3 shows that my=M =1 under the
assumptions of Theorem 3. Therefore, the results (1.11) and (1.12) are corollaries
to those of Theorem 1. In order to show (1.10), we first remark that

[ exp {5, (s~ bay
= exp{— itbnm}S ®"(t/n'/2; f) (h)dm
= exp {—ithnl/2} S &"(t/nl/2; f)(g,)dm + O(1/n1/2)
= exp {—itbn!/2}{ @1(t/n'12; ) (Ddp, + O/m1)

follows from Lemma 4.7, because u,=p is the unique T-invariant measure.
Substitute ¢t/n1/2 for 6 in the equalities (5.2) and (5.3). Then we can get

lim, .., { exp ((i/nt/2)8,(f b)) dv
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= tim, .., 23n'72) | M,(@fn'72) (D

+ lim, ., exp {—ibtn1/2) S‘I"l'(t/nl/z)(l)dul
= lim, ., ,, A(1/n'/?) = exp {—t?0}/2}
from Lemmas 4.5 and 5.2. This completes the proof.

PrOOF OF THEOREM 4. We define the Perron-Frobenius operator @,: L'(p)—
L1(u) corresponding to (T, u) by

[ hou(nau = { somT

similarly to (3.16), and define the perturbed operator @,(0; f) in the same manner
as in (4.7). Then it is very easy to check that the arguments in §4 and §5 remain
valid for &, and &,(0; f). Therefore, we get the results of Theorem 4 by the
same method as in the proof of Theorem 3.

§6. Remarks on limiting variances

In this section we treat the following problem: in which case are the variances
0% in our theorems strictly positive? It may be one of the most difficult problems
in the theory of central limit theorem for dependent variables. In [22]
J. Rousseau-Egele got a concrete sufficient condition to ensure the positivity of

o2.  We can follow his arguments also in our case.

LeMMA 6.1. For feVand each j=1, 2,..., M the limit
lim, ., | (5.7 bim2ydy, = 3
exists and
ot = | @~ @07,
holds, where g=(I—®;)"'(f—b,).

ProoF. The existence of the limit was proved in Lemma 5.2. From Lemma
3.9 and the definition (3.16), we have

|§ - A0 b

= |{=b)- @5~ bpay, |

= [(r=bp- wsr-b)d |
< H-2%1-b,I3
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for k>1. Therefore, the series
- (£ =) (T3 = by,
absolutely converges to
lim, ., | (S,(/=bpIm1/2ydp;
and hence we have

03 = lim, .., | (5.7~ bIn"/2dy,

S | (f=b)) DS b))y,

S (f=b)- o BFI(f—b))dp
g (f=b)- (g — (f~ b))y

- (-2 G+ @,00dn;,
remarking >, P¥=(I—®;)"!. The proof is therefore completed.
Using this lemma we can get the following
LEMMA 6.2. For feV, 62=0 if and only if the equation
(6.1) J&x)=b; + o(Tx) — o(x)  (4j-a.e.)
has a solution ¢ in L2(u;).

Proor. First of all we remark that &;: L%(u;)—L%*(u;) and hence g=
n=o PI(f—b;) e L3 (u;). We get
(9—-U;i®;9,9 — Ui®;g9)L2uy
= (9, Doy — (U;®;9, 9)L2(n)
— (9, U;®;9) L2up + (U;® 9, U;® jg) L2y
= (g, g)LZ(y,) - (‘pjg, ¢j9)L2(u,)~

If we assume 0%=0, then U;®;g=g follows from Lemma 6.1 and the above.
Putting ¢ =g —f+b;, we have
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Uip—eo=Uyg - U(f-b)—g+f-b;
= Ujg - Uj(1‘¢j)g -g+f- bj
=f—b

and so ¢ is a solution of (6.1). Conversely, let ¢ € L%(u;) be a solution of (6.1).
Then we easily see that

S, (f—bj)n'/? = {@(T"x) — @(x)}/n"/?

and hence that
[ sur—bpimzydu; <@im § o2y

This implies that 62=0.
Using this lemma we can get the following concrete result.

PROPOSITION 6.3. If A is a measurable set with 0<puf A)<1 and I (x)eV,
then we have 6%>0 for f=1,.

Proor. If we suppose ¢7=0, then we get from Lemma 6.2 that there is
@ € L*(u;) which satisfies the equation

I4(x) = pf4) + o(Tx) — 9(x)  (njae.).
Then we have
exp {2nipoT} = exp { —2miu;(A)} exp {2nip} (u;-a.e.)
and hence
exp {2nipoT™} = exp { —2mimou(A)} exp {2nip} (u;-ae).

Since (T™, u;) is weakly mixing, we have exp {2mip(x)} =1 (u-a.e.) and hence
@ is p;-a.e. integer-valued. However, this contradicts the fact that I,(x)=
u(A)+o(Tx)— @(x) is equal to O or 1. The proofis therefore completed.
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