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Introduction

The Griffith energy balace theory in fracture mechanics has been
reformulated in terms of ./-integrals, so that the fundamental relationship:

the energy release rate is expressed by a J-integral

holds for crack grwoth problems. As stated in the previous paper [12], this
relationship is valid only for simple (two-dimensional) models of fracture. Thus,
in [12], we proposed generalized /-integrals (abbreviated to GJ-integrals) and
established the relationship

(*) the energy release rate is expressed by a GJ-integral

for a three-dimensional fracture problem in which the crack is strictly contained
in the material and the stress is free on the crack surface. Here we note that
the arguments in [12] are also applicable to the two-dimensional problems (see
[11]).

The GJ-integral introduced in [12] is expressed as the sum of a surface
integral P and a volume integral R. The term P corresponds to the original
J-integral. An integral corresponding to the term R was also considered by
Destuynder and Djaoua [1] for a two-dimensional problem, in which it was
shown that the energy release rate can be as well expressed only by this integral.
Moreover, in more general theory (cf. [13], [14]), the term R appears to play a
leading part.

Another feature of J-integral is that it represents the singularity of the elastic
field (see [1], [11]). For the problem considered in [12], it was shown that the
singularity appears only on the edge of the crack and the GJ-integral vanishes
if the singularity does not appear.

In this paper we treat the case where the crack intersects the surface of the
material, and moreover the crack itself is pressurized. In practical problems,
such crack arises in various cases such as pressure vessels containing surface
cracks (see e.g. Kikuchi, Miyamoto and Sakaguchi [6]), and there is much practical
interest in estimating safety of such cracked structure. For two-dimensional
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pressurized crack, there have been some attempts to modify the /-integral and
to obtain a relation like (*); see e.g. Karlsson and Backlund [5], Chen and Wu [3].

The main purpose of this paper is to give an expression of GJ-integral and
establish the relationship (*) for such three-dimensional pressurized surface
crack problem. It turns out that the GJ-integral consists of three terms P, I**1*
and RM; P and RW correspond to P and R in [12] and the termi^2* reflects the
pressure near the edge of the crack. We shall see that only the singularity on
the edge of the crack (hence not that on the intersection of the crack and the
surface of the material) contributes to the G/-integral.

The whole arguments are based on functional analysis as in [12]. We need
the density and the trace theorems for Sobolev spaces on a domain with a cut.
But the usual density and trace theorems (see e.g. Necas [10]) are not applicable
to our domain, so in section 2, we formulate and prove these theorems. Recently
a trance theorem for a two-dimensional domain with a cut has been given in
Grisvard [4], but the method used in [4] is different from ours.

Throughout the paper the letters C, Co, Cί9-~, will be used to denote various
positive constants, which are not necessarily the same even in a single formula.

The author wishes to thank Dr. T. Miyakawa for his helpful suggestions for
improvements of the manuscript. The author also would like to acknowledge
the continuing guidance and encouragment of Professor Fumi-Yuki Maeda.

1. Quasi-static formulation of the problem

1.1. Let & be a three-dimensional elastic body which occupies in its
non-deformed state a bounded domain G in R3 with smooth boundary. We
assume that the body & contains a crack %>t parametrized by t in a fixed interval
[0, T]. Each crack % is a surface crack, that is, it intersects the boundary of 88,
and is assumed to be represented by a surface Σ(t) in R3 in its non-deformed state.
The deformation of the elastic body under consideration is described in terms of
a family of elliptic boundary value problems with parameter t defined on the
domains Ω(t) = G — Σ(t) (see subsection 1.2 below).

We assume that Σ(t) extends smoothly along a C°°-surface Π in R3 which
is transversal to dG and divides G into two domains G± as follows:

(SCI) G = G+U G-U G° with G° = G n i l and G+ nG° = G" f|G° = G+ nG~=0;

(SC2) L = Π n dG is a C°°-curve.

We assume that the surfaces Σ(t) are of the form

Σ(t) = Λ(t) n G°,

where Λ(t), t e [0, T], are relatively open subsets of Π such that

(SC3) the closure Λ(t) is a two dimensional C°°-submanifold of Π with C00-
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boundary dΛ(t) intersecting transversally with L at two points λx(t) and
λ2(t);

(SC4) Λ = Λ(O)c:Λ(t)czΛ(tf) for O^t^t', and the limit lim^0 r^Σiή-ΣQS)]
exists and is non-zero, where | | denotes the surface area.

(SC5) There are smooth diffeomorphisms φt: dΛ^>dΛ(t), ίe[0, T], such that
the map (x, t)-*φt(x) is smooth from dΛ x [0, T] into 77.

Hereafter we use the notation:

) = dG-Σ(t); dίΣ(t) = dΛ(t)(]G; d2Σ(t) = Λ(t)(\dG; Σ = Σ(0), Ω = Ω(0),
Γ=Γ(0), A, = A,(O), d1Σ = dίΣ(0); Γ± = 3G±-(G°uL); and dίQ = dQ(]G, d2Q =
Q n dG, for any set Q in I?3.

In case ί = 0, (SC1)-(SC3) imply the following

LEMMA 1.1. Let D be the open unit disc in R2 and

D±=D Π {xeR2; * 2 ^ 0 } . There is a C™-diffeomorphism FdΛ(η, ξ) from dΛxD

onto an open neighborhood VdΛ of dΛ in R3 such that:

FdA(rl9°) = fl for every η in dΛ;

FdΛ(dΛ x ID n {ξx>09 ^ 2 = 0 } ] ) = A n VΰΛ

FdΛ(d,Σx[D n « ! > 0 , ξ2 = 0}]) = Σ ίl VdΛ;

FdΛ({λi}xD)f=dG and FeA(fo} xD ± ) c Γ±, i = 1, 2.

We can construct a spray (see Lang [7; IV, 3]) wich fits into the shape of dG
and dΛ, and then the usual argument on the existence of tubular neighborhood
leads to Lemma 1.1; see e.g. [7; IV, 5]. We may as well start with assuming
the existence of such FδΛ. In terms of the curvilinear coordinate (VdΛ9 FdΛ),
each edge d^(t) is parametrized as follows:

There are a number T o>0 and a family {h(-, t): te[0, To]} of smooth
functions on dΛ such that:

( i) - 1 < h(η9 0 ^ 0 and h(η, 0) = 0 for all η e dΛ and t e [0, To] .

(ii) The map h is smooth from dΛ x [0, Γo] into (—1, 0] .

(iii) d±Σ(t) Π VeΛ = {x\x = FdΛ(η, h(η, t), 0), η e dtΣ}9

0VdΛ = {x\x = FdΛ(η, ξl9 Olηed.Σ, h(η9 t)<ξί<l}9

= FdA(λi9 h{λi9 t), 0) for each t and i = 1, 2.

This is shown in essentially the same way as in [12, Lemma 4.3], and so the
details are omitted.
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For each xe VeΛ9 let cx be a positive number such that, for O^t^

(1.1) κt(x) = FM(ιy(x), ̂ (x) + Λ(ιy(x), ί), W*))

belongs to V0Λ, where (if(x), £i(x), ^2W)=^aAW The parametrized path:
t^κt(x) defines a vector field X on F 5 y l as

(1.2) X(x) = (d/dt)κt(x)\t=0

= ((d/dt)h(η(x), 0lr=o)[(3/%1)F,iJ(ι;(x), ^(x), £2(x)).

1.2. Let «(X) = {M/X)}}=I denote the displacement vector of the elastic body
under consideration. The constituent law is formulated as follows:

<ty(x) = [>*/«)] (*) = aijkl{x)ekl{x) 9

etjix) = [*,/«)] (x) = ( D ^ x ) + DiW/x))/2, Df = d/dx,,

where the components aijkl of Hooke's tensor are assumed to be in C^G) and
satisfy the symmetricity:

aijkl = ajilk — aklij

and the uniform ellipticity condition:

aijkiζijζki = xζijζij (ζijeR9) f°Γ some constant α > 0.

(Here and in what follows the summation convention is used.) Now let Γo be a
portion of dG along which the elastic body cannot move. We assume that Γo is
measurable with respect to the surface element of dG, has positive surface measure
and dist (Γo, d2Σ(t)) > 0. Let us denote by £(t) the surface force acting on /\(ί) =
Γ(i)-Γ0, by ^ ( 0 the force acting on Σ(t) and by &(i) the body force prescribed
inside Ω(t). In this paper we assume that they are given by «̂ "(0 = ^Ίβ(ί)>
^ ( 0 = ̂ li ( f ) and J2(0 = ̂ l r l ( ί )

f o r some ( , f , ^ i ) in {L2(G)}3x {HV2(G0)}3x
{HV2(dG)}3. Here, for an open set Q or a surface Q, we denote by # m (β) (m ̂ 0)
the Sobolev space of order m with the norm | \mQ. Let

V(Ω(t)) = {υeH\Ω(t)ψ\vΓ = 0 on Γo},

where vΓ is the trace of v on Γ. We shall denote by [ι;] the jump of υ across
Σ(t), i.e., lv}=v+—υ~, where v+ and v~ are the traces of v on 5G+ Π G° and
dG~ D G°, respectively. dS will denote generically the surface element. Then,
under the hypotheses stated above, the quasi-static problem to be discussed is
the following:

PROBLEM 1.2. Find for each te [0, T] a displacement vector u(t)eV(Ω(t))
which minimizes the potential energy functional
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E(v; Se) = [ tσijMeijiΌMldx - [ &-υdx
JΩ(t) Jfl(O

-[ 2 vΓdS-[ 0>Ίυ\dS forveV(Ω(t)).
JΓι(t) jΣ(t)

This problem can be restated in the following form:

PROBLEM 1.2'. Find u(t)eV(Ω(t)) such that

(1.3) ( σijiuityeij^dx = [ &-vdx + [ £ υΓdS+ [ 0>>lύ\dS
jΩ(t) JΩ(t) JΓUO JΣ(t)

for all v e V(Ω(t)).

Problem 1.2 is equivalent to the determination of a solution u(t) of

Djσij(u(t)) = ^i in Ω(t) in the distribution sense,

(1.4) = &i on Γ±(t)9

= σ^u(t))'Vj = 9% on Σ(t) (ί = l, 2, 3),

where Vj are components of the outward normal to d G or the outward normal

to G° with respect to dG+.

Since Ω(t) satisfies the cone property (see e.g. [12, p. 23]), an argument

similar to the one used in the proofs of [12, Theorem 2.5. and (4.28)] yields the

estimate:

(1.5)

for all ve V{Ω(t)\ O ^ ί ^ T , with C > 0 independent of v and t. This estimate,

together with the Lax-Milgram theorem, implies that Problem 1.2' has a unique

solution w(i) in V(Ω(t)) for each t e [0, T] and for any <£ = (&, 0>,

uf = {L2(G)}3 x {H^2(G0)}3 x {HU\dG)}\

and Green's operators

are uniformly bounded linear operators from Jί into V(Ω(t)).

1.3. Since the differential operator U-^DJG^U) satisfies the uniform ellipticity

condition as shown in Fichera [2, p. 91], a regularity result (see e.g. [2, Lectures

5 and 10]) implies that singular points of the elastic field belong to (Γ o n Γ x ) U dΣ.

Here the term singular is used in the following sense: We call p e Ω a regular point

of the elastic field, if there is an open neighborhood Vp of p such that
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u\ΩnVpeH2(Ω Π Vp). A point p is called a singular point of the elastic field if p

is not a regular point.

In order to state the relationship between the regularity and the direction

of the crack, we introduce the space Jf(Ω) of functions v in L2(Ω) satisfying the

following conditions:

(1.6) v\^^eH\% Π Ω) for all open sets ^ such that <% <= G, dist(^, dΣ) > 0

r, Γo(]Γ1)>0;

(1.7) ((# Γ)v)\ r n f i belongs to L 2 ( ^ Π Ω) for all domains ^ such that f c F a / 1,

dist(y\ dVdΛ)>0 and dist(^, δ1i:)>0, where the vector field 3C on VδA

is defined by

The space ^(Ω) is topologized as follows: A sequence {vm} converges to v in

jr(β) if and only if

\vm-v\OfΩ + \vm-υ\Uyna+ \(&'F)vm-(&'Πv\o,r nΩ >0 as m -* oo

for each ^ as in (1.6) and each i^ as in (1.7). Notice that J^{Ω) is a Frechet

space with respect to the above topology.

THEOREM 1.3. The operator β£?->D/^
r(0, J£?) is continuous from JC into

jr(Ω) for j = 1,2, 3.

PROOF. Let w = «r(0, oδf) and SέsJί. For any domain ^ as in (1.7),

we can prove (^ F)« e {H\Ψ* Π Ω)}3 by estimating the difference quotient

, ^(x) + Λ, {2(x)»-«(x)]/Λ, x e f n β , 0 < Λ ̂  Λo,

where h0 is a number such that FeΛ(η(x), ξι(x) + hθ9 ξ2(x)) eΩίl F a y 4 for x e ^ Π β.

Using this, we can obtain the assertion by modifying the argument given in

[2, Lecture 5] the details are omitted.

2. Density and trace theorems for H1 (Ω)

Because our domain Ω does not have the local Lipschitz property, the usual

density and trace theorems (see e.g. [10, pp. 67, 99 and 103] for local Lipschitz

domains) are not applicable. Thus, in this section, we establish corresponding

theorems for Ω.

2.1. For a domain Q in R3, we define the distance £Q(x, y) of two points x, y of

Q by the infimum of lengths of all broken lines connecting Λ: and y in Q. We

notice that £Ω(x, y) is not equivalent to the Euclidian distance. If Q has the
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local Lipschitz property (see [10, p. 15]), then βQ is equivalent to the Euclidian

distance.

We can easily show

LEMMA 2.1. Let Q be a domain with local Lipschitz property. Under a

C2-diffeomorphism of R3 onto R3, the image of Q has also local Lipschitz

property.

LEMMA 2.2. Let Q and Q be bounded domains in R3 and Φ a mapping

from Q into Θ. Assume that Q is covered by a family {βi}ΐ=i, ,m, of domains

with local Lipschitz property in R3 which satisfy the following:

(2.1) There is a constant C such that \Φ(x)-Φ(y)\SC\x-y\ for any x, yeQh

i = l, , m.

(2.2) The image Qf of Qt under Φ is a domain with local Lipschitz property for

each i.

Then there is a constant Co such that

(2.3) βo{Φ(x\ Φ(y)) ί C0£Q(x, y) for all x,yeQ.

PROOF. Let B be an arbitrary broken line lying inside Q, which connects

x, y in Q. By considering a subdivision of B, if necessary, we may assume that

B consists of segments Zj_xZp j = l9~ 9q, with zo = x, zq = y, where for each

j , Zj-γ and Zj belong to QkU) for some k(j)9 l^k(j)^m. By (2.1), (2.2), there is a

constant Cί such that

ί C^Φizj.J-Φiz^ ί C,C\zj^ - Zj\

for each j= 1, , q. Hence we have

£e(Φ(x), Φ(y)) ί ΣU U*(zj-i), Φ(z,)) ^ CtC Σ?-i |z;-i-^l

Therefore, we obtain (2.3) with CO = CXC.

Let us put

U = {FM(fl> «i. ξi);ηedΛ, |f,|<l/2, i = ί, 2}

and

S(ε) = {FSΛ(ri, ξu ξ2); ηsd.Σ, 0<f1<l/2, 0 < ^ < 6 ^ } ,

for O^ε^l. We consider the family of mappings {ΦJogssi denned by

ί FtMx), ti(x), K2W+βίi(x)]/2) for xeS(ε),
*&) =

{ x for xe(C/nΩ)-S(ε),
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where (η(x), ξ^x), ξ2(x)) = F^(x) for xeU.

LEMMA 2.3. For each ε, 0<Ξε^l/2, Φε maps U(]Ω onto U(έ) =

U n Ω-Ξ{εj2) bijectively, and

C7^unΩ(χ, y) ύ \ΦE(χ)-Φε(y)\ ^ cjunΩ(*, y)

for all x, y eU Γ\Ω with a positive constant Cε independent of x, y.

PROOF. The bijectivity is clear. Let <2ε=£(2ε)-Ξ(ε/2). By Lemma 2.1,

U(έ), Ξ(2ε), l/(2ε), Qε are domains with local Lipschitz property. By Lemma 2.2

we obtain the inequality of the lemma, since U Π Ω=Ξ(2έ) U U(2έ), Φε(Ξ(2ε)) = Qε

and Φε is the identity on I7(2ε).

LEMMA 2.4. Let ζ e C$(R3) satisfy

(2.4) 0 ^ ζ ^ 1, supp ζcU and ζ=l near d{Σ.

Then, for an arbitrary weH\Ω) and 0 < ε < l / 2 ,

(2.5) C^ICwI^ni, ^ \(ζw)oΦ7i\UUiε) ί C0 |Cw| l f l,nO'

with a constant Co independent of ε and w.

PROOF. Let 0<<5<ε. Then Φj1 is a bilipschitz mapping from U(ε + δ)

onto U(2δ) with a Lipschitz constant independent of ε and δ. We obtain the

estimate (2.5) by the use of [10, Lemma 3.1]. This completes the proof of

Lemma 2.4.

2.2. The well-known density theorem (see Meyers and Serrin [9]) shows that the

subspace C°°(Ω) Π H^Ω) is dense in H\Ω). However we cannot replace C°°(Ω)

with C°°(β).

DEFINITION. For a bounded domain Q in R3, let C%fl(Q) be the set of all

Lipschitz continuous functions with respect to £Q, i.e., for each fe C%Λ(Q) there

is a constant C such that

|/(x) -f(y)\ ί C£Q(x, y) for all x,yeQ.

Using Lemma 2.4 we derive the following

THEOREM 2.5. C%>\Ω) is dense in H\Ω).

PROOF. Let weH^Ω) and set v = ζw with ζeC$(R3) satisfying (2.4).

Since dist(supp(l — ζ), dίΣ)>0, we can choose a covering {Uj} of Ω Π supp(l — ()

such that each Uj is a domain with local Lipschitz property. Then, by the aid of

a partition of unity subordinate to {Uj} and by the usual density theorem (see e.g.
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[10, p. 67]), we can construct a sequence {w,}^ in C%fl(Ω) which converges to

( l - ζ ) w in ίP(Ω). Let v* = ι?°ΦΓ/4> which belongs to H^Uilft)) by Lemma 2.4.

Since (7(1/4) has local Lipschitz property, there is a sequence of functions {vj}f=ί

in C°°(ϊ7(l/4)) such that Vj = 0 near 31/n 31/(1/4) and b * — fj|I,L/(I/4.)—^0 as j->oo.

We now put v) = t;yθφ1/4. Then the estimate (2.5) yields that

|t>-f>5lifi/nu ^ Q l ^ - ^ li,ι;(i/4) >0 as j • oo.

Since t;* = 0 near 31/, extending t J by 0 on Ω— U, we have v)-*υ in H^Ω).

Furthermore v) e C%fl(Ω) for all j by Lemma 2.3. This completes the proof of

the theorem.

2.3. For a function v in C%Λ(Ω) we put

(2.6) γv = (v+

9 i r , ϋΓ)

where ϋΓ is the trace of v onΓand v+(x) = \imy^xyeG+ v(y), υ~(x) = \imz^xzeG-v(z)

for each xeΣ. We shall now extend γ given by (2.6) to υ e H^Ω).

For a surface S in R3 with a distance ds, we denote by iία(S; ds), 0 < α < l ,

the space consisting of functions v in L2(S) such that

Ha(S; ds) is a Hubert space with respect to the norm | \a>ds. We omit ds in case

ds is induced by the Euclidian distance in R3.

We define a distance d*(x, y) on Γ as follows: d*(x9 y) = \imJ^o0£Ω(xj, yj),

where points Xj e Ω and y;- e Ω approach to x and y, respectively.

Let Q be either Rl or /?J+ = {xe/?2; x ^ O , x 2 >0}. We denote by

the space of functions w in H1I2{Q) such that

1/2

< + 00.

The space J&(R+) coincides with H^2(/?+) given in Lions and Magenes

[8, p. 66] which is the intermediate space [#£(/?£), L2(/?J)]1 / 2. Hence by

the interpolation theorem [8, Theorem 5.1], the zero-extension of win s/(R+)

(resp. J*(RI+)) is continuous from j*(Rξ) (resp. s/(Rl+)) to H^2(R2)

(resp.H1ί2({xeR2;xί>0})). The operator D2 is continuous from # 1 / 2 ( β )

to the dual Λ?'(Q) of s/(β). Now let J ^ ( Σ ) be the space of functions w in

such that

ex),
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where, for xeΣ, d(x, dίΣ) = mfyedίΣ\x — y\. Then the above observation implies,
via partition of unity, that the zero extension w of w in jtf(Σ) to G°, i.e.,

w > w = w on Σ; = 0 on G° — Σ,

is a continuous map from s/(Σ) into H1/2(G°). Here we cannot replace s/(Σ)
with H1/2(Σ). In the following we shall use the same notation w for the zero
extension w of w, when there is no ambiguity.

We shall prove

THEOREM 2.6 (cf. [4, Theorem 1.7.3]). The mapping γ defined by (2.6) is
extended to a continuous operator from H\Ω) into {H1/2(Σ)}2xH1^2(Γ; d*)
so that

[t?] e s/{Σ) for each veH\Ω), where [υ} = v+ - v~,

and the mapping υ-+ Ivj is also continuous from Hr(Ω) into sf(Σ).

2.4. In order to prove Theorem 2.6, we prepare

LEMMA 2.7. We set Q = R}. For (φl9 φ2)e {Qftβ)}2, we consider the
following norms

(2.7) { J G Jβ \Φt(x)-φ2(y)\2Kx, y

(2.8) {^x^KΦXxψdx+ΣU \ΦM,2,Q}112,

where k{x, y) = {(x1-y1)
2 + x2

2 + y2

2V'2 and <φ}(x) = φ1(x)-φ2(x).
Then the norms (2.7) and (2.8) are equivalent.

PROOF. 1) We have

\Q L I^W-^ωi 2 ^*, yT3dxdy ί 2{h+l2),

where

h = ( {( Kx, y)-3dy}κφy(x)\2dx = πf x^Kφ}(x)\2dx,

h = \Q \Q \φ2{χ)-φ2{yΨKχ, y)-3dxdy.

Since fc(x, ̂ ) 2 ^ ( x 1 - ^ 1 ) 2 + ( x 2 - 3 ; 2 ) 2 in Q, I2ύ\Φ2\ί/2,Q- Hence

\Q\Q\Φi(x)-φ2(y)\2«x, y)-3dxdy £
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2) For (φu φ2) e {C$(Q)}2, integration by parts yields

ί xϊ1\<ΦXx)\2dx=\"r*dt\* dxΛ* \<Φ>(χ)\2dx2

JQ JO J-oo Jθ

337

^ (° r2dt Γ dXl [' t-'Uiit, x) + I2{t, x)]dx2,
JO J-oo Jθ

where

I±(t9 x) =
xί-t

(Xl + t

I2(t, x) = \ \φ2(zl9 X2 + t)-φ2(xi> x2)\2dz1.
Jxi-t

Using Fubini's theorem and setting z2 = x2 + ί, we have

(2.9) Γ Γ2dt Γ dxx Γ t'^h(t9 x)dx2

JO J-oo Jθ
Γoo roo

= \ dxΛ \Iii(xu
J-00 J-00

where

J* 2 + | * l - * l |

i-αdl

Inequalities |zx — Xil^x2^0, z2}Zx2 + \zί—xί\ hold on the domain of integration
of Ill9 so that (z2-x2)"1^23/2fc(xJ z)"1. Also the same inequality holds on
the domain of integration of J 1 2, since x2 = l^i — îU z 2 ^2x 2 there. Thus it
follows from (2.9) that

o J-oo Jo

In the same way, we have

dxΛ'
-oo Jo

Collecting terms, we thus have

\ \φί(x)^
QJQ

[
QJQ

\φ2(x) - φ2(z)\2\x-z\-* dxdz.

This completes the proof of Lemma 2.6.
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2.5. PROOF OF THEOREM 2.6. By Theorem 2.5 it suffices to prove that γ and υ-*

\ύ\ are continuous on C% \Ω). Let ζ be a cut-oίF function satisfying (2.4). Since

dist (supp(l — 0, dxΣ) > 0, by considering a covering of Ω Π supp (1 — ζ) by domains

l/j with local Lipschitz property, and the partition of unity subordinate to {I/,-},

we see that the usual trace theorem (see e.g. [10, pp. 99 and 103]) yields the

continuity of v-+y((l - ζ)v) from H\Ω) into {if1/2!)}2 x H^2(Γ; d*). Obviously,

1 ( 1 - O I 6J/(Σ) and | [ ( l - 0 »

Let us set

H = {x\x = FeΛ(η9 ξ

Φ = Φί/4r and β = 1/(1/4). The restriction of Φ to G+ Π U (written by Φ+) is a

bilipschitz mapping from G+ n U onto G+ Π β by Lemma 2.3. We continuously

extend Φ+ to the closure of G+ Π C/. Then Φ+(Σ f]U) = H and Φ + (Γ + n U) =

Γ+f]Q. We set ko(x, y) = {\x-y\2 + d(x, d±r)2 + d(y9 d,!)2}^2 for x, yeΣ.
Using local coordinate systems, we obtain the estimate

(2.10) C^ko(x, y)^\Φ+(x)-y\ ^ Cxk0(x9 y) for all x,yeΣnU,

with Ct independent of x, y. We next use Lemma 2.3 and the fact that Q, G+

and G~ have local Lipschitz property, and obtain

(2.11) C^d^x, y) S \Φ+(x)~y\ ^ C2d*(x, y)

for all xeΓ+ Π U and yeΓ~ n U with C 2 independent of x, y. We put w = ζυ

for i eCJ'^Ω) and w*(x) = w(Φ"1(x)) for x e β . Since β has local Lipschitz

property, the usual trace theorem and (2.5) yield the estimate

(2.12) |HtfQ|1/2iβQ ^ C3 |w*|1)Q ^ C4 | ι; |1 > [ / n β

with constants C3, C 4 independent of t;. Decomposing the domain of inte-

gration, we can show that

2,H + k*+)li/,r+nQ + k*-)lί/2,r_nQ

where wj, wf+), ŵ L) and wf denote the restrictions of w£Q to H, Γ+ Π β, Γ_ Π Q

and Σ Π Q, respectively, and

h = ( (
JΓ — Π[7 JΓ +

( |wKx)-
Jint/

Since Φ is bilipschitz on G+ n U, we have by (2.10) and (2.11)
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\ ) - Wι{y)\ 2d*(x, y)->dS(x)dS(y),I
r+nu

with C 5 independent of w. By applying Lemma 2.7 with respect to the local

coordinate systems of Σ and using a partition of unity, we obtain

with C 6 independent of w. In the same way as in the proof of Lemma 2.4, we

can show that the norms |wg|?/2>H, K + ) | ? / 2 > Γ + n Q , |wf_ ) |?/ 2 > Γ_n Q and |wf | ? / 2 > I n l 7 are
equivalent to |w + | 1 / 2 > I n t / , |w Γ | 1 / 2 > Γ + n t 7 , |wΓ | 1 / 2 f Γ_n c, and |w-| 1 / 2 > 2 ; n l 7, respectively.

Theorem 2.6 then follows from (2.12).

3. Generalized /-integral

3.1. The Lie derivative Lξ with respect to a vector field ξ is determined by

(3.1) Lξω = lim^o t~ι[pίfω — ω]

for an r-form ω ( O ^ r ^ n ) , where α*ω is the pull-back of ω by the flow α, for ξ

(see e.g. [7, pp. 109-127]). If M is a surface in R3, then functions defined on M

are 0-forms; for the surface element dS,

(3.2)

where divM ξ is the divergence of ξ with respect to M (see e.g. [7, p. 205]). If,

for a submanifold N of M, the restriction oct\N is also a flow in N, then α,^ gives a

Lie derivative, which we denote by Lξ\N. The local flow x->κt(x) on F a Λ given

in (1.1) derives the Lie derivative LX = XV for functions. We denote by LX\N

the restriction of Lx to N n F a y l , where N = dG or G°.

LEMMA 3.1. Lβί ψ fee an arbitrary function in CQ(R2) such that

supp ι/rc vdΛ. If vG C° \Ω), then φ(Lx\dGvΓ)eL™{Γ) and φ(Lx\GoM) eL°°(Σ).

Furthermore, the mapping v^φ(Lx\dGυΓ) (resp. ϋ->^(L^|Go|[t;])) from C%fl(Ω)

into L^iΓ) (resp. L°°(Σ)) extends uniquely to a continuous mapping from H1^)

into H-V2(dΩ) (resp. H " 1 / ^ 0 ) ) . We use the same notations ψ(Lx\dGvΓ) and

Ψ(Lχ\Go W )forυe H^Ω). Then

<f,Ψ(Lx\dGvΓ)}6G= -

(3.3)

GO= - \
G°
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hold for any element (f9g) in C^dG) x C£(G0)9 where Cΐ(dG) = {feC°°(dG);
f=0nearL}.

REMARK 3.2. For veC%Λ(Ω), the element {ψ(Lx\dGvΓ), ψ(Lx\Golv})} in
L^Γ) x L^iΣ) can be considered as an element of H~^2(dG) x H-^2(G% i.e.,

/, Φ(Lx\dGvΓ)}dG = \ fψ(Lx\dGv)dS,
JdG

for all (/, g) e H^2(dG) x

REMARK 3.3. Cf(dG) x C$(G°) is dense in H^2(dG)xH^2(G°); see
[8, p. 15].

PROOF OF LEMMA 3.1. If veC%Λ(Ω), the function vΓ is Lipschitz con-
tinuous on Γ with respect to d*, and {vj e C0Λ(Σ). Since ψ(Lx\dG) and φ(Lx\Go)
are differential operators of order 1, φ(Lx\dG)vΓ eL™(Γ) and ψ(Lx\Go)lυJ eL^Σ).
Since Jϋ] =0 on δiΣ, the Gauss theorem (see e.g. [7, p. 206]) gives

\r fΦ(Lx\δGvΓ)dS =-\jr l(Lx\dG + diwdG X)φΠvΓdS9

gψ(Lx\GoM)dS = -
Σ

for (/, g) e Cf(dG) x Q(G°), where we used the formula (3.2). Hence we have
(3.3) in view of Remark 3.2. By Theorem 2.6, the operators v-+ vΓ and t;-> [i J
are continuous from H\Ω) into HV2(Γ;d*) and from H\Ω) into A?(Σ)
respectively. Moreover the zero-extension of we<sf(Σ) to G° is continuous
from j/(I) into H^2(G°). Since the operators f-+(Lx\dG + divdGX)(ψf) and
gf^(L^|Go + divGoX)(^) are continuous from H1/2(Γ±) into H~^2(Γ±) and
from H^2(G°) into H-^2(G°)9 respectively, the right-hand sides of (3.3) are
estimated by |/li/2,eGMi,Ω and |^|1/2>Go|ί;|1>β respectively. This, together with
Remark 3.3 and Theorem 2.5, shows the assertions of the lemma.

3.2. LEMMA 3.4. Let A be an open neighborhood of dxΣ such that the boundary
dA is smooth and is transversal both to dG and to 77. Suppose ΆczVdΛ,
άist(dA, 51Γ)>0 and d2Σ Π dA consists of two points. Then the trace operator:
g^θ\diA(\Ω from JV(Ω) into Hl^d\A Π Ω) is also continuous from JV(Ω) into
L2(dtA n Ω).

PROOF. The transversality between Π and dA implies that

<#*(*), v(x)> ^ - Co < 0 for xed2Σ Γi dA,
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where < , > is the standard inner product in R3 and v the unit outward normal

to dA. Let ω be a function in CQ(V5A) such that ω==l near dA n d2Σ,

dA n supp ω = 0 and <#*, v>g — Co/2 on dA n supp ω. For small <5>0 we set

V(δ) = {xeR3; x = FeΛ(η, ξl

= W ί=1>2{x; x=FdΛ(λi9 ξX

; then ωfeHι(ΩA(δ))9 where ίL4(<5) = ,4 n F((5). Since ΩA(δ) has

the local Lipschitz property, we obtain

(3Γ.Γ) (ω2f2)dx = { ω2f\&, n)dS
ΩA(δ) JdίΩA(δ)

+ ί ωψ<β, n)dS -[ ωψ div
Jd2V(δ){\A JΩA(δ)

for the unit outward normal n to dV(δ). We may write for sufficiently small δ

d^ΩA(δ) = (dtA Π V(δ)) υ (Af) H+(δ)) ϋ (A

where H±(5) = {x; x=FdΛ(η9 ξ), ηed±Σ9 ξeD, ξt>0, ξ2=±δ}. Note that

( 5 , Λ ) = 0 on d2F(<5) and <3Γ, /ι> = 0 on ^4niί±(5), because ^ is tangent

to δ2F(<5) and t o i f i H±(5). Since Λ = V on dtA, it follows that

, v}dS =[
J

{β F)(ω2f2) + ω2f2diw &}dx.
ΩA(δ)

Using the assumption that <J£, v> ̂  — Co/2 on δ̂ 4 n supp ω, together with the

Schwarz inequality, we therefore obtain

|ω/|giβl i lnF(*) ^

with C x independent of δ and/, where ^ is an open set in R3 as in (1.7) such that

supp ωcTΓ. Hence, letting δ^O, we have

Since d i s t ^ ^ l Π supp(l— ω), dΣ)>0, there is an open set <% in R3 as in (1.6)

which contains dtA n supp (1 — ω). Hence by the usual trace theorem,

This proves Lemma 3.4.

3.3. We are now in a position to give the definition of generalized J-integral

for the surface crack problem 1.1.

DEFINITION 3.5. Let A be an open neighborhood of dxΣ as given in Lemma
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3.4, and φeCo(R3) a function such that suppφc^l and φ = l near d^Σ. For
J£? = (JF, &, £)eΛ, 11 = ̂ (0; &) and the vector field X given by (1.2), we define
the generalized J-integral acting on the surface crack by

where

PΛ(&) = \ (W(X v)- Γ ((X F)u)}dS;

{(.(X • naml2)ekleiJ+ S?-((X- V)u)}dx

+ \ {σt
JAOΩ

= - <J, φLx\eGuryeG - (P

- ί (ί-φ)£-(Lx\SGuΓ)dS-\
JΓ(\A JΣ

Here W=σiJeij/2 (the strain energy density); T=(7J) with 7̂  = σl7Vy, where Vj are
the components of the unit outward normal v to dA. The term (X V)u in PA{&)
is the trace of (X-F)u on dtA, and < , >5G (resp. < , >Go) denotes the
duality pairing between {fp/^SG)}3 and {H-^^SG)}3 (resp. {H^^G0)}3 and

). By Lemma 3.1, Λi2 )(^) is well-defined.
As is easily checked, JA(^) is independent of the choice of the function φ.

It will be shown later (see Proposition 3.7), that JA(J£) is also independent of the
choice of A.

PROPOSITION 3.6. JA(&) defines a continuous functional on Jί\ in fact the
mapping <£-+JA{&) is uniformly continuous on bounded sets in Jt'.

PROOF. Let u = ̂ (0, se). By Theorem 1.3, σf/n) and e{fu) all belong to
Jί(β). Hence by Lemma 3.4 the operators

and J27 > etj(u)\0lAna9 i, j = 1, 2, 3,

are continuous and linear from Jί into L\dγA n Ω). Let j£γ and ££2 be in Jί
and αfc = «r(0; J^k), σ^ = σo(iιfc), ek

ij = eij(uk) and T^σ^Vj for fe = l, 2. Then
we have

JdιAΐ)Ω

- ί {Γ» ((ΛΓ Γ) (a1-!*2)) +
Jδi^nβ

Applying the Schwarz inequality we obtain
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\PA&χ) - PΛ(&I)\ ύ Q d ^ L + I ^ D I ^ Ί - - ^ L

with Ct independent of jSfk, fc=l, 2. Similarly, the continuity property of the

Green's operator ^"(0; -Sf): ^->F(Ω) implies the estimate:

Finally we estimate

where

- <^j , φ L Λ r | G o [ H 1 - « 2 ] > G o -

and.

rnA

- ί (l
JrnA

- \ (l-φ) {^-
JΣ(\A

Using Lemma 3.1 we have

it\A

with C3 independent of «ίffc, fe = l, 2. Since dist(supp(l —φ), δ1I')>0 and

dist(yl, dVdΛ)>0, Theorem 1.3 and the usual trace theorem together imply that

the operators &-+(l-φKLx\eGuΓ)\ΓnA9 (l-φXLxlGoϊifD^n^ are continuous from

Jί to H^2(Γ Π A) and from Jί to H^Σ Π A). Hence by the Schwarz inequality

we obtain

with C4 independent of J?k9 k= 1, 2. We obtain the desired result by combining

the above estimates.

3.4. PROPOSITION 3.7. T/iβ ί αίue ^ ( - ^ ) is independent of the choice of the

domain A.

PROOF. Let Aγ and A2 be two domains as in Lemma 3.4. Without loss of

generality we may assume ΆίczA2. Let Q=A2—Ά1; then as in the proof of

Lemma 3.4, we obtain
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(3.4) ί (X F)Wdx={ W(X-v)dS-[ W(div X)dx.
JQΓ\Ω JdiQDΩ JQftΩ

On the other hand, since eiJ = eJi and σiJ = σJi9 we have

(3.5) \ (X V)Wdx = [ QLX. F)aijkll2)ekleijdx

\ σiJDj((X • F)Ui)dx - \\
JQOΩ

As in the proof of Lemma 3.4, it follows that

(3.6) \ σtjDβX V)uύdx = - \ D^ftX F)Ui)dx

+ \ σtjvJίX V)u^)dS + \ (σ ι7)Γv/(Z. V){u

JΣOQ

Since u = f(O; Se\ we have (1.4) with ί = 0. Hence from (3.5), (3.6) and the

fact that dist (<9g, dίΣ)>0, we obtain

(3.7) \ (X Γ)Wdx = ί

+ [ T. ((Z. F)u)dS + [ J. ((Z V)uΓ)dS
JdίQ JΓOQ

+ \
JΣ
\ ( ( ) W y
JΣDQ JQΓ\Ω

Equalities (3.4) and (3.7) yield JAl(&)- J^2G£?) = O, which shows the assertion

In what follows, the subscript A of JA(&) will be dropped. If « =is smooth up to the edge of the crack, then by letting Q = A in the proof of

Proposition 3.7, we have

PROPOSITION 3.8. // u = ̂ (0; se) belongs to H2 near dxΣ[) {λu λ2}, then

This, together with Theorem 4.1 below, indicates that the crack extension

is caused by the singularities at d^ U {λu λ2}, while the singularities at

d2Σ — {λ1, λ2} have no effect on crack extension.

4. Calculation of the energy release rate

We now state our main result.

THEOREM 4.1. Suppose a load 3? eJί and a smooth crack extension {Σ(t)}
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as defined in section 1 are given. Define the energy release rate by

9<je\ {Σ(ή}) = lim^o \E(u(O); J?)-E(u(t); &)\l\Σ(t)-Σ(O)\,

where u(t) = ̂ (t; &). Then

where \δΣ(t)| =Km ί_0 r^

Before the proof of this theorem, we prepare some lemmas.

4.1. Let £{i) be a non-increasing smooth function on [0, oo) such that \£(t)\ ^C x t
with C± > 0 and ^(0) = 0. We set

N(t) = {xeR3; x=(xl9 0), £(t)^Xί<cp}, S(t) = R2 - N(ή.

Let d(S(O)) = d(S(0); x, y) be the distance function on S(0) defined as the infimum
of the lengths of all broken lines inside 5(0) which connect the points x and y
in 5(0). We set

A{w(x) = [w(Xi- £(t)9 x2)-w(xi> Xi)]*'1, xe5(1), 0 < t < 1,

for a function w on 5(0).

LEMMA 4.2. For feH^2(R2) and weH^2(S(0); d(S(G))) we have the
estimate

i l
wiί/i Co independent off, w and t. (See subsection 2.3 for H^2(S(0); d(S(0)))

I * ll/2,d(5(0)) )

PROOF. Let feC^R2). Obviously

fA[wdx = [ JA\wdx + [ JA{wdx..
1) J«ί JΛ

Since the path: t-*(xi — 6{i), x2) is parallel to the line x2=0, we have

[ JΔ[wdx =

where

Since Dx si continuous from H1I2{R%) to J ϊ " 1 / 2 ^ ^ ) , we obtain, letting

£ *2)>
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ίli/2ijιίlw|i/2ijιϊ^ C2 |/|1 / 2 f J l2|w|1 / 2 f J lj.

Noting that d(S(0); x, y) = \χ — y\ for x, yeRl, we obtain

^ C2 |/|1 / 2 > Λ 2 |w|1 / 2 j ( ί ( 5 ( 0 ) ).

The estimate for the integral over R2. is similar. This completes the proof of
Lemma 4.2.

We next consider an analogous difference quotient in the direction x2. Let
keC$(Rl) be a function such that k(y, t)^0 for (y, t)eKl, k(y, 0) = 0 and
k(y, t)^k(y, tf) if t<tf, for y e R1. We put

= [w(x1? χ2-fc(χ1, t))-w(xu x2)']t-ί, 0 < t

for a function w on i?2, and

K+(t) = K(t) n { x e ^

Then, recalling that D2 is continuous from H1/2(Rl) into s/{R\)', by an argument
similar to the above proof we obtain

LEMMA 4.3. Let Q(t) = K(t) or Q(t) = K+(t). Let feH^2(R2) and w be
a function in C^iQφ)) Π ^(β(0)) such that w(x) = 0 on x2 = 0. Then by con-
sidering the zero extension of w to β(l), we have

I j fΛ2wdx ^ Co |/ |1 / 2 ij l2|w| J l f ( Q (o ) )

vvϊίft C o independent of f and w.

4.2. Let A be an open neighborhood of dΣ in R3 as in Lemma 3.4 such that

dxΣ(t) <= A for all t e [0, To] .

Take a function β in Co^/?3) such that supp βc VdΛ and β =1 on A, and set

ί Fa^W, £i(*)-βtoKΦ), 0, «2(x)) for x e F M )
αr(x) =

.1 x for * 3 - F a / 1 .

Applying arguments similar to those in the proofs of [12, Lemmas 3.8, 3.9], we
have the following

LEMMA 4.4. There is a positive number 7\ < To such that

( i ) αf: R
3->R3 is a C^-dίffeomorphism for each t e [0, TJ,
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(ii) oct(Σ(t))=Σfor each t e [0, Γ J ,

(Hi) the map v-*ctfv = voait is a linear isomorphism of H1(Ω) onto H\Ω(t)) as

well as of V(Ω) onto V(Ω(t))Jor each t e [0, T J .

Let us put

A*w = [αfw-wjr1, Δ-*w = [(ocγψw-wK-t)-1

for a function w and 0< t< Tt. Then we have

LEMMA 4.5. // veH\Ω), then {ΔιvΓ, Δ^v}} converges weakly to

{-β(LχUvΓ)> -β(Lχ\GoM)} given by (3.3) in H'^dQxH'^G0) as ί->0.

PROOF. By Lemma 3.1 we need only to show (see e.g. Yosida [15,

p. 125]) that (i) {{A'vr9 A'lυ}}; 0 < ί < Γ J is bounded in H-^2(dG)xH-^2(G%

and (ii) </, Λfι>Γ>aG (resp. <gr, A^VUGO) tends to </, - 0 ( L x | δ G ι γ ) > a G (resp.

<^, -j?(L^|Go W)>GO) as ί-^0 for any/e Cl(dG) (resp. ^ e C?(G0)).

Assertion (i) will be obtained if we show the estimate:

(4.1) \\ fA<vΓdS + ί gA'MdS S C0{|/|1/2>βG+|flf|1/2.Go}Mi.ιι

for (/, ^) e Cf(δG) x C$(G°)9 where C o is independent of v, f, g and t. In case

υ e C%* x(i2), (4.1) follows from Lemmas 4.2 and 4.3 and Theorem 2.6 by the use of

an appropriate partition of unity. Since C%Λ(Ω) is dense in Hί(Ω)9 we have (4.1)

for veH^Ω). Next we prove (ii). Using the change of variables y = αί(x), we

obtain, for (/, g) e CΊ(dG) x C§(G°)

(4.2) ( fA'υrdS = - \ (Δ-<f)vΓdS - \ f(φΓ)(af(dS)-dS)lt,

(4.3)

where \v\ in the right-hand side of (4.3) is the zero extension to G°. By (3.1)

and (3.2) the last term of the right-hand side of (4.2) tends to

(4.4) ^rfvΓdiveG(-βX)dS = - ^ (άiwdGX)(βf)vΓdS -

as ί->0. We can easily show that A~xf converges to

(L x | a G-hdiv e G X)( — βf) — div 5 G( — βX)f as ί-*0 uniformly on δG. Hence from

(3.3) and (4.4), </, A'Or>dG converges to </, -β(Lx\dG)vΓydG as ί-»0. Similarly

we can prove that <#, ^ ' [ U D G O - * ^ , —^(^XIG°M)>GO a s ^"^^ This completes

the proof of Lemma 4.5.

LEMMA 4.6. Tftere is a constant C > 0 suc/i that
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\*fu-u(t)\ί)Ω(t)^Ct\J?\^ for all ίe[0, Γ J ,

where u(t) = ̂ ~(t, Se) and iι = w(0).

PROOF. Given a load & = (&, 0>, £) e Jί, we define v(t) to be the solution
of the problem

iityuW [ [ Γ(t) {
fl(O Jθ(0 JΓKO ι Ji(O

for all w e V(Ω(ή). From (1.3) we have

(4.5) [ σtJ(u(t) - v(t))eu(w)dx = [

By considering the zero extension of {w}, and a partition of unity, the argument in
the proof of Lemma 4.3 yields the estimate

with Cx independent of «̂ , w and t. Then in view of (4.5) and (1.5), the Lax-
Milgram theorem (see e.g. [2]) and Theorem 2.7 imply

(4.6) \u(t) - v(t)\UΩ(t) S C2t\&\ίί2tGo

with C2 independent of & and t. Now let

at(υ9 w) = ) Ω t ^ijiv>iA^)άx for v,we V(Ω(t)),

and £t(u, w) = at(ocfu9 cc*w) — ao(u, w) for w e V(Ω). Then, by an argument as in

the proof of [12, Lemma 4.10] we have

(4.7) K(«,*OI ύ C3t\u\UΩ\w\liΩ for weV(Ω).

From the identity (1.3) we have

at(a*u9 ocfw) = [ ^-wdx + [ £-wΓdS + [ 0>Ίw}dS + £t(u, w)
JΩ jΓi JΣ

() [ J2'((x*w)Γ(t)dS+ [
Ω(t) JΓi(f) Jl(ί)

-oc*w)dx + ί ^•(w-α?M>)
JΓ!(ί)

Notice that here we have used the fact that the Lebesgue measure of Ω — Ω(t) and
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Γί—Γί(t) are zero. Using the definition of v(t), we therefore obtain

at(ocfu-v(t), α*w>) = \ &-(w -<x*w)dx + \ £-(w-oι*w)Γ(t)dS

+ f α*^.[α*M>](α* (dS)-dS) + £t(u, w).
JG°

As in [12, p. 41], we see that

349

Using a partition of unity, Lemma 4.2 and Theorem 2.6, we obtain

If J2.(n>-cc*w)Γ(t)dS
I JΓi(ί)

2 i β σ | w Γ | 1 / 2 f Λ ^ C6t\J?\Jw\ί)Ω.

Since (<x*(dS) — dS)/t = ωtdS with uniformly bounded functions ωr on G°,

If (α*^).Iα>I«(^)-
I J Go

Thus, together with (4.7), we have

for all w e F(Ω). Since α*M - t>(ί) e V(Ω(t)\ this gives

Hence, by (1.5), we finally obtain

(4.8) l α ^

The desired estimate now follows from (4.6) and (4.8).

4.3. PROOF OF THEOREM 4.1. Since mapping «£?-•./(^) is uniformly continuous

on bounded sets of Jϊ (Proposition 3.6), and since

ur={c$(G)y x {cz(G°)y x {ct{dG)γ

is dense in ^( see [8, Chapter 1, (11.6)]), it suffices to consider the case S£ eΛ.

By Lemma 4.6, we have

(4.9) l i m ^ o r M α * n - n ( 0 l i Ω ( ί ) = 0.

Letat(v, w) be as in the proof of the previous lemma. By(1.3)with v = u(t) — oι.fu,

we see that
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\E(u(t);J?)-E(afu;J?)\

= IK(«W, u(t))-at(oi*u, x*u)}/2-at(u(t), u(t)-a*u)\

= at(u(t) - afu, u(t) - z*u)/2 ̂  C^uiO-afu^^y.

Hence, by (4.9),

E(u(t);J?) = E(oL*u;J?) + o(t) (ί^O).

By the definition of the energy release rate we have

{u, u) - at(**u, α*n)}/2

lim^o r 1 \ ^'{ocfu-u)dx + lim^0 Γ
ι \[ £-((x*u-u)Γ(ί)dS

jΩ(t) UΓUt)

Now we introduce cut-off functions ω, ζe CQ(R3) such that

0 ^ ω, ζ ̂  1; A ID VdΛ Π supp(l—ω), ω = 0 near ί̂ X1;

supp C c F a Λ , C = 1 on supp ω and ζ = 0 near

By calculations similar to those in [12, pp. 44-46], we have

(4.10)

-\ (l-ζ)WS'βdx
JΩ

- \}Ω{((X Γ)aijkll2)ekleij+ &. ( ( Z . V)u)β\dx + liπ^

where ^ " = (d/Λ)|det (Γα f )Γ 1 | f = 0

 a n d

( ) Γ ( f ) [ l
JdG JG°

From Lemma 4.5 it follows that

(4.11) l i m ^ 0 ? - 1 / ί = - < £ , ^ L x | δ G n Γ > a G - < ^ , j8Lx|Go

Let {βm} be a sequence of functions in C$(R3) such that O^0 m <Π,

suρpj8 m c :7 M , j8 m s l on A, and ̂ m-^χA a.e. as m->oo. Here χA is the

characteristic function of A. Since βm = 1 on supp (1 — ω), substituting β = βm into

(4.11) and letting m->oo, we see that the right-hand side of (4.11) tends to

(4.12) - <J, ( l-ω)L^ | e G ι ι r > δ G - ί ω^.
Jrnκ

- <<?, (l-ω)L x | G θ [n]> G o -
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To treat the other terms on the right-hand side of (4.10), we first observe the
following: Since Djβ=Q on supp(1 — ώ) and £ Ξ 1 on supp ω,

(4.13) J f l σ^Dβ) {{X • F)Uι)dx =

On the other hand, since there is V as in (1.7), (X • V){ζύ) e H\Ω) by Theorem 1.3.
Hence by Green's formula and (1.4),

(4.14) J f l Dj(ωσiJ)β((X • rχζu

Combining (4.13) and (4.14), we obtain

(4.15) [ σt/Pjβ)«X'r)uddx=-[ Dji(ωσtJ){(X

ωJf((X F)(ζud)rβdS + ̂  ω ^ ^ X Γ) K«J| )βdS.

We now substitute β=βm in the right-hand side of (4.10), and then let
Then taking (4.12) and (4.15) into account, we find

(4.16) \δΣ(t)\9{J?;{Σ(t)})

ΩClA J A(\Ω

+ ( dX. V){ζW))dx - \ (l-QWS'dx
JΩΓ\A JΩΓ\A

- \ {((X • V)aiikll2)eklei} + JF ((Z V)u)}dx
JΩΠA

- (J2, (l-ω)Lx\dGurydG - (&, ( l -

Since ωσip ζeijsj[r{Ω) and (X - V){ζu?) eH\A Π Ω), a slight modification of the
argument in the proof of Lemma 3.4 yields

(4.17) ( (X Γ)(ζW)dx = { W(X- v)dS - { W(άiwX)dx
JAΓ\Ω JdiA JAΠΩ

(l-ζ)W(divX)dx.[
AΠΩ

Furthermore, as in the proof of (4.14), we have

(4.18) ( Djlωσ^X. F)(ζUi))}dx = \ σyv/(X P)(uJ)dS
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\ F) K«] )dS +[ ω£ - ((X F)(ζu))dS.
AOΣ JAnr

Here we have used the fact that ω = ζ = 1 on d^A and ω = £ = 0 on dxΣ, Collecting

terms in (4.16)-(4.18), we therefore obtain

(4.19) \δΣ(t)\9{X\ {Σ(ή}) = J{&) + [ (l-ζ){W(βvX)-WS'}dx.
JΩOA

Now take a sequence {ζm} of functions in CQ(R3) such that £m->l a.e. in 4̂ as

m-κx). Replacing £ in (4.19) by ζm and then letting m->oo, we conclude that

which completes the proof of Theorem 4.1.
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