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1. Introduction

For/: DcRn-+Rn consider the equation

(1.1) *= / (* ) , xeD,

where D is a path-connected set. Let the l.u.b. Lipschitz constant off over D be
defined by

(1.2) L(f) = sup ||/(x)-/O0||/||x-.vl|,
x,yeD,x,=hy

where || • || is a given norm in Rn. Then it is known [1] that if L(/) < 1 and there
exists an x(0) e D such that

(1.3) S = {h; \\h-xW\\^L(f)\\x^-x«>m(l-L(f))} c D,

then (1.1) has exactly one solution x* in D and

(1.4) ll*(1)-x*ll S L(f)\\x^-x^\\l(l-L(f)),

where x<*> =/(x<0>).
When L(/) is finite, the Dahlquist constant of/ over D (see [3]) is defined by

(1.5) d(f)= lim (L(J + / i / ) - l ) / / i .
/i-H-0

Soderlind [2] has shown that if x* is a solution of (1.1), x<°\ x<x> e D and d(f)< 1,
then

(1.6) K - x ^ l l ^ L(/)||x(1)-x(°)||/(l-rf(/)),

where x ( 1 )=/(x ( 0 )) . Since d(f)^L(f)9 the estimate (1.6) gives a smaller error
bound than (1.4) when d(f)<L(f) and especially when d(f)<0.

For * = (*!, x29...,xn)
T and ̂  = ( ^ , y 2 v . . , y n ) T e C n , let v(x) = (|x1|, |x2 |,...,

|xn|)T and write x^.y if xf and yf are real and x f^y f (i = l, 2,..., n). Denote by
o-(>l) the spectral radius of an n x n matrix A. For real nxn matrices A = (aij)
and B = (bij) write 4 ^ £ if a f j ^b i } (i, j = 1, 2,..., n). Then Urabe [5] has shown
that if there exists a matrix K^O such that
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(1.7) v(f(x)-f(y))^Kv(x-y) for

a(K)<\ and there exists an x ( 0 ) eD such that

(1.8) S = {h: v(/i-x<1>)^(/-K)-1Kv(x(0>-x(1))} c D,

then (1.1) has exactly one solution x* in D and

(1.9) v(x^)-x*) ^ (/- JK)

where x ( 1 )=/(x ( 0 ) ) and / is the identity matrix.
When the condition (1.7) is satisfied by K^O, there exists a real matrix M

( M ^ K ) with nonnegative offdiagonal entries such that for any e>0 a number
<5 > 0 can be chosen so that if 0 < h< S then

(1.10) v[( J + hf)(x) - (I + fe/)00] - v(x - >>) ̂  fc(M + e/)v(x - >>) for x, y e D.

This matrix M plays the role of d(f) in componentwise error estimates just as K
does that of L(f) in (1.9). The first object of this paper is to show that, if there
exists a matrix K^O satisfying (1.7) and (T(K)> 1, then

(1.11) v(xM-x*) g (I-M)-lKv(x^-x^).

The estimate (1.11) gives a smaller error bound than (1.9) when M^K and
especially when M has negative diagonal entries.

A generalized Newton method for solving the equation

(1.12) 0(x) = O, xeD

transforms (1.12) into (1.1) with f(x) = x — H(x)g(x) and performs the iteration
x{k+l)=f(x(k)) (fc = 0, 1,...)» where H(x) is a matrix approximating J(x)"1 and
J(x) is the Jacobian matrix of g(x). Urabe [5] and Yamamoto [6, 7] have shown
the existence and uniqueness of the solution of (1.12) by this method and obtained
componentwise error estimates. The second object of this paper is to obtain
error bounds of approximate solutions of (1.12) in terms of matrices corresponding
to Dahlquist constants.

Although the results in this paper are stated and proved only for real functions,
they are valid also for complex functions / and g. Finally the results are illus-
trated by numerical examples.

2. Preliminaries

Denote by L(Rn) or L(Cn) the set of all real or complex nxn matrices re-
spectively and by N(Rn) the set of all matrices A e L(Rn) with nonnegative off-
diagonal entries. Denote by ||x|| the /p-norm ( l ^ p ^ o o ) of xeCn and by || • H*
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the dual norm of || • ||. For A = (au) e L(Cn) let \\A\\ =sup^ 0 Mx||/||x|| and

(2.1) V(A) = (|fly|),

where

[ K\
(2.2) cv =

Let

(2.3) e = (l9 1,..., l ) r ,

and for A, BeL(Cn) let

(2.5) KB) = (\\bi\\, \ \ b 2 \ \ , . . . , \\bn\\),

where

AT = (au a2,..., an), B = (bu b2,..., bn).

Then we have c(I) = e and r(I) = eT. Notations cp(A) and rp(A) are also used to
specify the /p-norm.

Denote by d(A) or dp(A) the Dahlquist constant of A e L(Cn) with respect to
the /p-norm. Then the following results are known (see [4]):

(2.6) \d(A)\ ^ \\A\\,

(2.7) dt(A) =

(2.8) d , , ^ ) = max (Re au + Z ^ f Iflyl),

(2.9) rf2(^) = maximal eigenvalue of (A + A*)/2,

where * stands for conjugation and transposition.

LEMMA 1. For A e L(Cn) and beC"

(2.10) v(Ab)^c(A)\\b\\.

PROOF. Let AT = (au a2,..., an). Then by Holder's inequality we have

\ajb\ ^ \\atUb\\ ( i = l , 2,..., n).

From this (2.10) follows.

COROLLARY. For A and BeL(Cn)
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(2.11) v(AB) g, c(A)r(B).

Let B: C" x C°-»C° be a bilinear operator such that

(2.12) Bxy = lBlX, B2x,...,Bnx\y, x,yeC», BteL(C") (i = l, 2,..., n).

Then

(2.13) v(Bxy)^\\x\\\\y\\b(B),

where

(2.14) b(B) = c(S\ B = MBO, c(B2),..., c(Bn)-] ,

because by Lemma 1

v(Bxy) g UxUBi), \\x\\c(B2),..., ||x

^ \\x\\Bv(y) ^ \\x\\ \\y\\c(B).

We write B^O if B f^0 (i = l, 2,..., n).

LEMMA 2. For A=(ay) e L(/?") let

where

if<*Q)<i,t

(2.15)

PROOF.

hen(I-K

Let

v((/-A

(fl«=0)

(a,,<0)

f — ̂ 4)-1 exist and

) - 1 ) ^ ( / — jL((i4))""1.

n)

where

atJ (a v =0)
(i,j = l, 2,...,n).

0 (ay<0)

Then P^O, N^O and S=N+P. As Q^O and (T(Q)<1, (/-Q)"1 exists and
( 7 - 0 - ^ 0 (see [5]). We have I-n(A)=(I + D)(I-Q) and (I + D-^O, so
that (/—/i(^))"1 exists and is nonnegative. Since
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0 ^I + v(R) + v(R)2 + ...

(7-R)"1 exists and vftZ-jR^O^U-Q)""1. Hence (I-A)'1 exists and (2.15)
follows, because I-A = (I + D)(I - R).

COROLLARY 1. Ifa(v(A))<l, then (I — ̂ A))'1 exists and

(2.16) Og(/-Ai(X))-^(/-v(A))-i.

PROOF. Since

0 g (J + D)"^ ^ S ̂  5 + D S v(A)

and o-(v(i4))< 1, it follows that <r(Q)< 1 and by Lemma 2 (/ — fi(A))~l exists and is
nonnegative. Hence (2.16) is obtained because / — v(A) ̂  / — /i(A) and (/ — v(A))~1

COROLLARY 2. For KeL(Rn) and MeN{R") ifM^K.K^Oand a(K)< 1,
then (/ —M)"1 exists

(2.17) 0 g (7-M)"1 ^ (/-1Q-1 .

PROOF. Let D be defined as in the proof of Lemma 2 and put S = M + D.
Then S ̂  0 and 0 ̂  (/ + D)" lS = Q ̂  S ̂  X. Since a(X) < 1, it follows that <r(Q) < 1
and by Lemma 2 (I-M)'1 exists and ( J - M ) " 1 ^ . We have (2.17) because
I-K^I-M and ( / - X ) " 1 ^ .

LEMMA 3. For A e L{Cn) if d(A)< 1, rfcen (Z-^4)"1 exists

(2.18) \\(I-A)-i\\

PROOF. From the definition of d(A) for any e > 0 there exists a <5 > 0 such that
if 0<h<<5 then

\\{I + hA)x\\ - \\x\\ ̂  h(d(A) + e)\\x\\ for xeC\

51. Then for 0<h<8t

so that
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||(/-i4)x|| ^(l-d(i4)-e)||jc|| for any s > 0.

This yeidls

\\(l-A)x\\^(l-d(A))\\x\\.

Since d(A) < 1, (/ — A)x — 0 implies x = 0. Hence (/ — A)~1 exists and

\\y\\ ̂ (l-d(A))\\(l-A)-ly\\ forall yeC\

from which (2.18) follows.

LEMMA 4. For A e L(Cn)

(2.19) v((I-A)x)^(I-n(A))v(x) for xeC".

PROOF. Let A = (aiy) and ft, = Re aH (i = 1, 2,..., n). Then

From this (2.19) follows.

3. Error estimates

3.1. Nonlinear equations

Consider the equation (1.1) and introduce the following conditions.

CONDITION L: There exists a K e L(Rn) such that K^O and

(3.1) v( / (x)- /O0)^Kv(x->;) for x,yeD.

CONDITION D: There exists an MeN(Rn) such that for any e>0 a number
8 > 0 can be chosen so that

(3.2) v[(/ + hf)(x) - (I + hf)(y)-} - v(x -y)£ h(M + el)v(x - y)

for x, yeD, 0 < h < 6.

CONDITION I: For M e N(Rn) satisfying (3.2), (/ - M)~l exists and (/ - M)~l

Urabe [5] proved the following

THEOREM 1. Suppose that Condition L is satisfied, a(K)<l and that there
exists an x(0) e D such that
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S = {h: v(h-x^)^(I-K)-1Kv(x^-x^)} cz D,

where x(1)=/(x(0)). Then a sequence {x(fc)} in S is defined by

(3.3) x<fc+1>=/(x<fc>) (fc = 0, 1,...),

it converges to a limit x*, which is the unique solution of (1.1) in D, and

(3.4) v(x*-x<*>) = (J-K)-1*:*^**1*-**0*) (fc=l, 2,...).

COROLLARY. Under the assumptions of the theorem

(3.5) v(x*-xM) £ (I-K)-lKv(x^-x^).

LEMMA 5. / / Condition L is satisfied, then Condition D is satisfied with

PROOF. For h>0 we have by (3.1)

vl(I + hf)(x)-(I + hf)(y)l - v(x-y)

^ v(x - 30 + hv(f(x) -f(y)) - v(x -y)£ hKv(x - y) for x, y e D.

This proves the lemma.

LEMMA 6. Suppose that Conditions D and I are satisfied. Then (I—f)~A

exists on R = (I -f)(D) and

(3.6) vl(I-fYl(u)-(I-fy\v)-]^(I-M)-^(u-v) for u,veR.

PROOF. Put dt =6/(1 + <5) and k = h/(l-h) for 0<h<Sv Then for 0<h<St

- hv£(f-I)(x)-(f-I)(y)l = v(x-y) - ^v[(/-/)(x)-(/-/)(y)] - v(x-y)

= v[(/ + fc(/- I))(x) - (I + fc(/- MyJ] - v(x - j )

= (1 - fc) [v{(/ + /c/)(x) - (/ + fc/X^)} " v(x - y)] - Av(x - y)

=

Hence

v[(/ ~f)(x) - (I -f)(y)] = (I-M- el)v(x - y) for any e > 0,

which yields

v[(/-fXx)-(I-f)00] ^ ( / -MMx-y) .

Since (/ — M)~x
=0, we have

v(x-y) ^ (I-M)-hl(I-f)(x)-(I-f)(y)-] for X
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This implies that /— / : D-+R is one-to-one. Hence (/—Z)"1 exists and (3.6)
follows.

THEOREM 2. Suppose that Conditions L and I are satisfied and that (1.1)
has a solution x*eD. Then x* is the unique solution of (1.1) in D. If x ( 0 )eD

, then

(3.7) v(x^)-x*) ^ (I-M

PROOF. Condition D is satisfied by Lemma 5 and the uniqueness of the
solution to (1.1) follows from Lemma 6. Since

) = 0,

we have

* ( l ) = (/-/r iiy(* (0))-/(x ( i ))], ** = (j-/)-i(o)

and (3.7) follows from (3.6).

COROLLARY 1. Under the assumptions of Theorem 1 the estimate (3.7) holds.

PROOF. Condition D is satisfied by Lemma 5. By Corollary 2 to Lemma 2
Condition I is satisfied. By Theorem 1 (3.1) has a solution x*eD. Hence by
Theorem 2 (3.7) is valid. This completes the proof.

Under Condition L let KeL(Rn) satisfy K^K^O and

(3.8) v(f(x)-f(xW))SRv(x-xW) for xeD

and let i\? e N(Rn) satisfy \1^K and the following condition: for any e > 0 there
exists S > 0 such that if 0 < h< S then

(3.9)

for xeD.
Then we have

COROLLARY 2. Under the assumptions of Theorem 1

(3.10) v(x^-x*)^d2^dl £d9

where

(3.11) d = (I-K^Kvix^-x^), dt = (I-

d2 = ( / -

PROOF. Since 0 ^ £ ^ X and <T(JK:)<1, we have a(R)<l and by Corollary 2
to Lemma 2
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0 S (I-M)-1 g (I-K)-1 ^ (I-K)"1.

From (3.9) it follows that

Hence

and (3.10) follows.

Let K^O and M(M<LK) satisfy (3.8) and (3.9) respectively with x<*> replaced
by x(0). Then in the same manner we can show the following

THEOREM 3. Suppose that Condition L is satisfied, G(K)<1 and T={h:
v(/i-x(°O^(/-X)"1v(x<1)-x(°))}c:Z). Then (1.1) has a unique solution x* in
D and

v(x<°)-x*) g (I-M)

3.2. Generalized Newton method

For #(x): Dc:Rn-*Rn consider the equation

(3.12) 0(x) = O, xeD

and a generalized Newton method which transforms (3.12) into (1.1) with

(3.13) /(x) = x - Hg(x)

and performs the iteration (3.3) with x(0) e£>, where H is a matrix approximating
J(x<0))"1 and J(x) is the Jacobian matrix of g(x). We introduce the following

CONDITION G: 1°. #(x) is continuously differentiate on a convex set D..
2°. There exists a symmetric bilinear operator B^O such that

(3.14) v[i/(J(x)-./(x(0>))] ^Bv(x-x<°>) for xeD.

Let

(3.15) F = / -

(3.16) L = X + Ba, b = b(B% c = w + Baa/2, t = (1-\\L\\)2 - 2\\b\\\\c\\.
Then we have

THEOREM 4. Suppose that Condition G is satisfied and that
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(3.17) | |L | |<1 , tZO, S = {ft: **-*<»)£/»} <=Z>,

where

(3.18) p = (/-L)-i(c + a2b/2), a = 2||c||/(l- ||L|| + V0-

Then (3.12) has a solution x* in S.

PROOF. We have

(3.19) Hg(x) - Hg{y) = HJ(x™)(x-y)

Hence

(3.20) v(f(x)-f(y)) £ Lv(x-y) + Bvty-x^Mx- j ; ) + £v(x-y)v(x-y)/2.

Since a satisfies the equation a= ||L||a+ ||fo||a2/2+ ||c||, it follows that

(3.21) ||jS||^(||c||+a2 | |ft||/2)/(l-||L||)^a

(3.22) p = c + a2fc/2 + Ljg.

Define {«(*>} by

(3.23) w<k+1> = LMW + Bu^u^/2 + c (fc=l, 2,...)

with M<1) = 0. Then for jk = l, 2,...

(3.24) 0 ^ M<k>

In fact (3.24) holds for fc=l because 0 = M < 1 ^ C = M<2)^J9. Assume that (3.24)
is valid for fe = l, 2,..., m - 1 . Then

M(m+1) — M(m) = L( M (m)_ M (m-D) + 5M(m)(M(m) _ u(m

and by (3.21) and (3.22)

w<m+1> ^ L M « + ||M(")||2fe/2 + c ^ L)8 4- a2b/2 + c = )8.

Hence (3.24) holds for k — m. This completes the induction.
From (3.24) it follows that there exists a u* such that u(k)-+u* (fc-»oo) and

u*^p. This M* satisfies the equation

(3.25) u = Lu + Buu/2 + c.

We shall show by induction that the sequence {x(fc)} is defined by (3.3) and
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for fc=l, 2, . . .

(3.26) v(x<*+1>-x<*>) ^ u<k+1> - u >

Since

V(X(2)_X(D) ^ c ^ w(2) _

(3.26) holds for fc= 1. Assume that (3.26) is valid for fc= 1, 2,..., m - 1 . Then

By (3.20)

- ! ! ^ " 1 ) ) + £(u(m> - U^'^) (u (m)

J5M (m"1)(u (m)-M (m~1))

Hence

(3.27)

and (3.26) holds for k = m. This completes the induction.

From (3.26) it follows that {x(k)} is a Cauchy sequence. Hence there exists
an x* such that x^-+x* (k-+oo) and v(x<1>-x*)^j8 by (3.27). From (3.3) and
(3.13) we have Hg(x*) = 0 by continuity of g{x). Since | | F | | ^ | |X | | g | |L | |< l ,
I-F = HJ(x^0)) is invertible, so that H~l exists and we have #(x*) = 0.

COROLLARY 1. Under the assumptions of the theorem x* is the unique
solution of (3.12) in S1 = {h: v(h — X ( 1 ) ) ^ M * } , w/i^r^ w* is the unique solution of
(3.25) obtained by the iteration (3.23) with u^ = 0.

PROOF. Let x be any solution of (3.12) in St. We shall show by induction
that for fe=l, 2,....

(3.28) v(x-x<k>)^ M* - w<fc>.

For k = l (3.28) is valid because v ( x - x d ) ) ^ M * g M * - w d ) . Put v (x-x^) ) = w^)
0 = 1, 2,...) and assume that (3.28) holds for fc=l, 2,..., m. Then by (3.20)

Hence (3.28) is valid also for /c = m + l and this completes the induction.
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Letting fc->oo in (3.28), we have v(x — x*) = 0, which implies x = x* and the
proof is completed.

COROLLARY 2. Under the assumptions of the theorem let {fi(k)} be defined by

(3.29) £<*+1) = c + L0<*> + Bpwpw/2 (/c = 0, 1, 2,...)

withpw = p. Then

(3.30) j8<k> ^ /?<*+1> ^ w* (fc = 0, 1, 2 , . . . ) ,

so that there exists a /?* such that /?(fc)->/?* (/c->oo) and

(3.31) v(x^-x*) ^ fiW (fc = 0, 1, 2,...).

PROOF. It can be shown by induction that

(fe = 0, 1, 2,...).

Hence there exists a £* such that £<*>-•£* (/c->oo) and u*^>p*. From (3.27) it
follows that v(x^>-x*)^u* and (3.31) holds.

REMARK 1. If f > 0 in (3.17), then u* is the unique solution of (3.25) satisfying
0^u*^p. In fact let u be such a solution and put v = u* — u. Then i> satisfies
the equation

v = (/-L)"1[5(M* + M)/2]t; = Gt;.

Since

it follows that v = 0, so that u* = u. Thus if r>0, then we have u* = p* in
Corollary 2.

REMARK 2. Let {<5<k>} be defined by

(3.32) (5<*+1> = (I-L)-\c + B8ikW»l2) (k = 09 1, 2,...)

with <5(O) = )8. Then it can be shown that

v(xM-x*) ^ u* ^ SW g-j8<*> (fe = 0, 1, 2,...).

Let

(3.33) M = MF), L^M + Ba, tt = ( l - dCLJ) 2 - 2||6|| ||c||.

Then we have

THEOREM 5. [/nd^r ^/i^ assumptions of Theorem 4 w/f/i f>0 in (3.17) /̂ ^
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{yik)} be defined by

(3.34) /*+1> = (I-L^ic + By^yvil) (fc = 0, 1, 2,...)

with y(°) = y, where

y = (I-LJ

Then

y(k)^y(k+l)9 p(k)^y(k) (/c = 0, 1,2,...),

so that there exists a y* such that y(fc)-»y* (/c-^oo) and

(3.35) v(xW-x*) ^ yW ^ jj(fc) (/c = 0, 1, 2,...).

PROOF. From

x* - x<i) = x* - x<°>

it follows that

Jo

Put r = v(x* —x(1)). Then by Lemma 4 we have

(I-M)r ^ c + Bar + Baa/2.

By (2.6)

so that (/ — Li)"1 exists and by Corollary 2 to Lemma 2

Hence f x ^ t and a x ^ a , so that y^fi.
Define {i;(k>} and {w<*>} by

with t;(1) = w(1) = 0. Then it caiji be shown by induction that

Hence there exist v* and w* such that
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v(k) >v*9 w(ft> >w*(fc->c30), v*Sy, w*^j8 , v*<>w*.

Since w* is a solution of (3.25) satisfying Og w*g/?, by Remark 1 we have w* = u*,
so that r^v*^u* = P*.

Let {<5<k>} be denned by (3.32) with <5<°> = jft. Then it can be shown by

induction that

v(k) ^ y(k+l) ^ y(k) ̂  ^(fc)? (̂fe+1) <; ̂ (fc) ̂  jg(fc) ( /c=l ? 2 , . . : ) .

Hence there exist y* and (5* such that

By Remark 1 we have £* = /?*, so that t;*^7*g^*. This completes the proof.

Let

(3.36) 5 = (1-IIKII)2 - 2||6|| ||a||, sx = (l-d(M))2 - 2\\b\\ \\a\\.

Then the following theorem can be proved in the same manner.

THEOREM 6. Suppose that Condition G is satisfied and that

(3.37) ||X|| < 1, s > 0, T= {h: v(h-x^)^S} a D9

where

(3.38) 5 = (l-KY\a + y*bl2\ y = 2|

Then (3.12) has a solution x* in T.
Let {e(k)} be defined by

(3.39) £<k+1> = (I-MQ-iia + BeMeMp) (/c = 0, 1,...)

with s^0) = s, where

s = (I-M)-l{a + y\bl2), yt = 2\\a\\l(l-d(M) + yJsi).

Then

(3.40) v(x(°>-x*) ^ 6^+1> ^ e(fc) (/c = 0, 1,...).

3.3. Systems of linear algebraic equations

THEOREM 7. For a nonsingular AeL(Cn) let Tbe a matrix approximating
A'1 and put

(3.41) R = / - AT, E = A'1 - T, a = d(R).

If a<l, then
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(3.42) v(E)^c(T)r(R)l(\-a),

(3.43) v(E) ̂  v(TR) + c(TR)r(R)/(l - a),

(3.44) v(£) ̂  v(T(7 + R)R) + c(TR2)r(R)/(l - a).

PROOF. By Lemma 3 IK/-/*)"1!! g l / l ( - a ) . Since

E = T( l - JR)- 1 ^ = TR + TRil-R)-^

= T(I + R)R + TR^I-Ry^R,

by Corollary to Lemma 1 estimates (3.42), (3.43) and (3.44) are obtained.

Besides (3.24), (3.43) and (3.44) we have

(3.45) v(E)^c(TR)eTl(l-a),

(3.46) v(£) ̂  v(TR) + c(T)r(R2)l(l - a),

(3.47) v(£) ̂  v(T(/ + #)#) + c(TR)r(R2)l(l - a)
and so on.

THEOREM 8. For beCn and a nonsingular A e L(Cn), let x* be the solution
of the equation Ax = b, x be an approximate solution and Tbe a matrix approxi-
mating A'1 and put

(3.48) d = x* - x, r=b - Ax, R = I - AT, a = d(R).

If a<l, then

(3.49) v(d)^c(T)\\r\\l(l-a),

(3.50) v(d) ̂  v(Tr) + c(TR) ||r||/(l-a),

(3.51) v(d) ̂  v(T(I + R)r) + c{TR2) ||r||/(l-a).

PROOF. By Lemma 3 ||(7 - R)~x \\ ^ 1/(1 - a). Since

d = A~lr = T(I-R)-lr = Tr

by Lemma 1 estimates (3.49), (3.50) and (3.51) are obtained.

Besides (3.50) and (3.51) we have

(3.52) v(d) ̂  v(Tr) + c(T) | |Kr | | / ( l - f l ) ,

(3.53) v(d) ̂  v(T(I + R)r) + c(TR) ||*r
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and so on.

4. Numerical examples

Example 1. Consider the equation

(4.1) (xl9 x2)
T = / (x l 5 x2) = ( -2x? + *2 + 3, -

on the set

Then

5 12 J 30\ 5 - 8 .

Choosing x(°) = (0.46, 0.54)r, we have

x^> = (1.5584, 1.4784)T/3,

(4.2) u = .KXx^-x*0)) = (0.28488, 0.25912)r/9,

(I-K)-iu ^ llfiH^/a-IIKIL) S 0.0730462e.

Since

S = {(xl5 x2): 0.4464^x^0.5926, 0.4197gx2^0.5659} c D,

by Theorem 1 (4.1) has a unique solution x* in D.
We have for (3.5)

(4.3) (I-K)-*u ^ u + \\Ku\UeKl-\\K\\J g (0.0719458, 0.0690831)T

and for (3.7)

(4.4) (I-MYxu ^ ( / + M)M + \\M2u\\nej(\-dJM)) ^ (0.0285301, 0.0269081)r.

The estimate (4.4) gives a smaller bound of v(x(1* — x*) than (4.2) and (4.3).

Example 2. Consider the equation

(4.5) g(xl9 x2) = ( x ? - 3 x 1 x i - l , 3xfx 2 ~xi ) r = 0

on the set

D = {(x1? x2): 0 . 9 ^ x ^ 1 . 2 , -

Choose
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x<°> = (0.96, 0.04)r, H = 0.4/.

Then

2.592 0.168

0.168 2.592

0.168 2.592 \ / -0.104 0.09216
F =

2.592 0.168 / , V -0.09216 -0.104

= (1.0079488, - 0.0042112)T, a = (0.0479488, 0.0442112)r,

c = (0.0149301, 0.0060311)T.

We use J^-norm to have

(4.6) b = 2.16e, \\b\\ = 5.52, ||c|| = 0.0149301, ||L|| = 0.450522,

a = 0.0324658, J = c + a2fe/2 ^ (0.0163847, 0.0074856)r.

(4.7) p = {I-L)~ld ^ d + ||d||c(L)/(l - ||L||) ^ (0.0298187, 0.0209196)r = po,

d(Lt) = 0.242522, ax = 0.0213751,

dt = c + (xlb/2 ^ (0.0161912, 0.0072921)T,

^ (0.0213751, 0.0124760)r = y0.

Since

S = {(x1? x2): 0.9781^x^1.0378, -0.02514^x2^0.01671} cz D,

by Theorem 4 (4.5) has a solution x* in S. y0 gives a smaller bound of v(x(^1) — x*)
than p0. By one iteration we have improved bounds

c + LPQ + BpoPo/2 ^ (0.0282768, 0.0190958)T = px,

c + L^o + #yol>o/2 ^ (0.0190412, 0.01171 l l ) r = yt.

Example 3. Consider the system of linear algebric equations

(4.9) Ax = b

where

Let

/ 1.06 -1 .01
x = (1.05, 0.95)T, r =

V -2 .01 3.15
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be approximations to the solution x* of (4.9) and to A~l respectively and put

d = x* - x, E = A'1 - T.

Then

/ 0.17 0.12
R = 1 - AT= - I, r = b - Ax = ( - 0 . 1 , -0 .05) r .

\ 0.11 0.13

We have

(4.10) v(E)S v(T(I + R)R) +

0.0623031 0.0152995

0.0243947 0.1535894

(4.11) v(E)^ v(T(I + R)R) + cJTO2)/

0.0609799 0.0142876

0.0214930 0.1511705

(4.12) v(d) ̂  v(T(I + R)r) + c^TR) \\Rr\\J(l- \\R\\J

S (0.0511334, 0.0579246)r,

(4.13) v(d) ̂  v(T(I + R)r) + c^TR) WRrWJil-d^R))

^ (0.0504456, 0.0562983)T.

Estimates (4.11) and (4.13) provide slightly smaller bounds than those which
employ \\R\\,,.

Combining (4.11) and (4.13) with the estimate

'0.0605504 0.0146054\
(4.14) v(E) ̂  ( ( ) ) ^ ^ K ^ ) ) g

\ 0.0202280 0.1515440/
we have

0.0605504 0.0142876
(4.15) v(E) S ,

0.0202280 0.1511705

Error bounds (4.15) and (4.13) are to be compared with

/ 0.06 0.01
v(E) = [ ], v(d) = (0.05, 0.05)^.

\ 0.01 0.15
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