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Introduction

In this paper we investigate the structure of generalizations of Witt algebras

over a field ϊ of characteristic zero, and consider a class of infinite-dimensional

simple Lie algebras over ϊ. Let I be a non-empty index set and G be an additive

subgroup of ΠieItt, where t\ (ίel) are copies of the additive group ί. Let

W(G, I) be the Lie algebra over I with basis {w(α, ί)\ae G, ie 1} and the multi-

plication

[w(α, 0, HbJ)'] = cijW(a + b, i) - biW(a + bJ),

where i,jel and a = {a^)ieI, b = (ft i) i e /eG. The Lie algebra W(G, I) is infinite-

dimensional if G # 0 .

We note that if the field ! is of characteristic p > 0, then W(G, I) is isomorphic

to the generalized Witt algebra defined by Kaplansky [3]. It is known that the

generalized Witt algebra is simple if G is " total" and ! is of characteristic p>2

[3] (see also Ree [5], Seligman [6], and Wilson [7]). It is also known that

W(G, I) is simple if |/| = 1, G^O, and I is of characteristic Φ2 [2, p. 206].

The main results of this paper are as follows: If G Φ 0, then W(G, ϊ) is a

direct sum of the unique maximal ideal R of W(G, 1) and a simple subalgebra

S of W(G, I), where S is isomorphic to W(H9 J) for some H and J (Theorem

3.1). If GφO, then the following statements are equivalent: (i) W(G, I) is

simple; (ii) R = 0; (iii) the center of W(G, I) is 0; (iv) G is " tota l" (Corollary 3.2).

W(G, I) is a finitely generated Lie algebra if and only if / is a finite set and G

is a finitely generated group (Theorem 4.1). If J = {l,...,n} and G = © y = 1 Z f ,

then W(G, I) is isomorphic to the derivation algebra of i[x!, x^1,..., xπ, x" 1 ]

(Proposition 4.2).

Part of this research was carried out at the University of Manchester. The

author wishes to thank Professor B. Hartley for his encouragement and the

members of the Department of Mathematics of the University for their hospitality.

1. Notation and preliminary results

Throughout this paper the ground field I is of characteristic zero and Lie
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algebras over ϊ are not necessarily finite-dimensional. Let L be a Lie algebra over

I. If L has no ideals except 0 and L, and if L2 Φ 0, we call L simple. L is perfect

if L2 = L. If if is a subalgebra of L we write H<L, and if H is an ideal we write

if<iL. Let H<L. Then IL(H) and CL(H) denote the idealizer and the cen-

tralizer of H in L, respectively. We write ζ(L) for the center of L. If S is a subset

of L we let <5> denote the subalgebra of L generated by S. For n-fold products

we use the notation: [a, ob] = a,\_a, n + 1b~\ = [[a, nb~\, b~\ for all n > 0 , where

a, beL. For a set A we denote by \A\ the cardinality of 4̂. Notation and

terminology not mentioned above may be found in [2].

We simply write W instead of W(G, I) if there would be no confusion. Since

/ is supposed to be non-empty, W has basis elements w(0, ί) (i e I), and hence

dim W> 1. For each a e G let Wa be the subspace of Wspanned by {w(a, ί) \ i e /}.

Then it is clear that W= ®aeGWa and [Wa, Wh~\ <= Wa+b (a, b e G). Hence W is a

G-graded Lie algebra. Let Ha denote H n Wa for a subalgebra H of Wand aeG.

Let W$ be the dual space of Wo. Then we can identify W% and Πί e j ϊj" by

the group isomorphism <£: Π i e / ϊ ί - > ^ o defined by φ(a)(w(0, i)) = at (ίel) for

each a = (ai)ieI e Π/e/ ϊ ί Hence G is a subgroup of W%. Let a e G, x e Wo and

Λ:=Σ i e /α fw(0, 0? where α f e t and αf = 0 for all but a finite number of indices i.

Then tf( c) = Σ/ αfα(w(0, i)) = Σ/ ai(χv If fl # 0 , then αf ̂ 0 for some ί e 7, and hence

fl(x) = tf.^0 for x = w(0, i)eίfo

For each α e G let ίfl: W^W be the linear automorphism of W defined by

ta(w(b,i)) = w(a + b,ί) (beG,ieI).

Then clearly Wa = ta(W0) and W=®α eG^(^o) We begin with the following

technical lemma.

LEMMA 1.1. Let a9 beG and x, ye Wo. Then

( i ) [*.(*)> h(y)l = a(y)ta+b(x) - b(x)ta+b(y).

(ϋ) lta{x\y-] = a{y)ta(x).

(iii) / / α # 0 ί/ien ie(x) = ̂ (z)-1[ia(x), z]/or some ze Wo.

PROOF, (i) Let ί a ( x ) = Σ , e / <*Ma> 0, ^ W = Σy e / ^ w(fo, j), where a f and

are zero for all but finite sets of iel and j e l . Then [ία(x)>

Ma, 0,

;

(ii) follows from (i) by letting b = 0, and (iii) follows from (ii) since a(z)Φ0

for some zeW0.

It is clear that Wo is an abelian subalgebra of W. Furthermore, we have the

following

LEMMA 1.2. (i) ζ(W)^W0=Iw(W0).
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(ϋ) ζ(W) = {xeWo\a(x) = 0 for any aeG}.

PROOF, (i) Let x e IW(WO). Then x = Σ α e G **> where xa e Wa. By Lemma

1.1 (ii) we have

Σaeo<y)xa = [x, yleW0 (yeWo).

Hence a(y)xa = 0 if a φ 0. However, if a φ 0 then a(y) Φ 0 for some y e WOi whence
x f l=0 for any aφO. Thus x = xoeWo and IW{WO) = WO. Clearly

(ii) Since ζ(W)^W0 by (i), it follows immediately from Lemma 1.1 (ii)
that x e ζ(W) if and only if x e Wo and a(x) = 0 for any aeG.

Note that Wo is a Cartan subalgebra of Wby Lemma 1.2 (i). Let xe WQ.
Then [ί/y), x] = a(x)ta(y) for anyαeG and ye Wo. Hence G\{0} is the set of
roots of W relative to Wθ9 and W=W0®(®aeG\{0]Wa) is a root space decom-
position.

LEMMA 1.3. Let H be an ideal of W. Then H = Wif Wa^Hfor some aeG.

PROOF. If G = 0, then clearly W=W0 = H. So we assume that GφO. If
Wo £ H and b is a non-zero element of G, then there exists xeW0 such that

by Lemma 1.1 (iii). Hence Wb^H (OφbeG) and H=W. If Wa<=H for some
α 7̂ 0, then a(x)ΦQ for some x e Wo, and hence for any yeW0

y = αOO-W*), ί-«ω - \a(y)a(x)-H^(x)-] eH

since ίβ(x) e Wa. Thus ί f o ci/ and by the argument above we have W=H.

Now we have the following

PROPOSITION 1.4. (i) W is abelian if and only z/G=0.
(ii) W is non-abelian and perfect if and only if GφO.

PROOF. If G = 0, then clearly W2 = 0. So let GΦO and a be a non-zero
element of G. Then by Lemma 1.1 (iii) there exists xeW0 such that

Φ) = α W - 1 ^ ) , x] e ^ 2 G> e Wo).

Hence Wa^W2, and so W=W2 by Lemma 1.3. Thus W is non-abelian and
perfect. The 'only if parts are obvious.

COROLLARY 1.5. ζ(W) £ Wo if and only ifGφO.
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PROOF. If G=0 then W0^ζ(W)^W0 by the proposition and Lemma 1.2 (i).
Thus ζ(W)=W0. Conversely if ζ(W)=>Wθ9 then ζ(W)=W by Lemma 1.3, i.e.
Wis abelian. Hence G = 0 by the proposition.

REMARK 1.6. If |/| = 1 and G = Z, then Wis simple and satisfies the maximal
condition for subalgebras (see [1], [2], and [4]). But if |/| > 1, then in general
W has non-trivial ideals, and dose not satisfy the maximal condition for sub-
algebras. For example let 7 = {1, 2} and G = <α><! + ©! + , where α = (l, 0).
Then Gc^Z and W has a basis {w(na, ΐ)| neZ, ί=l,2} over ϊ. Let H be the
subspaceof Wspanned by {w(na9 2)\neZ}. Then it is easy to see that H is
an infinite-dimensional abelian ideal of W.

2. Ideals of W(G9 I)

In this section we show that Whas a radical. We begin with the following

LEMMA 2.1. Every ideal of W is G-homogeneous.

PROOF. Let H be a non-zero ideal of W. Let x be a non-zero element of H
and x=ΣaeGxa> where xaeWa. Set A{x) = {aeG\xaφ0}. Clearly A(x) is a
finite set. We show by induction on |̂ 4(JC)| that xaeH for any a e A(x), and we
conclude that H=@aeGHa. If |̂ 4(x)| = l the result is obvious. Suppose that
|y4(x)|>l. Let α, beA(x) and aΦb. Then there is y in Wo such that a(y)φ
b(y). Let n = \A(x)\ and {cί9..., cn} = {a(y)\aeA(x)}, where crΦcs whenever
rφs. For each re{1,..., n}, set

ΛOc) = {fl e A(X) I tf O ) = Cr}, Xr = ΣaeAr(X) *a

Then x = Σ ! = i ^ r ^ . Since i/-αJF, we have Σ?=iCrxr = [x, rfefl. Hence it
follows by the second induction on m that

(*) Σΐ=ic?xr = [x, my-]eH (m = 0, 1,..., n - 1).

Now the coefficients ĉ  make a n n x n matrix (c?1), and det (cψ) is a Vandermonde
determinant, which is non-zero. Consequently from (*) we have

Xr = Σβe^Γ(jc) Xa e H (r = I J J n )

Since M(xΓ)| = MΓ(x)| < n, we have xaeH for α e ^4r(x) by the inductive hypothesis.
Therefore xaeH for any ae A(x).

We give a criterion for an ideal of W to be proper.

LEMMA 2.2. Lei # fee an ideal of W, and let GφO. Then
(i) HφOifandonlyifH0ΦO.
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(ii) HφWif and only if H0^ζ(W).

PROOF, (i) Let HΦO. Then HaΦ0 for some aeGby Lemma 2.1. We
may assume that a Φ 0 since if a — 0 it is trivial that Ho Φ 0. Let xeHa and x φ 0.
Then x = ta(y) for some 0ΦyeW0. If α(^)^0, then by Lemma 1.1 (i) we have

y = -ja(y)~1lx, t.a(y)-]e[_Ha, L _ J c : # 0 . If a(y) = 0, since a(z)#0 for some

ze WJ), .y = α(z)"1[x, ί_α(z)] e # 0 . In both cases we have H0Φ0. The converse
is trivial.

(ii) Let H0^ζ(W). Since GΦO, ζ(W)^W0 by Corollary 1.5. Hence H0Φ
W09 and so HΦW. Conversely, assume that Hoφζ(W). Let xeH0\ζ(W).
Then [ίjj), x] = α(x)ία(y)^0 for some aeG, ta(y) e Wa, where 0φy%W0. Hence
α(x) Φ 0, and so ία(z) = a(x)~1 [ta(z\ x~\eH for any z e Wo, i.e. Wa s iϊ. Therefore
iί=JFby Lemma 1.3.

Now we have the main theorem of this section.

THEOREM 2.3. Let GΦO. Then there exists a proper ideal R of W which
satisfies the following properties:

( i ) Ro = ζ(W)andRa = ta(ζ(W))foranyaeG.
(ii) R is abelian.
(iii) R contains every proper ideal of W.

PROOF. We set Ra = ta(ζ(W)) for each aeG, and R = φ α e G # α . By Corollary
1.5 we have ζ(W)^Wθ9 whence R is a proper subspace of W. Let ueRa and
i eW;. Then u = ta(x), v = tb(y) for some xe£(JΓ), ye Wo. Since ί?(x) = 0 by
Lemma 1.2 (ii), we have [u, v^\ — a(y)ta+b(x) by Lemma 1.1 (i). Hence
[u, v] 6 Ra+b by definition of R, and so ,R<i W. Further, if v e Rb, then y e ζ(WO
and a(y) = 0. Hence [u, v] = 0, i.e. R is abelian. Thus R is a proper ideal of W
satisfying (i) and (ii).

Let H = ΘfleGHfl be a proper ideal of W. By Lemma 2.2 (ii), Ho ^ζ(W) = R0.
lfHa = 0 for any Oφa e G, then H = H0^R0^R. So let # α ^ 0 for some 0 # α e G .
If M is a non-zero element of Ha9 then w = ία(x) for some 0ΦxeWo. Since αφ0,
a(y) φ 0 for some 0 Φ y e Wo. Now we have

(*) a{y)x + a(x)y = [ίβ(*), ί_α(y)] e [iffl, ΪΓ_ J s H o c

Hence 2α(x)α(y)ίfl(x) = [ία(x), α(y)x + α(x)y] = 0, and so α(x) = 0. Therefore
= [ία(x), ί_α(y)]eC(W) from (*), and hence xeζ(W)9 i.e. uei?β. Thus

^Ra and it follows that H^R. This completes the proof.

COROLLARY 2.4. Lei G^O. 77ιen every proper ideal of Wis abelian.

We call £ of Theorem 2.3 the radical of W.
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3. The structure of W(G, I)

In this section we give a structure theorem for W(G, /), which is one of the

main results of this paper.

THEOREM 3.1. Let GΦO, and let R be the radical of W. Then there exists

a subalgebra S of Wwhich satisfies the following conditions:

( i ) W=R®S.

(ii) S is simple.

(iii) S is isomorphic to W(H, J) for some H, J.

P R O O F . Let φ: W0->W0IR0 be the natural map. Then {φ(w(0, i))\iel}

spans W0IR0, which is non-zero by Corollary 1.5. Hence there exists a non-

empty subset J of I such that {φ(w(0, j)) \j e J} is a basis of WojRo. Let So be the

subspace of Wo spanned by {w(0, j)\jeJ}. Then clearly W0 = R0®S0. Let

Sa = ta(S0) for each aeG, and let 5 = ® f l e G 5 α . Then Wa = ta(R0)®ta(S0) = Ra®Sa9

whence

W=®aeGWa = R®S.

We claim that S is a simple subalgebra of W. Let ueSa, ve Sb. Then u =

ία(x), v = tb(y) for some x, yeS0, and [u, ϊ] = a(y)ta+b(x)-b(x)ta+b(y)eSa+b by

Lemma 1.1 (i). Hence S< W. Clearly S^ W/R, and so S has no proper ideals

by Theorem 2.3. Furthermore, since d imS a > 1 for each aeG, S is not abelian.

Thus S is simple, as claimed.

Now we show (iii). Let φ: So-+Wo be the inclusion map, and ψ*: W%-^S%

be the dual map of ψ. We fix bases {w(0, ί) \iel} of Wo and {w(0, j) \j eJ} of

5 0 . Then we can identify W%, S% with Y\ieI ϊ+, Π/ e j Ij"> respectively. For any

fl = (α f ) i e / eG we have

<A*(<0 (w(0,7)) = a(w(0, Λ) = α7. (j E J),

and so Ψ*(a) = (aj)jej. We claim that \j/*\G is injective. Let ι^*(α) = 0, where

aeG. Then «(x) = 0 for any xeS0. On the other hand a(y) = 0 for any

yeζ(W0 = Λo

 bY Lemma 1.2 (ii). Thus α(z) = 0 for any z e Λ o Θ S o = Wo» ί e

a = 0 as claimed. Therefore ^ * | G G-*ψ*(G) is a group isomorphism, and

ψ*(G)<YljeJt^. Let H = ψ*(G). It is easy to see that the linear map p : S->

W(H, J) defined by p(w(a, j)) = w(ψ*(a), j) (a eGJeI) is an isomorphism.

Let the field I be of characteristic p>0. Then an additive subgroup G of

Πίe/If" is called total by Kaplansky [3] if the only element α = (α ί) i e J, where αf = 0

for all but a finite set of i, such that Σie/ ^1^ = 0 for any a = {a^)ieI e G is the zero-

element. It is known that if characteristic p>2 and G is total then W(G, I) is
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simple as remarked in the introduction.

We use the same terminology for a field of characteristic zero. Then we

have the following

COROLLARY 3.2. Let GΦO. Then the following conditions are equivalent:

( i ) W is simple.

(ii) The radical R of W is zero.

(iii) The center ζ(W) of W is zero.

(iv) G is total.

PROOF. Clearly (i)=>(iϋ), (iii)=>(ϋ) by Theorem 2.3 (i), and (ii)=>(i) by the

above theorem.

Let α = (α f) ίe/, where α f e ϊ and αf = 0 for all but a finite set of z, and let x =

Σteiαiw(°> 0 i n wo W e consider that G<W% as before. Then α ( x ) = Σ ί e / α i α i

for any a = {a^)ieIeG. Hence G is total if and only if { x e ^ 0 | α ( x ) = 0 for any

a e G} = 0, which is equivalent to ζ(W) = 0 by Lemma 1.2 (ii).

We give a sufficient condition for W to be simple.

COROLLARY 3.3. // the subspace of YlieItt spanned by G contains the

direct sum ® ί e / Iί, then W is simple.

PROOF. For each j e J let eu) = (δjι)iel9 where δβ is the Kronecker delta.

Then clearly e ϋ ) e © i e / I t , and hence e ( y ) = Σ r α A f° r some finite sets {ar}cf5

K } c G . Let x = ΣieiβM0, ϊ)eζ(W\ where j?f = 0 for all but a finite set of i.

Then we have ^ ) ( x ) = Σ ί e / ^ ^ ) ( w ( 0 , i)) = βj. But ^θ)(χ)=Σ r α r α r (x) = 0 by

Lemma 1.2 (ii). Thus j8,. = 0 for any j e I, i.e. x = 0. Hence ζ(JF) = 0, and there-

fore W is simple by Corollary 3.2.

4. Finitely generated Lie algebras

In this section we consider finitely generated Lie algebras.

THEOREM 4.1. W is finitely generated if and only if I is finite and G is
finitely generated.

PROOF. Let W=(xl9...9 xM>, where n is a positive integer. Then there

exists a finite set of basis elements {w(ar, ir)\ r = l,..., m} such that xu..., xn are

spanned by {w(ar, ir)\ r = l , . . . , m}. Hence L = (w(ar, ίr)\ r= 1,..., m>, so that

for any aeG, iel,

w(a, 0 = Σ i ^ r^««r, rh [wfov U ' * w(αrh> Ϊ J L

where αri,...,rh e I. It is easy to see that
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l>O,v i r i ) , . , w(αΓh, ϊΓh)] = Z r = i W f l r i + - + fl,h, U ,

for some βset. Thus a = arί + -~ + arh for some r^..., rΛe{l,..., m} and i = *s

for some s e {1,..., m}. Therefore / is finite and G = <α1,..., am}.

Conversely, suppose that \I\ = n and G is finitely generated. If G = 0 then W

is finite-dimensional since {w(0, ι) | i e 1} is a basis of W. So assume that G Φ 0.

Since G is torsion-free, G is a free abelian group of finite rank. Let G = © χ i

= 1

<α ( Λ )>, where m is the rank of G, and let

F = <w(-2αC\ 0, w(3tfC), 011 < h < m, i e / > .

Clearly F is finitely generated. We show by induction on m that W=F.

Let m = l. Then G = <^(1>>. Since a^ = (a(

i

1))ieIΦ0, there i s ; e / such that

a^φO. Since [wίrαί1),;), φa(<1\j)'\=(r-s)aγ)w{(r-\-s)a^\j), it is not hard

to see that {w(ra^\ j)\ reZ}c<w(-2α^, j ) , wίSα^1),./))^^. Hence for

r 6 Z and i φj we have

ϊ) = (2αO))-i([w((r + 2)α(1), j), w(-

i.e. {W(ΓΛ(1), ί)\reZ}^F, where i e / and iφj. Thus W(G, /) = F.

Let m > l , and let

Then G = H®K. Inductively we may assume that ^(if, / ) ς F 5 W(K, I)^F.

Let x be a non-zero element of G. Then x = >> + z for some y = (yi)iei^H, z =

(Zi)ieI e K. It is clear that yφz, whence y5 φ Zj for some j e I. Hence

, j), w(z,;)] e

Now either ^ # 0 or zy ^ 0. If ^ Φ 0, then

w(x, i) = y]K\w(y, i), w(z, j)] + zMx, j)) e F

for any i Φj. If Zj φ 0, then similarly w(x, ί) e F for any i Φj. Thus {w(x, i) | i e /}

c F for O ^ x e G . It is clear that {w(0, i) | i e/ } s ίF(/ ϊ , i ) £ F . Therefore

{w(x, O l ^ e G , ie/}<=F, i.e.

Finally we have the following

PROPOSITION 4.2. Let 7 = {1,..., «}, n a positive integer, and let G = 0 ? = 1 Z i

with copies Z( of Z. 77ιen W(G, /) is isomorphic to the derivation algebra of

I[x l 5 xΓ1,..., xΛ, x^"1] in indeterminates x1?..., xΛ.

PROOF. Let R = I[x l 5 xj 1,..., xΛ, x " 1 ] . For x = Π " = i ^ e R and α e G we
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w r i t e x a = Y\tj=iX(jJ

9 w h e r e a = (aj)JeI. F o r aeG, ίel w e d e f i n e a l i n e a r e n d o -

morphism δ(a, ί): R-+R by

x'δ(a, 0 = rfx'+« (r = (r,.);e/ e G).

Let D = {<5(α, i ) | α e G , iel}. It is easy to see that δ(a, ί) is a derivation of iί.

Straightforward calculation shows that

δ(a, ϊ)δ(b, j) - δ(b,j)δ(a, 0 = ajδ(a + b, i) - b

for any δ(a, ί), δ(b,j)eD, i.e.

We claim that D spans DerΛ. Let δ be a derivation of R. Then for each

i e / we have xiδ=yΣaeGoc(a, ΐ)xa, where oc(a, i)el and α(α, Ϊ) = 0 for all but a

finite set of α. Let e ( i ) = (^fj)7.e/ with the Kronecker delta <5ίy, and let

Then δ' eD. Since xf5(a — β ( j ), j) = 0 whenever i Φj, we have

xfi' = Σ β e G φ 5 ϊ)x&a-eV\ i) = Σa,G<a,i)xa = x,δ (ίel).

Clearly the value xj1δf is determined by x^'. Therefore <5' = <5, and hence D

spans Der R, as claimed.

Furthermore, we show that D is linearly independent. Suppose that

Σ?=i ΈaeG^^ i)δ(a, ί) = 0, where α(α, i ) e ϊ and α(α, Ϊ) = 0 for all but a finite

set of a. Then we have

Xj Σ?=i ΣαeG «(β, W(a, i) = ΣαβG Φ , 7 > f l + e O ) = 0 ( j E / ) .

Hence α(α, j) = 0 for any aeG, j el.

Since Der # has a basis D, it is clear that Der R is isomorphic to W(G, I),

where G = φ ? = 1 Zf and / = {15..., n}, by the map δ(a, i)*-*w(a, i)

References

[ 1 ] R. K. Amayo, A construction for algebras satisfying the maximal condition for sub-
algebras, Compositio Math. 31 (1975), 31-46.

[ 2 ] R. K. Amayo and I. Stewart, Infinite-dimensional Lie Algebras, Noordhoff, Leyden,
1974.

[ 3 ] I. Kaplansky, Seminar on simple Lie algebras, Bull. Amer. Math. Soc. 60 (1954), 470-
471.

[ 4 ] F. Kubo, On infinite-dimensional algebras satisfying the maximal condition for sub-
algebras, Hiroshima Math. J. 7 (1977), 287-289.

[ 5 ] R. Ree, On generalized Witt algebras, Trans. Amer. Math. Soc. 83 (1956), 510-546.



426 Naoki KAWAMOTO

[ 6 ] G. B. Seligman, Modular Lie algebras, Ergebnisse der Mathematik und ihrer
Grenzgebiete, 40, Springer, Berlin, 1967.

[ 7 ] R. L. Wilson, Classification of generalized Witt algebras over algebraically closed
fields, Trans. Amer. Math. Soc. 153 (1971), 191-210.

Department of Mathematics,

Faculty of Science,

Hiroshima University




