
HIROSHIMA MATH. J.
16 (1986), 161-168

A central limit theorem of mixed type for a
class of 1-dimensional transformations

Hiroshi ISHITANI

(Received May 18, 1985)

Contents

§0. Introduction.
§1. Central limit theorem of mixed type.
§2. Examples.
§3. Perron-Frobenius operators and invariant measures.
§4. Perturbed operators.
§5. Proofs of theorems.
§6. Remarks on limiting variances.

§0. Introduction

Let Tbe a nonsingular transformation on the interval [0, 1], Many authors
(cf. [2], [4], [5], [7], [12], [13], [14], [22], [25]) have investigated the following
problem: under what conditions on T and /does the sequence of random variables
{f(Tkx): fc = 0, 1,...} satisfy a central limit theorem (c. 1. t.)? Recently, J.
Rousseau-Egele ([22]) obtained a c. 1.1. for a class of transformations T and its
rate of convergence, by estimating the asymptotic behavior of the characteristic
function with the help of the Perron-Frobenius operator corresponding to T.

Generalizing his method, we can get central limit theorems of mixed type for
a certain class of transformations, which are stated in §1. That is, under suitable
assumptions on T,/and v, the distribution function v{ΣZ=o/(T k : x)/n l / 2 < z} *s

asymptotically a mixed normal distribution function. Central limit theorems for
/^-transformations, α-continued fraction transformations, Wilkinson's piecewise
linear transformations and unimodal linear transformations are given as corol-
laries to our theorems.

In §1 we intrdouce the notations and the assumption (A) under which our
results are obtained. Then we state our theorems. We should remark that the
rate of convergence given in (1.9), (1.12) and (1.14) is O(l/n1/2) and it is best
possible for c. 1. t.

In §2 it is shown that the transformations, treated in the articles [2], [4], [5],
[7], [12], [13], [14], [22] and [25], satisfy the condition (A). Therefore, the
results in the above articles are given as corollaries to our Theorems 3 and 4.
Moreover the unimodal linear transformations are discussed as the concrete
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examples which do not satisfy the ordinary c. 1. t. but our c. 1. t. of mixed type.

In §3 we shall prove that under the assumption (A), for some m o > 0 , Tmo has

a finite number of weakly mixing invariant probability measures and the other

invariant probability measures can be represented as convex combinations of

them. And some spectral properties of Perron-Frobenius operators, which are

used in the proofs of our results, are also studied.

In §4 we shall investigate some perturbed operators of Perron-Frobenius

operators and show that the chraracteristic function of Σ Z = o / ( T f c χ ) c a n t>e written

by iterations of them.

In §5 the theorems in §1 are proved with the help of Esseen's inequality and

the preparations in §3 and §4.

In §6 a concrete sufficient condition to ensure the positivity of the limiting

variance is given by a method similar to that in J. Rousseau-Egele's article.

The author wishes to express his gratitude to Professors H. Totoki and I.

Kubo for their frequent, stimulating and helpful discussions.

§ 1. Central limit theorem of mixed type

We denote by m the Lebesgue measure on the interval [0, 1] and by {L\m),

|| || m) the Banach space of Lebesgue integrable functions. Let Tbe a nonsingular

transformation from [0, 1] into itself, namely m(A) = 0 implies m(T~M) = 0.

Let us write Tn for the n-th iterate of Γ.

We shall begin by defining the Perron-Frobenius operator Φ:

Lλ(m) corresponding to T by

for all g e U°(m), where U°(m) denotes the Banach space of m-essentially bounded

functions. It is well known that the operator Φ is linear, positive and has the

following properties:

(1.1) Φ preserves integrals J Φfdm=

(1.2) \Φf\<Φ\f\ m-a.e., feL\m);

(1.3) ||Φ/L<||/L;

(1.4) Φn = ΦTn {ΦTn stands for the Perron-Frobenius operator cor-

responding to Tn)

(1.5) Φf=Φf, feL\m);

(1.6) Φ((g°T)f) = gΦ(J), geLx(m), feLι(m);

(1.7) Φf = fiff the measure dμ = fdm is invariant under T, that is μ{T~ιA)
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= μ(A)for each measurable A.

F o r / : [0, 1]->C, we denote the total variation of/by var(/). Let V be
the set of functions feL\m) which have versions / with var(/)<oo. V is a
subspace of L\m), but not closed. Put

for/e V, where ι;(/) = inf {var(/):/is a version of/}.
Then we can easily prove the following

LEMMA 1.1 ([4], [22]). (F, || | |κ) is a Banach space and

\\fg\\v<2\\f\\v\\g\\v

forfeVandgeV.

Now we assume that T satisfies the following condition:

(A) There exist a positive integer n0 and real numbers 0<α<l , 0<β<oo
such that

v{Φ»°f) < ocv(f) + β\\f\\m

forallfeV.

Note that transformations of various types satisfy this condition, as is well
known (cf. §2).

Under this assumption we can get the following proposition, which seems to
be essentially known already. But we shall prove it in §3 for completeness.

PROPOSITION 1.2. There exist positive integers m0, M and nonnegative

functions gί9 g2,~ , 9M> belonging to V, such that {#*>()} n {0/>O} = 0 (iφj\

dμj = gjdm 0 = 1, 2,...,M) are invariant probability measures under Tmo and

all other Tmo-invariant m-absolutely continuous probabilities are convex

combinations of μ/s. Moreover (Tm o, μj) (7 = 1, 2,..., M) are weakly mixing.

In the sequel we shall use the following notations. For a function/we denote
Sn(f)=Σk=hf(Tkx) and bj = μj{f) = \fdμj if it has the meaning for each 7 = 1,
2,..., M. Since/ and bj = μj(f) appear at the same time, there will be no con-
fusion.

LEMMA 1.3. Under the condition (A) it holds that for any feVthe limit

l i π w \(Σl-of{T*x)-bjWψdμj = σj

exists for each 7 = 1, 2,..., M.



164 Hiroshi ISHITANI

This lemma will be proved in §5. We define

F(b, σ2;y) = (l/σ(2π) "*)[' exp { - (x - b)2l2σ2}dx
J-00

for σ2>0 and

(y>b)
F(b, 0; y) =

" 0

Using these notations we give our results. Their proofs are deferred to §5.

THEOREM 1 (Central limit theorem of mixed type). Let the condition (A)
be satisfied and v an m-absolutely continuous probability measure with
dv/dme V. For a function f, suppose that Smo(f) belongs to V. If σ]Φ0 for
all 0<j<M, then

(1.8) sup, \v{SJLMnU* <y}- Σ?-iajF(nV*bj9 σj; y)\ <C/n^

for some real numbers at>0, a2>0,..., aM>0(Σ^=ιCik=l) and C>0. More-
over, ifv is T-invarίant, we can get

(1.9) sup, I v{Sn(f)/nV* < y} - Σf=i */X"1/2 bj9 σj; y) \ < C\n"*.

If we put a further assumption on T, we can get a simpler statement:

THEOREM 2. Assume that the conditions on T and v in Theorem 1 are
satisfied. If {Ij'.j=l, 2,...,N} is a partition of [0, 1] into disjoint intervals,
i.e. [0, l] = W7=i//> and T\Ij is monotonic, then for all feV with σjφO (all j)
the conclusions of Theorem 1 remain valid.

As corollaries to Theorem 1, ordinary central limit theorems for 1-
dimensional transformations are obtained.

THEOREM 3. // T satisfies the condition (A) and has a unique m-absolutely
continuous invariant probability measure μ, and if (T, μ) is weakly mixing,
then for any probability measure v with dvjdm e V and any fe V there exist
σ 2 >0 and b such that

(1.10) l i n w v{SJJ- b)/n^ < y} = F(0, σ*; y)

at any continuity point of F. In case σ2Φ0,

(1.11) sup, I v{Sn(f- b)/nW < y} - F(0, σ2; y) \ < C/n^

and
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(1.12) sup, I μ{Sn{f- b)/n^ < y} - F(0, σ2; y) \ < C/n^

for some C>0.

THEOREM 4. // T satisfies the condition (A) and μ is an m-absolutly con-

tinuous T-invariant probability measure and if(T, μ) is weakly mixing, then for

any feV there exists σ 2 > 0 such that

(1.13) l i i r w μ{Sn(f-b)/n^ < y} = F(0, σ2; y)

at any continuity point of F, where b = $fdμ. In case σ 2 # 0 ,

(1.14) sup, I μ{Sn(f-b)ln^ < y} - F(0, σ2; y) \ <

for some C>0.

REMARK. The results obtained in [2], [5], [7], [12], [13], [14], [22] and

[25] follow from (1.10) of Theorem 3, and the central limit theorem in [4] can be

given as a corollary to (1.13) of Theorem 4.

§ 2. Examples

In this section we describe some examples which satisfy the condition (A).

(I) Let {Ij'.j=l, 2,..., N} be a finite partition of [0,1] into intervals.

Suppose that T satisfies the following:

(2.1) T\ Ij is monotonic and can be extended to a C2-function on the closure

(2.2) There exists a positive integer n0 such that

infx I d{Tn°)jdx\ > 1.

Then the condition (A) in §1 is satisfied. See, for example, [15]. Various

transformations have these properties.

^-transformation'. Put Tx = 0 x - [ 0 x ] for 0 < x < l , where β>l and [x]

denotes the integral part of x. This mapping T clearly has the above properties.

It is already known that Thas a unique m-absolutely continuous invariant measure

μ and (T, μ) has weak Bernoulli property ([8]). Hence, this ensures the con-

clusions of Theorem 3, which generalize the central limit theorem obtained in [7].

Unimodal linear transformation: Let us define

ί ax + (a + b-ab)/b (0 < x < 1 - (1/b))
Γx =

[ - b ( x - l ) ( l - ( l / b ) < x < l ) ,
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where a>0 and b>\. In [9] and [10], Sh. Ito, S. Tanaka and H. Nakada

investigated in detail how the behavior of T depends on parameter values (α, b).

The mapping in question does not always have the property (2.2). There exists

the so-called window case, in which (2.2) is not satisfied. In this case there exists

a unique periodic orbit and all points except the fixed points approach this orbit.

Except the window case, T has a unique m-absolutely continuous invariant

measure μ but (Γ, μ) is not always weakly mixing. It is shown in [10] that the

result in Proposition 1.2 is valid for some integer mo = M. For example, if

a = 0.6 and b = 3, then it is shown that mo = M = 3. Let (α, fc) = (0.6, 3),/(*) = *

and v = m. The graph of the 11736 sample points of 5 4 0 0 ( / ) is shown in Fig. 1

(due to I. Kubo).

Fig. 1

Wilkinson's piecewise linear transformation: Wilkinson ([24]) studied

the following transformations. For 0 = ao<aί<--<aN=l, βj>l,O<ocj<l and
βjiaj-aj.J + XjKl 0 = 1, 2,..., N), define

Tx αJ , j = 1, 2,..., N.

He proved that these transformations satisfy the weak Bernoulli condition under

an additional assumption. Since βj> 1, we get (2.1) and (2.2). Hence Theroem

2 in §1 can be applied.

(Π) Let {Ij : j = l9 2,...} be a countable partition of [0, 1] into intervals.

Suppose that T satisfies the following (2.3), (2.4) and (2.5):

(2.3) T\Ij is monotonίc and can be extended to a C2-function on Ijfor all
7 = 1,2,....

(2.4) There exists a positive integer n0 such that

mϊx\d(Tn°)jdx\ > 1.

(2.5) The collection {T(I3)\ j = l, 2,...} contains only a finite number of
intervals.

Then it was proved by J. Rousseau-Egele in [22] that T satisfies the condition
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(A). Continued-fraction type transfomations have these properties (2.3), (2.4)
and (2.5).

^-continued fraction transformation: In [19], [20] and [21], H. Nakada,
Sh. Ito and S. Tanaka have defined an α-continued fraction transformation as
follows. For l/2<α<l, define T: [ α - 1 , α]->[α-l, α] by

[ | / |
Tx = \

10 (x = 0).

Clearly, Tis the classical continued fraction transformation if α = l. They have
proved that T has a unique m-absolutely continuous invariant measure μ and
(Γ, μ) is weakly mixing. We can easily check that (2.3), (2.4) and (2.5) are valid
for T. Hence, Theorem 3 gives us a central limit theorem and its rate of con-
vergence for α-continued fraction transformations.

(Ill) A. Lasota and J. A. Yorke treated another type of transformations,
piecewise convex mappings ([16]). Let 0 = ao<aί<~-<aN = l. Suppose that

(2.6) T\ [tfy-i, cij) is continuous and convex for j = 1, 2...., N,

(2.7) Tiaj-d = 0 and T'ia,^) > Oforj = 1, 2,..., N,

and

(2.8) Γ'(0) > 1.

Then the condition (A) is satisfied (cf. [11]). Using the results in [11] and the
method of [7], M. Jablonski and J. Malczak ([12]) obtained a central limit
theorem, which is now given as a corollary to our Theorem 3.

§ 3. Perron-Frobenius operators and invariant measures

We shall show the outline of the proof of Proposition 1.2 and study some
properties of Perron-Frobenius operators, which will be used in the following
sections.

The ergodic theorem of C. Ionescu-Tulcea and G. Marinescu, given in [6],
plays an essential role in what follows.

THEOREM 5 ([6]). Let ( f , || | | r ) and («£?, || ||^) be Banach spaces with
V dense in «£f, and &': &-*<£ be a bounded linear map. Suppose further:

(3.1) If fner (n = l,2,...), fe&, l i m ^ \\fn-f\\* = 0 and \\fn\\^<C
for all n, thenfe'T and | |/ | |
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(3.2) sup{\\Γ*f\\*:fer, II/H^<1, n > 0} < oo.

(3.3) There are a nonnegative integer n0 and real numbers 0 < α < l and

0<β<oo such that

forallfe'T.

(3.4) If B is a bounded subset of (τT9 || | | ^ ) , then fn°B is relatively

compact in {&, || | |^).

Then we get the following:

(3.5) «̂ ": &->S£ has only a finite number of eigenvalues λl9 λ2,...,λr of

modulus 1.

(3.6) Set f(λj) ={fe&\3rf= λjf} for l<j <r. Then f ^ c f and

dim if(2,-) < oo.

(3.7) The operator 3~ can be represented as

r = Σ5=i h*i + ψ

where 0>j is the projection onto #(λj), \\&J\\&<,19 and Ψ is a linear operator on

<e with suρ{||?Pn||^: n>l}<oo. Furthermore ^ , ^ = 0 (iφf) and 0>jΨ = O

(μllj).

(3.8) Ψ(ir)ςz'r and, considered as a linear operator on (τT9 || | |y), Ψ

satisfies | |Ψ n | | ^ <Hqn (n>l) for some constants H and q wίthH>Oand 0<q<l.

Applying Theorem 5, we get the following properties of the Perron-Frobenius

operator Φ corresponding to (T, m).

LEMMA 3.1. Under the assumption (A) we have the following:

(3.9) Φ: L^m^L^m) has only a finite number of eigenvalues λu λ2,..., λp

of modulus 1.

(3.10) Set E(λJ) = {feL1(m):Φf=λjf} for l<j<p. Then E(λj)czV

and dim E(λj) < oo.

(3.11) The operator Φ can be represented as

where Pj is the projection onto E(λj), | |P 7 | | m <l, and Ψ is a linear operator on

L\m) with sup{||IP11|m: n>l}<oo. Furthermore PiPj = 0 {iφj) and PjΨ =

(3.12) Ψ(V)aV and, considered as a linear operator on (V, || | |F), Ψ
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satisfies \\Ψn\\v<Hqn (n>l) for some constants H>0 and 0<q<l.

(3.13) λt = l is an eigenvalue of Φ; and Px is a positive operator and
\PJdm = \fdmfor allfeL\m).

PROOF. Let us put (*", || | | y ) = (7, || ||κ), ( ^ , || ||^) = (L1(m), || ||m) and

^ = Φ. From Lemma 5 in [4], it follows that for every C > 0 the set

E = {feL1(m): | | / | | F < C } is compact in L\m). (3.1) follows immediately from

this. (3.2), (3.3) and (3.4) follow from this and properties (1.1), (1.2) and (1.3)

and the assumption (A). Hence we get (3.9), (3.10), (3.11) and (3.12) from

Theorem 5. (3.13) can be obtained by the same method as in the proof

of Theorem 1 in [15].

We denote N = dim£(l). The following lemma is a direct modification of

a result in [17], so we shall omit its proof.

LEMMA 3.2. There exists a base {gu g2,->>, 9N) °f E(Ϊ) such that
gj>0, $gjdm = l (all j) and {^>0} n { ^ > O } = 0

Let μs be a probability measure defined by dμ^g^dm, which is Γ-invariant.

Let (Lι(μj), \\ ||^) be the Banach space of μ7-integrable functions and

(3.14) Vj^if

for 7 = 1, 2,..., N. We define a norm || ||y by

(3.15) \\f\\j=\\f0j\\v, feVj.

Then we have

LEMMA 3.3. (Vp || | | ;) is a Banach space and Va Vjfor every j = 1, 2,..., N.

PROOF. Let {/„} be a Cauchy sequence in (Vp || \\j). Then {/„#/.

n = l, 2,...} is a Cauchy sequence in (F, || \\v). Hence Lemma 1.1 shows that

there exists a function Fe Fwith lim,,.,^ 11/^^-^11^ = 0. The inequality || | | m <

|| || κ clearly holds, so there is a subsequence {fnu9j} of {fngj} which is m-a.e.

convergent to F. If we set f(x) = F(x)lgj(x) for gj(x) > 0 and f(x) = 0 for gj(x) = 0,

then we get/^ = F and lim,,.^ \\fn— f\\j = O. This shows that the normed space

(Vj9 || II j) is complete. The relation Fez Vj immediately follows from Lemma 1.1.

So we get the desired results.

For each 7 = 1, 2,..., N, we consider the Perron-Frobenius operator Φy.

)*L\μj) corresponding to (T, μ3) defined by

(3.16) J hΦjfdμj = {jf(x)h(Tx)dμj
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for all h e L 0 0 ^ ) , where L°°(μy) stands for the set of all ^-essentially bounded

functions. The next lemma will provide a description of Φj in terms of Φ.

LEMMA 3.4. For feL\μj) we have

Φjf= &if9j)l9j (μΓa.e.).

PROOF. It is easily seen that T-^gΦO} => {gφθ} holds for g e E(l). There-

fore we have

hΦjfdμj = \}f(x)h(Tx)dμj = \)f(x)h(Tx)gj(x)dm

= y(x)9j(Φ(Tx)Iτ-Hgj>o} dm

= \f(x)9λχ)KTx)I{βJ>o} (Tx)dm

= j Φ(f9j)hI{gj>0} dm

= \ Wf9j)l0j)hdμj

for all h e L°°(μ7), where 7A stands for the indicator function of A. This implies

the desired result.

The operator Φj has properties similar to the properties (1.1)-(1.7) of Φ.

LEMMA 3.5. The operator Φj is positive, bounded and linear, and has the

following properties:

(3.17) Φj preserves integrals [φjfdμj = \fdμj9 feL^μj)

(3.18) \Φjf\ < Φj\f\ μΓa.e., feL^μj);

(3.19) \\Φjf\\μj <\\f\\μj;

(3.20) Φ] = ΦjTn (ΦjTrf stands for the Perron-Frobenius operator cor-

responding to (Tn, μj));

(3.21) Φ]f=Φjf9

(3.22) Φj((goT)f) = gΦj(f), geL°(μj),

(3.23) Φjf = f ( / e l 1 ^ . ) ) if and only if f is μ^a.e. equal to a constant.

PROOF. The results (3.17) - (3.22) are immediately derived from (1.1) - (1.6),

(3.16) and Lemma 3.4. If Φjf=f, then Lemma 3.4 implies that fgj e £(1). On
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the other hand, it is trivial that {/#,-Φ 0} c {g}Φ 0}. Therefore Lemma 3.2 asserts

that / is equal to a constant ^-almost everywhere. Since the converse is trivial,

this completes the proof.

The relationship between the eigenvalues of modulus 1 of Φ and those of

Φj can be described as follows.

LEMMA 3.6. // Φf=λf for \λ\ = l and a nonzero element f of L^m), then

there exists an integer j (l<j<N) such thatf\g} is a nonzero element of Lι(μj)

PROOF. Combining the assumption Φ/=Λ/and the property (1.2), we can

get | / | = μ/| = | Φ / | < Φ | / | . Hence, the property (1.1) of Φ shows that | / | =

Φ\f\ and I/I e£(l). On the other hand, since {gu g2,-"> QN) is a t> a s e of E(l),

I/I = Σ ? = i ^ J for some (α1? α2,..., ̂ # ( 0 , 0,..., 0) and

This allows us to define

\ fWΣUΦ), if Σ7«iflr/*)>0

[ 0, otherwise.

Noticing (1.6) and that T~ι{hΦϋ) 3 {hφθ} holds for h e E(l), we can get

λfΣUβj = λf=Φf= Φ(ΪΣU9J) = ΣU*(ϊβj)

= Σ7=i Φ(fgjiτ-H.j>o)) = ΣU Φ(?gj)i{gj>o} •

Since {g(>0} n {^ >O}=0, we have λfgj = Φ(JgJ)I{gj>0}. This and Lemma 3.4

imply that Φj(flgj) = λ(flgj)9 because //<?,.=/ (μ,-a.e.). Since | / | = Σ ? = i %

for some (aί9 a2,..., aN)Φ(0, 0,..., 0), the proof is completed.

It is clear that the converse statement of this lemma is also valid.

LEMMA 3.7. If Φjf=λf for \λ\ = l and a nonzero element feL^μj), then

we have

Let us write Uj for the isometric operator on L\μj) defined by

(3.24) (Ujf)(x)=f(Tx).

Then we have the following

LEMMA 3.8. The following (i) and (ii) are equivalent.

(i) Φjf=λffor |λ| = l and a nonzero element feL1(μj).

(ii) Ujf=lffor a nonzero element jΈL1^).

PROOF. (This proof is due to T. Morita (private communication and [18]).)
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Let ^ be the Borel σ-field on [0, 1] and @n= T~n^. Then we have

(3.25) U]Φ](f) = EμjU\@nJ (μra.e.)

for a l l / e L 1 ^ ) , where Eμj\_f\&"] denotes the conditional expectation of/relative
to the σ-field IF by the probability μ, . In fact we have

\τ.nA

 UJφU

= J U"J{Φ%f)IA)dμJ

for all A&SS. Therefore, the property (i) implies

ENU\a,1 = U]Φ](f) = u](λ-f) =

On the other hand, using Doob's theorem, we can get

for some /* e Lι{μj) in the sense of Lι(μj) and also /ι,-almost everywhere. Hence,
we get

Moreover, we have

\ \f-f*\dμj = J |C/X/) - U](f*)\dμj

= J μ l/jC/) - λ»U%f*)\dμj

for all n. Hence, J \f-f*\dμ~Mmn^ J | £ μ , [ / | ^ J - / * | ^ = 0 . Thus the
statement (i) implies (ii).
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Conversely, if we assume Ujf=Xf for some /eL 1 ^-), then we have / =

fφ.(l) = φ.(foT) = Φj(Ujf) = Φj(λf) = lΦj(f)9 using the property (3.22). Because

Uj is an isometric operator, we can get |I| = 1. The proof is therefore completed.

Now we can describe the outline of the proof of Proposition 1.2. It is well

known that the set Λj of eigenvalues of Uj is a subgroup of S1 and hence it consists

of roots of unity. Combining Lemmas 3.1, 3.7 and 3.8, we get that Λj is a finite

set and so ΛJ = {1, ηj9 ηj^.^ηj"1} (ηjj = i). Now using also Lemma 3.6, we

see that Φmo has only the unique eigenvalue 1 of modulus 1 for mo = mίm2'-mN.

Notice that Tmo also satisfies the condition (A). For simplicity of notations,

we shall assume m0 = 1 and use the same notations as in the case of Tin what fol-

lows, where no danger of confusion exists. Then Lemma 3.1 can be modified

as follows:

(3.26) Φ has only the unique eigenvalue 1 of modulus 1.

(3.27) SetE(l) = {feL1(m): Φ/=/}. Then E(\)aVand dim£(l) = M<oo.

(3.28) The operator Φn can be represented as

where Px is the projection onto E(ΐ), | |PiHm<l, and Ψ is a linear operator on

L\m) with sup{\\Ψn\\m: n>l}<oo and PίΨ=ΨPί = 0.

(3.29) Ψ(V)czV and, considered as a linear operator on (F, || ||F), ψ

satisfies \\Ψn\\v<Hqn (n>l)for some constants H>0 and 0<q<l.

(3.30) $PJdm = lfdm and $Ψfdm = 0for allfeL\m); andf>0 implies

that PJ>0.

Now Lemma 3.2 applies and we have the following:

(3.31) There is a base {gl9 g2,~;9M} of E(l) such that 0, >O, \gjdm = \

(allj) and {gt>0} Π { ^ >O}=0 (*# j).

For each j 0 = 1, 2,..., M) we define μp Φj and etc. in the same manner as

before. Applying Theorem 5 and the above results, we can get results analogous

to (3.26)-(3.30).

LEMMA 3.9. Under the above assumptions and notations we have the

following:

(3.32) Φj has only the unique eigenvalue 1 of modulus 1.

(3.33) Set Ej(l) = {fe L\μj): Φjf=f}. Then £/l)c Vj and dim E/l) = 1.

(3.34) The operator Φ" can be represented as
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Φ] = μj + Ψ] (n > 1)

where μj is the projection onto E/l), μ//) = ί/dμ7 and Ψj is a linear operator
on L\μj) with sup {H^JIU,: n>l}<oo. Furthermore μ.ψj=ψjμj = 0.

(3.35) Ψj(Vj)czVj and, considered as a linear operator on (Vj9 || \\j),
Ψj satisfies \\Ψf\\j<Hqn (n>\) for some constants H>0 and 0<q<l.

(3.36) $Ψjfdμj = 0 for all f

PROOF. The property (3.32) follows from (3.26) and Lemmas 3.6 and 3.7.
If Φjh = h holds for some heLι(jιj), Lemma 3.4 shows that Φ(hgj) = hgj (μ-a.e.).
On the other hand, (3.31) implies that hg} = aβj (m-a.e.) for some aA Φ 0. Hence,
the property dim£y(l) = l follows. In order to prove (3.33)-(3.35), we apply
Theorem 5. Remember the definitions (3.14) and (3.15). If /„ e Vj (n = 1, 2,...),
feLι(μj), l i n w | |/ π -/ | | μ , = 0 and | | /J, <C for all n then / r f i e K ( « = l, 2,...),
fgjeLι(m), l i m ^ . | | / M ^ - / ^ L = 0 and \\fngj\\v<C. We can prove fSjeV
and WfgjWv^C a s i n the proof of Lemma 3.1, and hence we have/e Vj and||/||7 < C.
This implies that the condition (3.1) of Theorem 5 is satisfied for ir = Vj and
&f = L1(μj). The condition (3.2) is an immediate consequence of (3.19). To
show (3.3) we first remark that gjΦj(f) = Φn(fgj) (m-a.e.) for all n. In fact
Lemma 3.4 implies that gjΦ

1j{f) = Φn{fgJ) (μ7-a.e.). So it is sufficient to show
{Φn(fgj)Φ0}c{#,•#()} (m-a.e.). Remember that 0,eE(l) implies T-ι{
{θj Φ 0} Th e n w e have

= ^f(x)gj(x)Iτ-n{gjφO}(x)h(T»x)dm

= \f(x)g{x)h(T"x)dm

for all h e L°°(m). This shows that {Φn(fgj)φ0}<=:{gjΦ0} (m-a.e.) and hence
) = Φn(fgj) (m-a.e.). Therefore we have

\\ΦΠf)b = I I M W I I K = \\Φno(fgj)\\v

This implies the condition (3.3). Because (3.4) can be proved by the same method
as in Lemma 3.1, Theorem 5 shows that (3.33)-(3.35) are valid. Since (3.36)
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immediately follows from (3.34), the proof is completed.

The results (3.26) and (3.27) imply (3.31) with the help of Lemma 3.2. For
each j 0 = 1, 2,..., M), (3.32) and (3.33) show that Φj has the unique and simple
eigenvalue 1 of modulus 1. Hence, it follows from Lemma 3.8 that 1 is the unique
and simple eigenvalue of Uj and that (Γ, μ3) is weakly mixing for each 1< j<M.

§ 4. Perturbed operators

In this section we shall investigate the perturbed operators of Φ and Φj9

which play an essential role to prove our theorems in the next section. We can
follow very closely to the technique of Rousseau-Egele's article [22]. Remember
that we have assumed mo = l. First we define the perturbed operator Φ(θ;f)
of Φ by

(4.1) Φ(θ;f)(g) = Φ(g exp{iθf})

for fe Lι(m), g e Lι{m) and ΘeR. Then we can get the following

LEMMA 4.1. For all ΘeR and n>0 we have

Φn(θ;f)(g) = Φ\g exp {ιθSn(f)}) (m-a.e.)

and hence

( Φ\θ J)(g)dm = J #exp {iθSn(f)}dm.

PROOF. Using the property (1.6), we have

Φ\g exp {iθSn(f)}) = Φ(Φ»-\g exp {iθfoT^} . exp {ί0Sπ_ 1(f)}))

= Φ(exp {ί0/} - Φ " - 1 ^ exp {iθSn_ι(f)}))

= Φ(θ;f)(Φn~1(g-Qxp {iθSn-iίf)})).

This implies the desired results.

Thus the behavior of the characteristic function J"# exp {iθSn(f)}dm can be
described by the iteration of Φ(β;f) and hence by the spectrum of Φ(θ;f). We
can also get the following lemmas for Φ(θ;f) as an operator on V.

LEMMA 4.2. IffeV, then Φ(θ;f): V ̂ V is a bounded linear operator and
analytic in θ.

PROOF. We get that g exp {iθf} e V for fe V and g e V by means of Lemma
1.1. Noticing also that Φ: F-*Fis a bounded linear operator, we have
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\\Φ(θ;fKg)\\v<\\Φ\\v\\g.eχp{ίθf}\\v

Hence Φ(θ;f) is a bounded linear operator on V. Clearly, Lemma 1.1 implies

that Σn=o{(iθ)n/n\}Φ(fng) converges to Φ(θ;f)g in the sense of || ||F-norm.

Therefore, Φ(θ;f) is analytic in θ.

Now we have the following key lemma.

LEMMA 4.3. For feV there exists d>0 such that if \θ\<d9 then we have

the following:

( i ) For all g e Vand n>\

Φn(θ;f)g = Φ"(β;/)Pi(% + ¥"•(%

holds, where Pι(θ) is the projection onto the M-dimensional subspace of V with

P1(O)=P1 and Φiθ fiP^VaP^V, and Ψ(θ) is a bounded linear operator

on Vwith

and Ψ(θ)Pί(θ) = Pi(θ)W) = O. Here q is the constant given in (3.29) for Ψ.

(ii) Pί (0) and Ψ(θ) are analytic in 0.

(iii) There exists C>0 such that

Ψ»φ)gdm <C\e\{(i+2q)l3}"\\g\\r

for all ge Vand n>l.

PROOF. Let R(z) be the resolvent operator of Φ. Noticing (3.28), we have

for \z\>q and z # l

It is easy to see that

(4.3) R(θ; z) = R(z)Σ™=o ((Φ(θ;f) - Φ)R(z))n

converges in the sense of || ||κ-norm for small |0| with | |Φ(0;/)-Φ| | F < HJf^z)^1;

and that JR(0; z) is the resolvent operator of Φ(θ;f) and analytic in 0. Let Ix

be the circle of center 1 and radius ρt = (1 - q)/3 let I2 be the one of center 0 and

radius p2 = (1 + 2q)/3. Choose δ > 0 such that δ <pt and q + δ<p2. Let us define

M(£) = sup{||Λ(z)||κ: \z\>q + δ, | z - l | > 5 } . Then we can get 0<M(<5)<oo from

(4.2). If |0| is sufficiently small, then ||Φ(0;/)-Φ||κ<l/M(<5), and hence ^ and
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12 are contained in the resolvent set of Φ(θ /) . Define the projections

(4.4) Px(β) = (l/2πθ \ R(θ;z)dz
J Iι

(4.5) β(0) = (l/2πi) ( R(θ;z)dz.

Because R(θ; z) is analytic in 0, Pχ(0) and Q(θ) are also analytic. Therefore, for

any 0 with sufficiently small |0|, we have \\Pί(θ)-P1 \\V<1 and hence dim P1(Θ)V=

dim P±F(cf. Chap. VII, [1]). We get for all n > 1

ΰ) + Φn(θ;f)Q(θ)

putting

(4.6) ( ) ( / ) {

Since #(0; z) is analytic in 0, we have the expansion

for some bounded linear operator R(1)(0; z). Hence, from (4.6), we get

ψ»(β)g = (\βπϊ)[ znR(z)gdz

Jl2

= Ψng + (0/2πZ) ( znRM(θ; z)gdz.
J/2

Therefore, the property (3.30) shows that

\\ψ\θ)gdm\ ^C|0|{(l + 2g)/3}-||flf||κ

holds for

C = sup{\\RM(θ; z)\\vl2π: zel2, \θ\ < d].

This completes the proof.

Now we define the perturbed operator Φ/0;/) of Φj for each j = l, 2,...,M

as follows:

(4.7) Φ/0;/)

for/e Fand g e Vj. Then we have a lemma analogous to Lemma 4.2.
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LEMMA 4.4. For feV9 Φj(θ;f): Vj-^Vj is a bounded linear operator and

analytic in 0.

PROOF. If we remark the fact that h-g eVj holds for he Vand g e Vj and

that \\g\\j = ||£ gj\\ v, then the proof can be copied from the proof of Lemma 4.2.

Using Lemma 3.9 and remembering that Φj has only the unique and simple

eigenvalue 1 of modulus 1, we get stronger results than those of Lemma 4.3.

LEMMA 4.5. For fe V there exists d>0 such that for \θ\<d we have the

following:

(i) For all g e V} and n>\

Φ](θ'J)g = λ](θ)Mj(θ)g + Ψ»<θ)g

holds, where λj(θ) is the unique eigenvalue ofΦj(Θ;f) with the maximum absolute

value and \λj(θ)\>(2 + q)l3; Mj(θ) is the projection onto the 1-dimensional

eigenspace corresponding to λj(θ) with M/0) = //</ ; and Ψj(θ) is a bounded linear

operator on Vj with

and

(ii) λj(θ)9 Mj(θ) and Ψj(Θ) are analytic in θ.

(iii) There exists C > 0 such that

for all g e Vj and n>\.

PROOF. If we use the properties (3.32) - (3.36) instead of (3.26) - (3.30), this

lemma can be proved similarly to the proof of Lemma 4.3. We have to prove

only that Φ](θ;f)Mj(θ) = λnj(θ)Mj(Θ) for some λ/θ)eC and λ/0) is analytic.

In fact dimMj(θ)Vj = dimμjVj=l holds, if |0| is sufficiently small. And hence

there is Λ/0) e C such that

Φj(θ;f)g = ΦJΘ;f)M/θ)g = λj(θ)g

holds for all geMj(θ)Vj. Because Φ/0; f)\Mj(θ)Vj = ̂ j(θ), λj(θ) is analytic in

0 (cf. Chap. VIII, 8.5, [1]).

The relationship between Φ(θ;f) and Φ/0;/) can be described as follows.

LEMMA 4.6. For eachj = l, 2,..., M, all n and θeR we have
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Φn(θ;f)gj = gjΦ%θ;f)l (m-a.e.).

PROOF. Lemma 3.4 applies and we have Φ{hgj)=gjΦj(h) (m-a.e.) for
. So we get

j) = Φ»-i(0;/)Φ(0, exp{i6>/})

/)(l))

{iθf}Φj(θ;Ml))

= βjΦ](θ;fKί).

From this lemma we can get the following

LEMMA 4.7. For any geV with g>0 and \gdm = i, there exist at>0,
α2>0,..., au>0 (Σyίi aj=ί)for which we have

\ | ^ \ • \\g\\v

for some constant C>0.

PROOF. Lemma 4.3 applies and we have the expansion

p^ί/ni/2) = pχ(0) + tP[(0)ln^2 + o(t2/n)

and hence we get the inequality

On the other hand P1(0)^ = P 1 ^e£(l) can be represented as
for some al9 a2,-.., aM. Since g>0, we have P^O^^O from (3.30). Therefore,
remarking (3.31), we get that aj>0 for all j . The assumption §gdm = l shows
that Σ y ί i ^ = l5 because J^dm = l for all j = l, 2,..., M. Thus Lemma 4.6
applies and we have

The proof is therefore completed.
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§ 5. Proofs of theorems

In this section we shall prove our theorems using the previous preparations.

The ergodic theorem implies the following

LEMMA 5.1. The equality Λ,j(O) = i J/dμ7 holds for feV and each

j = l ,2, . . . ,M.

PROOF. We have for all n > 1

= J Φn(tln;f)(gj)dm

Lemma 4.5 applies and we get the equality

(5.1) fa(tln;f)(l)dμj = λjit/n) J M/ί/n)(l)^ + J ΨJ (t/n)(l)dμj

and

IJ Ψ](tlή)0)dμj < C\t/n\ {(1 + 2β)/3} .

On the other hand, we have the expansion for \θ\<d

(5.2) Mjiβ) = μj + ΘM'jQS) + (Θ2/2)M%O) + Θ2MJ(Θ),

where Mj(0), MJ(0) and MJ(Θ) are operators on F with limβ_ 0 \\MJ(θ)\\j

Therefore we get

Analogously we have the expansion

(5.3) λj(θ) = 1 + θλ'jφ) + (θψ)λ%0) + Θ2λj(θ),

where lim^^o ^ ( 0 ) = O; and so we get

Since lim,,.,^ (ί/n)Sn(f) = ̂ fdμj (^-a.e.), we can derive for all teR

exp {tλ'jφ)} = l i r n ^ . j exp {(itln)SH(f)}dμj = expjiί J / J ^ j



Central limit theorem of mixed type 181

and hence we have the desired result >lj(0) = i

In the sequel we shall denote Xj(θ) = λj(θ)exp { — iθbj} with bj =

LEMMA 5.2. ForfeVand eachj = l, 2,...,M we have

X'jφ) = 0

and

PROOF. It is easy to see that Ij(0) = 0 follows from Lemma 5.1. Let us
remark that the equality

holds for all n> 1. From Lemmas 4.1, 4.5, and 4.6 we can derive

J exp {(itln^)Sn(f- bj)}dμj = Iffln"*) J M/ί/n'/i) ( l)φ.

+ exp {-itbjn1*2} J Ψ](tlnV2)(l)dμj.

Writing K/0; z) for the resolvent operator of Φj(θ;f) and Ί2 for the circle in C
with center 0 and radius (l + 2q)/3, we have

= (l/2πθ ( z-Λ/ί/π1/2; z)(l)dz

analogously to (4.6). Since Λ/0; z) is also analytic in 0, we have the expansion

Rj(tlnV2; z) = Λ/z) + (t/n^)Rγ\z) + W2n)RγXz)+it2lή)RJ(tln"2; z),

where Λ/z) stands for the resolvent operator of Φp and Rγ\z), R^Xz) and
JR:|(0; z) are bounded linear operators on Vj with

; z)\\j = 0.

Hence, by means of elementary computations, we can get

With the help of the expansions (5.2) and the property !j(0) = 0, we obtain also
that
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j) | f = 0 = I}(0).

Therefore the limit of ^(Sn(f-bj)/n^2)2dμj exists and is equal to -Xj(O). The
proof is therefore completed.

Let us denote σ 2 = —1}(0). Then we have the following estimation.

LEMMA 5.3. Ifσj>Oforfe V, then there exists d>0 such that for all \t\<
dn112 we have

itbjnV2 - t2σj/2}

for some constants A>0, B>0, C>0, and 0 < p < l .

PROOF. Let d be so small that for \θ\<d Lemma 4.5 can apply. Then we
have

Φ](tln1/2lf)0) =

= exp

for \t\ <dn1/2. The property (iii) of Lemma 4.5 shows that

holds for some C>0 and 0 < p < l . Using Lemmas 4.5 and 5.2, we obtain the
expansion

/n^2) = 1 - t2σ)\2n + t3

where lim^^ Xj(t/n^2) = 0. If we substitute tjn1'2 for θ in the expansion (5.2),
we get

(ί2/2n)M}(0) + (t2ln)M

where lim,,.^ ||My(ί/n1/2)||g/ = 0. Therefore, the inequality

Φ%tln^2;f)(l)dμj - exp {z^ n1/2 - ί2σ2/2}

holds, where
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and

Bn(t) = \\XfflnW){(tlnW)M'j{0) + (t2/2n)M'}(0) + (t*ln)MJ(t/n^)}\\j-

Since (l + z)w = exρ {n(z + Log(l + z)-z} and Log(l + z)-z= -z2/2 + o(z2) as

|z|-»0, we obtain

I»(,/ni/2) = e X p {-fiσjll} exp {C(n; t)}

for l ^ d n 1 ' 2 , where C(n; ί) = ̂ 7(0)/6n 1/ 2 + ί3D(ί/n1/2)/n1/2 with

|D(0)|<oo. If we choose so small \d\ that |C(π; 0 l<* 2 σ 2 7 4 h o l d s f o Γ

then we get

MΠ(OI < lexp {C(n; r)} - 1| exp {~ί2σ2 /2}

< \C(n; ί)| exp{|C(π; ί)l} exp {-ί 2 σ 2 /2}

for some 4̂ > 0. Analogously, we have

(n; 01}

for some B > 0 . The proof is therefore completed.

We can now prove our theorems.

PROOF of THEOREM 1. If we regard T and / a s Tmo and Smo(f) respectively,

it is enough for us to prove Theorem 1 in the case of m 0 = 1. Let Tand v satisfy

the assumptions in Theorem 1, and/be a function of bounded variation. Esseen's

inequality (cf. §39, [3]) shows that

(5.4) sup,eΛ |v{Sπ(/)/n1/2<^} _ Σf=ι a ^ b ^ \ σj; y)\ < K/U + (1/π)

(1/IΦ IJ exp {(itln"*)SJJ)}dv - Σf=i as exp {Ub^l* - t2σj/2} | dt

for all l/>0 and n> 1. From Lemmas 4.1 and 4.7 we obtain

(5.5) IJ exp {(itln»*)SJtr)}dv - Σf-i βj J Φ%tln^;f)(ί)dμj

where /ί denotes the density function of v with respect to the Lebesgue measure m.
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If we put U=dnί/4 in (5.4) and combine Lemma 5.3 and the inequality (5.5),
we get the inequality

nW, <ή\ y)\

-dn1/4

Σf=i ajexp {-t*σjl4} .(A\t\

And hence the result (1.8) is obtained. If we assume further that v is T-invariant,

we get for someα^O, a2>0,..., aM>0 (Σf=i β/ = l)

from Lemmas 4.1 and 4.6. Hence, putting U = dn112 in (5.4), we obtain the
result (1.9).

PROOF OF THEOREM 2. If we assume the assumptions of Theorem 2, then
it is clear that v(Smo(f))<Nmo'V(f). Therefore, Theorem 2 is immediately
derived from Theorem 1.

PROOF OF THEOREM 3. The arguments in §3 shows that m0 = M = 1 under the
assumptions of Theorem 3. Therefore, the results (1.11) and (1.12) are corollaries
to those of Theorem 1. In order to show (1.10), we first remark that

= exp {-i

= exp{-itbn1'2}{

= exp {-itbnU2}^ Φ&tlnV2 J)(\)dμi +

follows from Lemma 4.7, because μx=μ is the unique T-invariant measure.
Substitute tin1'2 for 0 in the equalities (5.2) and (5.3). Then we can get

ezp{(itlnV*)SJif-b)}dv
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+ l i m ^ exp {-ibtnU*}

= l i m ^ Xlϋln^) = exp {-

from Lemmas 4.5 and 5.2. This completes the proof.

PROOF OF THEOREM 4. We define the Perron-Frobenius operator Φμ: L\μ)-
L*(μ) corresponding to (T, μ) by

hΦμ(f)dμ = ^f(x)h(Tx)dμ

similarly to (3.16), and define the perturbed operator Φμ(θ;f) in the same manner
as in (4.7). Then it is very easy to check that the arguments in §4 and §5 remain
valid for Φμ and Φμ(θ;f). Therefore, we get the results of Theorem 4 by the
same method as in the proof of Theorem 3.

§ 6. Remarks on limiting variances

In this section we treat the following problem: in which case are the variances
σj in our theorems strictly positive? It may be one of the most difficult problems
in the theory of central limit theorem for dependent variables. In [22]
J. Rousseau-Egele got a concrete sufficient condition to ensure the positivity of
σj. We can follow his arguments also in our case.

LEMMA 6.1. Forfe Vand eachj = l, 2,..., M the limit

l i n w J (SJJ-bj)lnU*ydμj = σj

exists and

holds, where ̂  = (/-Φ J ) " 1 ( / - ^ ).

PROOF. The existence of the limit was proved in Lemma 5.2. From Lemma
3.9 and the definition (3.16), we have

= \\)(f-bj).Φ)(f-bJ)dμj
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for k> 1. Therefore, the series

absolutely converges to

and hence we have

= j (g - Φjg) - (g + Φjg)dμj,

remarking Σ Γ=o Φ) = (^ ~ ^y)~x The proof is therefore completed.

Using this lemma we can get the following

LEMMA 6.2. For fe V, σj = 0 if and only if the equation

(6.1) f(x) = bj + φ(Tx) - φ(x) (μfa.e.)

has a solution φ in L2(μj).

PROOF. First of all we remark that Φji L2(μj)-+L2(μj) and hence g =

) . We get

(g - UjΦjg, g - UjΦjg)LHμj)

, g)L2{μj)

= (g,

If we assume σj = 0, then UjΦjg = g follows from Lemma 6.1 and the above.

Putting φ — g—f-\-bj, we have
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-φ = Ujg - 17//- bj) - g + f - bj

and so φ is a solution of (6.1). Conversely, let φeL2(μj) be a solution of (6.1).
Then we easily see that

Sn(f-bj)lnV* = {φ(T»x) - φ(x)}/n^

and hence that

J {Sn(f- bjWψdμj < (4/n) J φ*dμj.

This implies that σj = 0.

Using this lemma we can get the following concrete result.

PROPOSITION 6.3. If A is a measurable set with 0<μy(^4)<l and IA(x)e V,
then we have σj>0forf=IA.

PROOF. If we suppose σj=0, then we get from Lemma 6.2 that there is
φ e L2(μj) which satisfies the equation

Then we have

exp {2πiφoT} = exp { — iπiμ^A)} exp {2πiφ} (/iy-a.e.)

and hence

exp {2πiφoTmo} = exp { — 2πimoμj(A)} exp {2πiφ} (μy-a.e.).

Since (Γm o, μy) is weakly mixing, we have exp {2πiφ(x)} = 1 (μ-a.e.) and hence
φ is μ^-a.e. integer-valued. However, this contradicts the fact that IA(x) =
μj(A) + φ(Tx) — φ(x) is equal to 0 or 1. The proof is therefore completed.
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