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1. Introduction

Recently there has been a growing interest towards qualitative research of
partial differential equations with deviating arguments. However, two papers
only have been published so far considering the oscillatory properties of the
solutions of partial differential equations with deviating arguments. These are
the contributions of D. Georgiou and K. Kreith [1] and of M. Tramov [2].

The present paper studies the oscillatory properties of the solutions of various
classes of hyperbolic differential equations with "maximum". Note that the
problems for ordinary differential equations with "maximum" find application
in the theory for automatic control of various real systems [3], [4]. A. D. Mishkis
also points out the necessity to study differential equations with "maximum"
in his survey [5]. Oscillatory and asymptotic properties of a class of functional-
differential equations with "maximum" have been investigated in the paper of
A. Zahariev and D. Bainov [6]. Theorems for existence and uniqueness of the
solution of ordinary differential equations with "maximum" have been obtained
in [7], [8].

Note that the author is not aware of papers considering partial differential
equations with "maximum".

2. Problem of Goursat

In this section we consider the oscillatory properties of the solutions of the
problem of Goursat concerning hyperbolic differential equations with "maximum"
of the form

uxy + P(x, y) max u(x-θl9 y-θ2) = 0 (1)
βie[0,σ],θ2e[0,t]

where σ, τ = const > 0. Consider the following problem:
To find a solution of equation (1) in the domain i7 = {(x, y): x>0, y>0},

satisfying the conditions

f u(x, y) = φ(x, y) for (x, y)e [-σ, oo) x [-τ, 0],
(2)

[ u(x, y) = φ(x9 y) for (x, y)e[-σ, 0] x [-τ, oo).
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Besides, assume that conditions for smoothness

Φ, y) 6 CH[ - σ, oo) x [ - τ, 0]), ψ(x, y) e Cι(ί - σ, 0] x [ - τ, oo)) (3)

are fulfilled, as well as conditions for agreement of the boundary conditions

φ, y) = ψ(x9 y) for (x, y) e [ - σ, 0] x [ - τ, 0]. (4)

We will assume that the following conditions (A) hold:

Al. p(x9y)eC(Π)9

A2. φ(x, y)>0, φx(x, y)^0 and φy(x, y)^0 for (x, y)e [-σ, oo) x [-τ, 0],

A3. tfr(x, JO > 0, ι^(x, y) ̂  0 and ^(x, y) ̂  0 for (x, y) e [ - σ, 0] x [- τ, oo).

LEMMA 1. Let conditions (3), (4), (A) hold and let besides

p(x,y)^κ2 for (x,y)eΠ, (5)

where κ = constΦθ and p(x, y)φκ2. Then, ίfu(x, y) is a solution of the problem
(1), (2) and λ is an arbitrary positive number, then u(x, y) has a zero in each of
the domains

= {(x, y)eΠ:

where n = 0, 1, 2,

PROOF. Let n be an arbitrary even number. The case when n is odd is
considered in an analogous way. It is easily verified that the equation vxy + κ2v=0
has a solution v(x9 ^) = sin(2x + ̂ "1κ2>'), which is positive in the domain @n(λ).
Let M(X, y) be a solution of problem (1), (2). Assume to the contrary that u(x, y)
has no zero in the domain @n(λ). Then, conditions A2 and A3 imply that
M(X, y) > 0 for (x, y) e @n(λ). Taking into account condition (5) and the inequality

max u(x - 0!, y - θ2) ^ w(x, y) for (x, y) e @n(λ)
0ie[O,σ],02e[O,τ]

we get

0< [[ uvlp(x,y)-κ2]dxdy

y) m a x u(x — θί9 y — θ2)'V — κ2uv']dxdy
βie[O,σ],02e[O,τ]

= \ \ [ - uxyv + uvxy]dxdy = \ \ [(vyu)x - {uxv)y~\dxdy.
JJ2n JJ9n

Introduce the following notations:
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Γn = {(x, y)eΠ: λx + λ~1κ2y = nπ}, xn — nπλ"1, yn = nπλκ~2.

Applying the Green's formula, we obtain

0<\\ l{vyύ)x-{uxυ)y \dxdy

= \Xn+i ux(x, 0>(x, 0)dx + ( uvydy - [yn+1 u(0, y)vy(0, y)dy
Jxn JΓn+ί * Jyn

- [ uυydy ^ [Xn+1 ux(x, 0)υ(x9 0)dx + Γ" + 1 M/0, y)v(0, y)dy.
JΓ JX Jy

The last inequality is implied by the fact that vy<0 on Γn+ί and υy>0 on Γn.

Moreover, conditions A2 and A3 yield that the integrals in the right-hand side of

the last inequality are non-positive. The contradiction we have obtained

establishes the lemma.

DEFINITION 1. A curved line on which a continuous function w(x, y) is zero

is called a nodal line for u(x, y).

THEOREM 1. Let the conditions of Lemma 1 be fulfilled. Then, every

solution u(x9 y) of the problem (1), (2) has a nodal line of the form y=f(x) or

x = g(y), where f(x) and g(y) are smooth, strictly decreasing functions and

lim^oo/Cx) = 0, lim^oo g{y) = 0.

PROOF. Let u(x9 y) be a solution of problem (1), (2). By Γ denote the set

of all points ({, η) e 17, for which

u(ξ, η) = 0 (6)

and

u(x, y) > 0 for (x, y) e [0, ζ] x [0, η]\{{ξ, η)}. (7)

Integrating equation (1) with respect to x over the interval [0, ξ], we get

> n) - \ P(*> n) max u ( x - 0 l 5 η-θ2)dx
JO 0ie[O,σ],02e[O,τ]

^ Ψy(0, η) - j o p(x, η)u(x, η)dx.

Taking into account (5), (7) and A3, the last inequality yields that

uy(ξ, η) < 0. (8)

It can be analogously proved that

ux(ζ, η) < 0. (9)
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Then, (6), (8) and the theorem for existence and differentiability of an implicit

function imply that in a neighbourhood of the point (ξ, η) the curve Γ can be

represented in the form y =/(x) where/(x) is a differentiable function. Therefore,

a number ε>0 exists, so that

Γ:y=f(x) for x e K - β , £ + β].

Moreover, from (8) and (9) we obtain that/'(x)<0 for x e \_ξ — ε, £ + ε]. Extend

the function y=f(x) repeating the above considerations for the points ξ±ε and

so on.

To complete the proof of Theorem 1 it is sufficient to prove that if Γ does not

cross one of the axes Ox or Oy, then this axis is an asymptote for Γ. Assume to

the contrary that the straight line x = a, a = const>0 is an asymptote for Γ.

Hence,

u(x, y)>0 for (x, y)e Πa = {(x, y): O^x^a, y^O}. (10)

Choose a positive number λ = πja. Then the straight line λx + λ 1κ2y = π passes

through the point (α, 0) and therefore the domain @0(λ) lies entirely in the semi-

strip Πa. Lemma 1 implies that u(x, y) has a zero in the domain %{λ)czTIa.

This contradicts (10).

It is analogously proved that the straight line y = b, b = const >0 cannot be

an asymptote for Γ either.

This completes the proof of Theorem 1.

REMARK 1. The proof of Theorem 1 is analogous to the proof of Lemma 1

of Pagan [9].

3. Problem of Goursat for nonlinear hyperbolic equations with "maximum"

Here we find sufficient conditions for oscillation of the solutions of nonlinear

hyperbolic equations of the form:

uxy + c(x, y, max u(x-θu y-θ2)) =/(x, y) (11)
0ie[O,σ],02e[O,τ]

where σ, τ = const>0.

Note that an analogous problem for nonlinear hyperbolic equations without

"maximum" has been considered in the contribution of K. Kreith, T. Kusano

and N. Yoshida [10].

Consider the following problem :

To find a solution of equation (11) in the domain i7 = {(x, y): x>0, y>0},

satisfying the conditions (2).

We will assume that the following conditions (B) hold:
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Bl. c(x,y9ξ)eC(ΠxR)

B2. c(x, y, ξ) ̂  p(x + y) φ(ξ) where p(t), φ(ξ) e C((0, ex)) (0, oo))

and φ(ξ) is a monotonely increasing and convex function.

B3. φ(x9 y) > 0 for (x, y)e [-σ, oo) x [-τ, 0]

φ(x, y) > 0 for (x, j ) e [ — σ, 0] x [ — τ, oo)

Let u(x, y) be a solution of the problem (11), (2). Introduce the following

function:

±[t t>0.

LEMMA 2. Let the conditions (3), (4), Bl and B2 be fulfilled. Then, if

u(x, y) is a positive solution of the problem (11), (2) in the domain Πtί = {(x, y)e

Π: x + y>tί}, then the function U(t) satisfies for t>tt the differential inequality

(tU(t))" + tp(t) φ(U(t)) ^ φx(t, 0) + φy(0, t) + ['f(t-ξ9 ξ)dξ. (12)
Jo

PROOF. Let u(x, y) be a positive solution of the problem (11), (2) in the

domain Πtl. Employing Lemma 1 of the paper of N. Yoshida [11] we get

= «*(', 0) + u/0, ί) + j ' uxy(t-ξ, ξ)dξ

f °
= φx(t, 0) + ̂ ,(0, ί) + )ouxy(t-ξ, ξ)dξ.

Equation (11) implies that

' uxy(t-ξ, ξ)dξ =-{' c{t-ξ, ξ, max u{t-ξ-θu ξ-θ2))dξ
O JO βi6[0,σ],β26[0,t]

+ ['f(t-ξ,ξ)dξ. (14)
Jo

Since for t > tx the inequality

max u(t-ξ-θu ξ-θ2) ^ u(t-ξ, ξ)>0
βie[0,σ],β2e[0,τ]

holds, then by virtue of condition B2 we obtain

Γ φ-ξ, ζ, max u(t-ξ-θu ξ-θ2))dξ
Jθ θ ie[0,σ],β2e[0,τ]

^ p(t) Γ φ( max u(t-ξ-θu ξ-θ2))dζ
JO βie[0,σ],β2e[0,τ]

(15)
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The inequality of Jensen implies that

\* φ(u(t-ξ,ξ))dξϊ:tφ(U(ή). (16)

Jo

Then, (13), (14), (15) and (16) yield that

(tU(t)Y = φx(t, 0) + ψy(0, t)

- Γ c(t-ξ, ξ, max u(t-ζ-θl9 ξ-θ2))dξ
JO βie[0,σ],θ26C0,τ]

f(t-ξ, ξ)dξ ί φx(t, 0) + ψy(0, t) - p(t)tφ(U(ή)

+ {tf(t-ξ9ξ)dξ.
Jo

This completes the proof of Lemma 2.

DEFINITION 2. Inequality (12) is called oscillatory at ί = oo, if it does not

have a solution that would be positive in the interval [ί0, oo) for any ί o >0.

THEOREM 2. Let conditions (3), (4), (B) hold and let the differential

inequality (12) be oscillatory at t=co. Then every solution u(x, y) of the

problem (11), (2) has a zero in the domain Πp = {(x, y)eΠ: x + y>p}, where

p^O is an arbitrary number.

PROOF. Let p^O be an arbitrary number. Assume to the contrary that

there is a solution u(x, y) of the problem (11), (2) that has no zero in the domain

i7p. Condition B3 implies that u(x, y)>0 for (x, y)eΠp. Then, by virtue of

Lemma 2 we obtain that U(t) is a positive solution of inequality (12) for t>p

which contradicts the assumption of the theorem. Thus, Theorem 2 is proved.

In this way the study of the oscillatory properties of the solutions of the

problem (11), (2) is reduced to the study of the oscillatory properties of the

solutions of differential inequalities of the form

(qWW)y)Ύ + Kt9y)£r(t). (17)

Employing Theorems 2 and 3 from the paper of T. Kusano and M. Naito [12],

we obtain the following propositions:

THEOREM 3. Let conditions (3), (4), (B) be fulfilled and let

lim in f^(l—l^fφjLs , 0) + ̂ / 0 , s)+ \'Qf(s-ξ, ξ)dξ)ds = - oo

for any sufficiently large T. Then, every solution u(x, y) of the problem (11),
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(2) has a zero in the domain Πp where p^O is an arbitrary number.

THEOREM 4. Let conditions (3), (4), (B) be fulfilled and let the differential
inequality (tz)" + tp(t)φ(z)^0 be oscillatory at t=co. Moreover, let a function
Θ(i)eC2(\_p, oo); R) exist, possessing the following properties:

( i ) θ(t) assumes both positive and negative values for arbitrarily large t,

(ii) (ί0(O)" = φx(t, 0) + ψy(0, i) + $ / ( * - & ξ)dξ, t>p,

(iii) l i m i n g *0(O = O.

Then every solution u(x, y) of the problem (11), (2) has a zero in the domain
Πp, where p^.0 is an arbitrary number.
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