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Introduction

Let X be a Banach space over the real field R with norm |- | . Let {S(t);
t^O} be a linear contraction semigroup on X of class (Co) and let A be the infini-
tesimal generator of {S(t); t^O}. Let Q be a subset of [a, b) x X(a < b^ + oo)
and let B be a nonlinear continuous operator from Q into X.

In this paper we are concerned with the existence and uniqueness of global
mild solutions to the initial-value problem for a semilinear differential equation

(0.1) u\i) = Au(t) + B(t, u(t)% T<t<b,

where (T, Z) is given in Q. Here by a mild solution is meant an Z-valued con-
tinuous function u on the interval [T, b) satisfying the following Volterra integral
equation:

(0.2) u(t) = S(t-T)z + T S(t-s)B(s9 u(s))ds, x ^ t < b.

In general, a mild solution may not be differentiate and hence need not be
an exact solution to (0.1). But this notion is known as the most natural one of
the generalized notions of solutions to (0.1). For regularity results of mild solu-
tions, see for instance Martin [10].

Semilinear equations of type (0.1) have been studied by many authors and
the present paper is related to the works of Iwamiya [1], Kato [2], [3], Kenmochi
and Takahashi [4], Lakshmikantham et al [6], Lovelady and Martin [7], Martin
[8], [9], Pavel [11], [12], [13], Pavel and Vrabie [14], [15] and Webb [16].

In case Q is open, various results have been obtained by the analogy with the
theory of ordinary differential equations in Rn. The case in which Q is closed
has been considered in relation to so-called flow invariant sets.

For the case in which A = 0 and equation (0.1) is understood to be an ordinary
differential equation in a cylindrical domain O = [a, b)xD in the product space
la, b)xX, Martin established fundamental results. A properly noncylindrical
case was studied by Kenmochi and Takahashi [4] and their results have been
recently generalized by Iwamiya [1].
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The existence and uniqueness of solutions to (0.1) has been treated by Martin
[9] who considered equation (0.1) in the cylindrical case as mentioned above under
the "quasi-dissipativity" condition for B(t, x) for each t. The results of Martin
have been extended by Pavel [12] to the case of noncylindrical domains.

In this paper we establish the global existence and uniqueness of mild solutions
under the following conditions:

If (tn9 xn) e Q, tn 11 in [a, b) and xn->x in X as n->oo, then (f, x) e Q.
(Q2) liming; 0 h~ ̂ (S^x + hB(t9 x), Q(t + h)) = 0

for all (t, x)eQ, where Q{t) = {xeX;(t,x)eQ} for te[a, b).
(03) [x-y , B(t, x)-B(t, jOD-^0, I^-J'l)

for all (t, x), (r, y) e Q, where
[x, y]_=limAto/i-1(|x + /i>;|-|x|)for x, yeX

and g is a function from [a, b)x R into R with the following properties:
(gl) g(t, w) satisfies so-called Caratheodory's condition.
(g2) g(t, 0) = 0; and w(t) = 0 is the maximal solution to the initial-value problem

= g(t9 w(0), a<t <b,

= 0.

We here make some brief remarks on these conditions; precise meaning of
the notation appeared in them are given in Section 1.

Condition (01) is a closedness condition in a certain sense for the domain.
In particular, it implies that each section Q(t) is closed. So it is equivalent to the
closedness condition for the sections Q(t) provided that Q is cylindrical.

Condition (Q2) is a necessary condition for the mild solutions of (0.1) to
exist and it is one of the variants of so-called "subtangential" condition. Notice
that in case of >4 = 0 condition (Q2) is identical with the condition

liminfuo hrld(x + hB(t, x)9 Q(t + h)) = 0 for all (t, x)e Q.

Further, it should be mentioned that if (t, x) is an interior point of Q, condition
(Q2) is always satisfied. We shall see that condition (Q2) together with condition

((21) ensures the existence of approximate solutions for (0.1).
Condition (£23) is fulfilled if

\B(t,x)-B(t,y)\^g(t,\x-y\) for (t, x),(t, y)e(i

since [x, j>]_^|.v|. This is a familiar condition in the theory of ordinary differ-
ential equations and ensures the unicity of solutions. The operator B(t, • ) is
said to be co-dissipative if

lx-y,B(t,x)-B(t,yy]-£(D\x-y\ for (t, x), (t, y)eQ;
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hence condition (03) may be regarded as a relaxation of the "dissipativity"
condition as employed in the papers cited above. The assumptions (#1) and (g2)
on the function g seem to be very general, although condition (Q3) not only
guarantees the unicity of mild solutions to (0.1) but also it is fully applied to
establish the convergence of the approximate solutions.

So far, the global existence has been discussed by assuming that Q is cylindrical
([13]), or else by imposing some additional conditions on the operators A and B.
In this regard we treated the regular case in which 4̂ = 0 in the previous paper [1]
under the conditions (Q1)-(Q3) and obtained an optimal result concerning the
global existence. The result is obtained without any additional conditions.
In particular, if Q is either connected or cylindrical, then the solution exists up to
b for any initial data. The result states that the maximal interval of existence of
solutions is determined by the connected component of the domain Q in which
the initial data lie. In fact, the verification of the result is based on the fact that
the maximal interval of existence depends continuously upon initial data; and
this continuous dependence implies the global existence (cf. Theorem 2.2). In
this paper we shall show that the above idea is applicable to the global existence
problems for a much wider class of semilinear differential equations.

The present paper is organized as follows:
Section 1. Main Result.
Section 2. Topological Results.
Section 3. Comparison Theorems.
Section 4. Uniqueness of Mild Solutions.
Section 5. Local Uniformity in Subtangential Condition.
Section 6. Approximate Solutions.
Section 7. Local Existence.
Section 8. Existence in the Large.
Section 9. Concluding Remarks.

1. Main result

Let X be a Banach space over /? = (— oo, +oo) with norm |-|. Given a
subset g o f . R x I w e denote by Q(t) the section of Q at teR, i.e. 2(0 = {*el ;
(t, x)eQ}. In what follows, let [a, b) be a fixed subinterval of R and Q a fixed
subset of [a, b)xX such that Q(i)^<t> for all te [a, b). We denote by {S(t);
t^O} a contraction semigroup on X of class (Co) and write A for the infinitesimal

generator of {S(i); f = 0}, i.e. A is the linear operator defined by

Ax = limAi0 h-ilSifyx-x]

for x e X such that the right side exists. Let B be a continuous function from Q
into X.
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Given (T, Z) e Q, we consider the initial-value problem

u'(i) = Au(t) + B(t, ii(0), T < t < b,
(IVP;x9 Z)

U(T) = z.

First we list two notions of solutions of initial-value problems of the form
(IVP;T,Z).

DEFINITION 1.1. Let / be a subinterval of [a, b) which is written in the form
[T, C] or [T, C). A continuous function u from J into X is said to be a solution to
(IVP; T, z) on J if M(T) = Z, (f, w(f)) e O for all f e J, M is continuously differentiable
on (T, C) and if u satisfies u'(i) = Au{i) + B{t, u{t)) for all te{z, c). Moreover, a
continuous function u from J into Z is said to be a mild solution to (IVP; T, Z)
on J if it satisfies

(1.1) u(i) = S(t-T)z + T S(f-s)£(s, u(s))ds for all re J.

It is well known that a solution u to (/FP; T, Z) on J is a mild solution to
(IVP; T, z) on J.

We next introduce basic notation and terminologies. For x j e l w e define

(1.2) [x, y]_ = lim^of

Note that \x\£\x-hy\ + h[x, >>]_ for all fc^O and [x, >> + z]_ ^[x , y]_ + |z|
for x, y, zeX. For each (t, x)eRx Xand r > 0 we define

(1.3) Sr(t,x) = {(s,y)eR x X; \s-t\<r, \y-x\<r}.

Moreover, if x e X and D is a subset of X we define the distance between {x}
and D by

(1.4) d(x,D) = M{\x-y\ ;yeD}.

Let g be a function from [a, b)xR into /?. We impose the following two
conditions on g.

(g\) g(t, w) is continuous in w for each fixed t and Lebesgue measurable in
t for each fixed w; and for each r>0, there is a locally integrable function Lr(t)
defined on [a, b) such that \g(t9 w)|^Lr(0 f° r *e [a, &) anc* for w with |w|^r.

g(t, 0) = 0; w(t) = 0 is the maximal solution to the initial-value problem:

f w'(t) = g(U w ( 0 ) , a<t<b,
(1.5)

vv(fl) = 0.
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REMARK 1.1. Condition (#1) is often called Caratheodory's condition.
Given (t, rj)e[a, b)xR9 we denote by m(t; T, n) the maximal solution of

the initial-value problem

f vv'(O = g(t, w(0), T<t,
(1.5)

1 W(T) = n.

Then condition (g2) states that for all r e [a, b), the maximal solution m(t; T, 0)
is defined on all of [T, b) and m(f; T, 0) = 0.

For convenience of future reference in the rest of this paper, we here list
our basic assumptions:
((21) If (tn, xn) e Q, tn 11 in [a, b) and xn-+x in X as n-»oo, then (f, x) e Q.
(Q2) liming 4 0 h~ld(S(h)x + /tfl(r, x), (2(* + h)) = 0 for all (f, x) e O.
(Q3) There is a function g from [a, b)x R into tf with properties (#1) and (g2)

for which [ x - j , fl(f, x)-B(t, y)~\_<Lg(t, \x-y\) holds for all (f, x),

REMARK 1.2. It is well known that condition (Q3) is equivalent to the
following condition:
(Q3)' There is a function g from [a, b)x R into /? with properties (#1) and (g2)

for which |x-j/|^|x->>-<5CB0, x)-£(f, y))\+dg(t, \x-y\) holds for all
(r, x), (f,

Our main result in this paper is now stated as follows:

MAIN THEOREM. Suppose that conditions (Ol), (Q2) and (Q3) are fulfilled.
If Q is a connected subset of \a, b)xX such that Q(t)^<f> for all te{a, b), then
for each (T, z)eQ, (IVP; T, Z) has a unique mild solution on [T, b).

We here outline the argument to obtain the above theorem.
First the local existence and the uniqueness of mild solutions to (IVP; T, Z)

are established. We next consider for each (r, z) e Q the unique mild solution u
of (IVP; T, z) that is no longer continuable to the right of T(r, z), the final time
of u. Then we construct a continuous local semiflow U(t, T, Z) on Q (in the sense
of Definition 2.1 below) by setting U(t, t, z) = u(t) for t e [T, T(T, Z)). The
problem on the global existence of mild solutions is reduced to the problem of
finding sufficient conditions for the final time of each mild solution to be equal
to b. This problem can be handled with the aid of a topological method. Hence
it is sufficient to establish the local uniformity of intervals of existence of mild
solutions as well as the continuous dependence of mild solutions on initial data.
More precisely, we proceed with the argument along the following lines:

(i) Let (T, z)eQ. Then there are numbers r>0 and h>0 such that for
each (f, X)EQ 0 Sr(T, z), (IVP; t, x) has a mild solution on [f, t+h~\.
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(ii) Let {(rn, z j} , ,^ be a sequence in Q converging to (T, z)eQ such that
T(zn,zn)>c for n ^ l and some number ce(r, b). Then T(T, Z)>C
and U(t, xn, zn) converges to U(t9 T, Z) on (T, C].

Secondly let u1 and u2 be mild solutions on [T, C] for some a^r<c<b.
Under condition (Q3) we make an estimate for the difference |wi(0~w2(0l anc*
derive the integral inequality

for T^5^f^c. Applying a comparison theorem well-known in the theory of
ordinary differential equations we show that \u1(t) — u2(t)\ is dominated by a
maximal solution of (1.6) and hence the uniqueness of mild solutions follows
from condition (g2) on the function g. It should be noted that this argument
may be viewed as a prototype of the convergence argument of approximate
solutions for (IVP; T, Z).

Thirdly, in order to establish the local existence, we investigate the sub-
tangential condition (Q2) and show that it holds locally uniformly. By virtue
of this local uniformity in subtangential condition, one constructs e-approximate
solutions on an interval independent of e by way of the method of Cauchy
polygons. The approximate solutions to be constructed could be continuous but
might lie outside Q. If the function g is continuous in both arguments t and w
one can apply the techniques evolved by Webb and Martin to show the convergence
of the approximate solutions. However, these procedures do not work in the
present case since g enjoys only a much weaker continuity. To overcome this
difficulty, we construct families {wj; 0<S^Se} of e-approximate solutions which
might lose the strong continuity but remain in the domain Q at all time. We
then choose an appropriate member from each family to make estimates for the
difference between two families. Furthermore, in order to discuss the convergence
of such approximate solutions, we need to extend usual comparison theorems for
ordinary differential equations so that "bounded measurable" approximate
solutions with small errors can be handled. Thus we obtain the local uniformity
of intervals of existence of mild solutions.

Finally, combining results obtained in the second stage with those of third
stage, we see that the continuous local semiflow providing the mild solutions to
(IVP; T, z) satisfies conditions (i) and (ii) as mentioned above. Thus the main
theorem turns out to be proved.

2. Topological results

This section is devoted to investigate sufficient conditions for the global
existence of mild solutions. Those conditions are stated in terms of local semiflow
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defined as follows.

DEFINITION 2.1. Let C be a subset of [a, b) x X. Let T be a function from
C into (a, ft] c / ? u {oo} such that T(T, Z ) > T for (T, Z) e C. Let t/ be a function
from D(l/) = {0, T, z); (T, Z ) G C and T^ r<T( i , z)} into Jf. C/ is said to be a
local semiflow on C if U satisfies the following conditions:

(51) 1/(T, T, Z) = Z for (T, Z) G C and (t, U(t, T, Z)) G C for (f, T, Z) e
(52) T(r, l/(r, T, Z)) = T(T, Z) for (*, T, Z) G Z)(l/);
(53) U(t, s, (7(5, T, z)) = l/(f, T, z) for (T, z) e C and T ^ s g f < T(T, Z) .

1/ is said to be a continuous local semiflow if U is a local semiflow and satisfies
the following additional condition:

(54) U(t, T, z) is continuous in t e [T, T(T, Z)) .

In what follows, we consider Tas a function from the subset C of the uniform
topological space la, b)xX into the extended real line R U {oo} endowed with
the usual uniform topology. If for each (T, Z) G Q, (IVP; T, Z) has a unique mild
solution u that is noncontinuable to the right and T(T, Z) is its final time, then we
can define a continuous local semiflow U on Q by setting

(2.1) U(t, T, z) = ii(0 for *6[T,r(T,z)) .

The continuous local semiflow defined through (2.1) is called a continuous local
semiflow associated with (IVP; T, Z) in the following.

Let C be a connected subset of [a, b)xX and set d = sup{fG/?; C(t)=£(j)}.
Let 1/ be a local semiflow on C with domain D( U) = {(f, T, Z); (T, Z ) G C and
Tfgf<T(r, z)}, where Tis a function from C into (a, b]cR u {oo}. It is clear
that C(d) = 0, C cz [a, ft) x X and T(T, Z) <; d for all (T, Z) G C. The local semifiow
U is said to be a semiflow on C if T(T, Z) = d for all (T, Z) G O.

Let C be a subset of [a, b)xX. A local semiflow £/ on C is said to be a
semifiow on C if U is a semiflow on each connected component of C. Now let U
be a continuous local semiflow associated with (IVP; t, z). If U becomes a
semiflow on Q, then (/FP; T, Z) has a global mild solution for each (T, z)ef l .
Hence it comes to be the main problem to investigate as to when the local semifiow
U becomes a semifiow. In this regard we obtain the following useful results.

THEOREM 2.1. Let C be a connected subset of \_a,b)xX. Set d =
sup {te R; C(t)#</>}. Let U be a local semiflow on C with domain D(U) =
{(*, T, z); (T, z)eC and T ^ * < T ( T , Z)} where Tis a function from C into (a, b~\a
R U {oo}. Suppose that the function T satisfies the following conditions:

(1) Tis lower semicontinuous.
(2) / /{(TW , zn)}n^i is a sequence in C such that (tn, zw)->(t, z)eC as n-»oo

and if T(t, zn)>cfor w ^ l and some number c, then T(r, z)>c.
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Then T(T, z) = dfor all (T, z)eC.

PROOF. Let c be an arbitrary element of T(C)9 the range of T. Set Cx =
{(T, z ) e C ; T(T, z)^c} and C 2 = {(T, z ) e C ; T(T, z)>c}. Since T is lower
semicontinuous, C2 is an open subset of C. Let {(rn, z, ,)},^ be a sequence in
C2 converging to (T, Z) in C. Then it follows from condition (2) that T(T, Z)>C.
This means that C2 is a closed subset of C. Since C is connected, C = Ci[) C2

(disjoint union) and Cx^4>, and it is concluded that C2 = 0. Thus c = d. It
turns out that T(C) is a singleton set {d} and the proof is complete.

In case U is a continuous local semiflow, conditions (1) and (2) can be replaced
by conditions (1') and (2') listed below.

THEOREM 2.2. Let C be a connected subset of [a,b)xX. Set d =
sup {teR', C(t)^<f>}. Let U be a continuous local semiflow on C with domain
D(U) = {(t, T, z); (T, z)eC and T^t<T(r, z)} where T is a function from C into
(a9 fe]c=/? u {oo}. Suppose that T satisfies the following conditions:

(1') For (T, z)eC there are r > 0 and h>0 such that T(t, x)>t + hfor all
(r, x)eCnS r(T, z).

(2') / / {(rn, zn)}n^l is a sequence in C converging to (T, z)eC such that
T(TH, zn)>c for n ^ l and some number ce( r , b), then T(T, Z)>C
and U(t, Tn, zn) converges to U(t, T, Z) on (T, C\.

Then T(T, z) = dfor all (T, z)eC.

PROOF. In view of Theorem 2.1, it suffices to show that T is lower semi-
continuous. Let {(rn, zn)}n^1 be a sequence in C converging to (T, Z) in C and
set c = liminfll^00 T(rn, zn). Notice that o r by (T). Assume that C < T ( T , Z).

Then there are numbers r > 0 and h>0 such that T(t, x)>t + h for all (t, x)e
C n Sr(c, U(c, T, z)). Let rje(O, r) be such that r\<h,n<c-% and |C/(c —i;, T, Z)
— U(c, T, z) |<r/2. Let iV be an integer such that T(rn, zn)>c — rj ^rn and
Il/(c-iy, Tn, z n ) - t / (c- t i , T, z)| <r /2 for n^N. Then (c-rj, U(c-rj9 xH9 zn)) e
C n Sr(c, U(c, T, z)) for n ̂  iV. It follows that T(rm9 zn) = T(c - rj, U(c - rj, TM, zn)) >
c — rj + h for n^N and hence liminf,,^ T(rn, zn)^:c + h>c, which is a contradic-
tion. Thus liminf,,.,^ T(jn, zM)^ T(T, Z) and the proof is complete.

REMARK 2.1. Since (1) implies (1'), (1) is equivalent to (T) for continuous
local semiflows under condition (2').

REMARK 2.2. If in particular, C is a cylindrical domain, i.e. C=[a, b)xD,
D being a subset of X, condition (2) in Theorem 2.1 can be relaxed to the following
condition.

(3) If {zn}n^1 is a sequencein D such that zn-+z eDasn->oo and T(T, zn) > c
for some number c, then T(T, z)>e.

Similarly, condition (2') in Theorem 2.2 can be replaced by the following:
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(3') If {zn}nz i is a sequence in D such that zn-+z eDasn-^oo and T(T, zn) > c
for some number ce(x, ft), then T(T, Z ) > C and (7(f, T, zn)-+l/(f, T, Z)
for fe[ r , c].

In case 1/ is a continuous local semifiow associated with the problems
(IVP; T, z), (T, z)eQ9 condition (1') states that the maximal intervals of mild
solutions are locally uniform for initial data (T, Z) e Q and condition (2') implies
that mild solutions depend continuously upon initial data.

3. Comparison theorems

In this section we make an attempt to extend comparison theorems for
ordinary differential equations so that they may be applicable to our problem.

Let g be a function with properties (#1) and (g2) and let m(t; T, rj) denote the
maximal solution to the initial-value problem for the ordinary differential equation:

( w'(0 = g(t9
(3.1)

where (T, r\)e[a, ft) x R. Given e>0 we define a function gs by

(3.2) git, w) = sup {g(t, y);0^y-w^e}.

It is easy to see that ge also satisfies Caratheodory's condition, and that gE(t9 w)
converges to g(t, w) uniformly on compact subsets in w as e-^0. Given (T, rj) e
[a, b)xR, we denote by mB(t; T, rj) the maximal solution of the initial-value
problem for an ordinary differential equation:

[ w'(0 = glt9 w(0), T > U
(3.3)

I W(T) = rj.

Notice that if e = 0, then (3.3) coincides with (3.1) and mo(t; T, rj) = m(t; T, rj).
We first state the following fact (for the proof, see e.g. Lakshmikantham and

Leela [5]):

LEMMA 3.1. Let xe [a, ft) and let [T, C] be a compact subinterval of [a, ft).

Then there are eo>0 and rjo>0 such that for each ee(0, e0) and rje(O, n0), the
maximal solution ms(t; x, rj) of (3.3) exists on [T, C],

(3.4) Hm£i0 mE(t; T, rj) = m(t; T, n) uniformly on [T, C] and

(3.5) Iim8^io me(t; x,rj) = O uniformly on [T, C] .

We also employ the following result which may be regarded as an extention
of ordinary comparison theorems for ordinary differential equations.
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LEMMA 3.2. Let rj>0. Let [T, C] be a compact subinterval of [a, b) on
which a maximal solution m(t\ T, Y\) 0/(3.1) exists. Let a be a bounded meas-
urable function from [T, C] into R and suppose that a satisfies the integral
inequality

(3.6) a(r2) - a(O ^ [2 g(t, a(t))dt

for T^t1<t2^c. If a(i)^n, then

(3.7) a(r) ^ m(t; T, I;) /or a// re [T, C] .

PROOF. We first show that a is of bounded variation. Let r >0 be such that
\oc(t)\^r for all re[r, c]. Then by condition (gl) there is a locally integrable
function Lr(t) defined on [T, C] such that \g(t, w)|^Lr(0 for te[r, c] and we/?
with |w|^r. Let {5j0g^M be an arbitrary subdivision of the interval [T, c].
Using \h\ =2h+ — h for h e R9 where h+ =max {ft, 0}, and applying (3.6), we have

= 2 ± (a(5f)-a(s/_1))
+ + a(s0) - a(5/l)

i l

L,(t)dt + 2r

Lr(i)dt + 2r.

This means that a is of bounded variation. Therefore, (3.6) yields

(3.8) lim,ua(s) ^ a(r) g limstf a(s)

for all te[r, c].
Define

f g(t9 w) if a(0 ^ w
(3.9) /(/ ,w) =

1 (̂r, a(0) if a(0 > w.

Then the function / also satisfies Caratheodory's condition. Let m*(t; T, Y\) be a
maximal solution to the initial value problem for the ordinary differential equation

w ' ( 0 = / ( ' , vv(0)> T < r ,

W(T) = /y.

Assume that m*(t; t, ^) is defined on [T, C*] with T < C * ^ C .

We now claim that m*(t; T, rj)^(x(t) for ? e [T, C*]. Assume to the contrary
that m*(tx; T, ̂ )<a(rx) for some tt e [T, C*]. Clearly tx >T, and it follows from
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(3.8) that there is an interval (s, t{], T<s<tl9 on which m*(t; T, rj)<cc(t). Let
d = inf{s; m*(t; T, */)<a(f) on (s, f j}. If d>x, then we see from the definition
of d and (3.8) that

(3.10) aid) - m*(d; T, rj) = o(d) - lim,td m*(t; T, IJ)

g a(d) - lim f tda(0 <: 0.

Combining (3.10) with the assumption that f/^a(i), we obtain

(3.11) m*(d;T,rj)*a(d).

Since m*(t; T, f/)<a(O for f e(d, ^ ] , (3.9) and (3.11) together imply

0>m*(t1;i:9rj)-.at(t1)

^ [m*(tti T, ly) - m\d\ T, iy)] - [ aOJ-a^ ) ]

[tlt9 *(t))dt = 0./ ( , ( ; , n)) [
Jd Jd

This is a contradiction. Hence it follows from (3.9) that

*(t; T, i/) = »/ + \ / ( s , m*(s; t,

= rj + \ ^(s, m*(s; T,

which means that m*(t; T, >y) is a solution of (3.1). Hence m*(r; T, fy) eventually
exists on all of [T, C] and (x,(t)^m*(t; T, rj)^m(t; T, ̂ y) for *e[r , c]. Thus the
proof is complete.

We next give two comparison theorems involving integral inequalities with
small errors.

PROPOSITION 3.1. Let e>0 and rj>0. Let [T, C] be a subinterval of [a, b)

on which a maximal solution me(t; r, rj) of (3.3) exists. Let a be a bounded
measurable function from [T, C] iwto R and suppose that a satisfies

(3.12) oc(t2) - a(A) ^

for %^t1<t2<zc.

(3.13) a(0 ̂  me(r; T, rj) + g /or a// t e [T, C] .

PROOF. Set

(3.14) fc(0 = a(r) - a(r) - J| g(s, x(s))ds
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for t e [T, C]. Then we have

(3.15) h(t2) - h(ti) = <h) - a(tt) - \t2 g(s, x(s))ds ^ s

for T :g tl < t2 ̂  c. Define

(3.16) ft*(0 = in f T ^ , / i ( s ) ,

and

(3.17) a,(r) = a(0 + fc*(r) - h(t)

for ^e[r, c]. It follows from (3.15) through (3.17) that h* is a nonincreasing
function on [T, C], 0 ^ / I ( 0 ~ / I * ( 0 ^ £ , 0^a(0~a*(0^e and

(3.18) a»(r) = a(t)

for all ^G[T, C]. Hence

(3.19) aj|e(r2) - a ^ ) = fc*(t2) - fc^rO + [t2g(s9 *(s))ds

^ \ gf(s, a(s))^5

for r ^ t 1 < f 2 ^ c . Since a^(T) = a(T)^f/, it follows from Lemma 3.2 and (3.19)
that as|e(r) ̂  m£t; T, f/) and hence a(r) g me(r; T, f/) + g for t e [T, C], which completes
the proof.

Combining Proposition 3.1 and Lemma 3.1, we have the following result.

PROPOSITION 3.2. Let {e,,},,^ and {rin}n^i be null-sequences. Let [T, C]
be a subinterval of [a, b). Let {ccn}n^l be a sequence of bounded measurable
functions from [T, C] into R. Suppose that for each n ^ l , <xn satisfies

(3.20) an(r) ̂  nn

and

(3.21) aw(f2) - 0,(^0 ̂  T1 g(t,
J

for T^t1<t2^c. Then we have

(3.22)
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for allT^t^c.

4. Uniqueness of mild solutions

Our objective in this section is to discuss the continuous dependence of mild
solutions on initial values and establish a uniqueness theorem for mild solutions.

PROPOSITION 4.1. Suppose that condition (O3) holds. Let rj>0 and let
[T, C] be a subinterval of [a, b) on which a maximal solution m(t; T, n) of (3.1)
exists. Let (T, zt)eQ, i = l, 2. Suppose that mild solutions ut of the problems
(IVP; T, z() exist on [T, C], respectively. If \zi — z2\^rj, then

(4.1) M 0 - " 2 ( 0 l £m(t;T,rj) for all te[r9c].

In particular, (IVP; T, Z) has at most one mild solution for all (T, z)eQ.

PROOF. Set a(r) = |u1(0-M2(0l f o r te[x,c\. Let e>0. Since uf(f) and
S(h)B(t9 Ui(t)), i = l, 2, are continuous with respect to te[r, c] and h^O, there
is a number (5>0 such that \ut(t)-Mf(s)|^e and \S(h)B(t, ut(t))-B(s9 Ui(s))\<^8,
for i = 1, 2, h e [0, S) and s, f e [T, C] with | r - s | ̂ 5. By (O3), we have

(4.2) KW

2 (0 -^W, M ^ O ) - ^ , u2(0))| + 8g(t, |w1(0-«2

-<5) - S(S)u2(t-S)\ + |Wl(0 - S(d)Ul(t-8) - 8B(t, ux(t))\

+ \u2(t) - S(S)u2(t-S) - SB(t, u2(t))\ + Sg(U W,(t)-u2(i)\)

^\u1(t-S)-u2(t-S)\

\S(t-s)B(s9 Ul(s)) ~ B(t, Ul(t))\ds
t-d

\S(t-s)B(s, u2(s)) - B(r, M2(O)|t/s + Sg(t9 |
t-d

£ [u^t-S) - u2(t-8)\ + dg(t, K(0-u2(0l) + 28s.

for te[z + 8, c]. Let ft and t2 be such that T^ t 1 gl 1 + 5<<2^c. Integrating
both sides of (4.2) from tt +8 to (2» we obtain

(4.3) f 2 <x(s)ds - { 1 i <x(s)ds g 8 ['2 g ( s , «(s))ds + 2 ( c - r ) 8 e .
Jt2-S Jti Jti + d

Since |a(0-a(s)|^|M1(0-M1(s)| + |M2(0-M2(s)l^2e for t, se[r , c] with | r - s | ^ ^ ,
we have

(4.4) <Ka(*2)-a^)} ^ [2 *(s)ds - [ti+3 <x(s)ds + 4<5e.
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Combining (4.3) with (4.4) gives

(4.5) a(t2) - afo) g (" g(s, a(s))ds + Ce
Jti + 6

for some constant C>0. Since e>0 is arbitrary, (4.5) yields

<h) - a ( ^ ) ^ [2 g(s, oi(s))ds

for T :g 11 < t2 ^ c. The first assertion now follows from Lemma 3.2. The second
assertion follows from the first assertion and the assumption that m(f; T, 0) = 0
on [T, C]. The proof is thereby complete.

5. Local uniformity in subtangential condition

In what follows, we assume conditions (01) and (Q2).
First we state the following two lemmas which will be often used in the

subsequent argument.

LEMMA 5.1. Let {(sn9 yn)}n^0 be a sequence in Q such that sn^sn+l. Then
we have the relation

(5.1) yn-S(sn-s0)y0

= ZZ=o S(sn-sk+1)[yk+1-S(sk+! -sk)yk - (sk+1-sk)B(sk9

forn^O.

LEMMA 5.2. Let e>0 and M > 0 . Let {(sn9 yn)}n^0 be a sequence in Q such
that sH£sH+l9 \B(sn9 yn)\^M and

(5.2) \yn+i ~ S(sn+! -sn)yn -(sn+1-sn)B(sn9 yn)\ <L(sH+1-sn)e

for n^O. / / sn t se [a, b) as n->oo, then the sequence {yn}n>o is a Cauchy
sequence in X and the limit (s, y) = limM_,00(sw, yn) lies in Q.

PROOF. Define a sequence {sn}n^0 in X ^y t n e equation

(5.3) yn+! = S(sn+1 - s n ) y n + (sn+ ± -sn)B(sn, yn) + (sn+1-sn)en.

Then |en| ̂ e for n^O. Using (5.3), we have

yn = S(sn-s0)Jo + ZZ=o (s*+1 -s k)S(sn-s k + 1) [B(sk9 yk) + e j

by induction. Hence
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(5.4) yn - ym = S(sm - s0) [Sfo, - sjyo - y0]

+ ££=o(% +1 -s k)S(sm-s k + 1) [S(sn-sj lB(sk9 yk) + e J - [JJfe, j;k) + e J ]

+ 11^=1 (sk+1-sk)S(sn-sk+l)lB(sk, >>*) + c j

k, yk) + e j

for p^m^n. Let n > 0 and let p be an integer such that s — sp<ri. Then there
exists a positive number // such that fi^f].

and supog^^u |S(o-)^o —yo|^f/. If m and n are such that p^m^n and
and s — sn^s — sm<fi, then (5.4) yields

- lB(sk,

^ ^ + (s —

Since ŷ is arbitary, this means that {;>„}„ ̂ 0 *
s a Cauchy sequence in X. It follows

from (01) that (s, y ^ l i m , , ^ (sn, yB)eO. This completes the proof.

The next result states that the subtangential condition (02) holds locally
uniformly in a certain sense.

PROPOSITION 5.1. Let (t,x)eQ and ee(O, 1). Let r > 0 be such that
\B(s, y)-B(t, x)| ge/4 for (s, y)eQ(] Sr(t9 x), s u p o ^ r |S(<r)B(f, x)-B(t, x)\ ̂
e/4, ^nJ swc/i r/iaf |B(s, ^ ) | ^ M / o r (s, y)eQ n Sr(t, x) with some constant M > 0 .

yeQ(t + h) satisfy \y — S(h)x\^h(M+l). (The existence of such pair
(h, y) is guaranteed by (02).) Then for each h* e (h9 h0) there exists an element
y* E Q(t + h*) such that

(5.5) \y*-s(h*-h)y - (h*-h)B(t + h9 y)\ g (fc*-fc>.

PROOF. Let h* e (h, h0). We shall define inductively a sequence {(sw, yn)}n^0

in O n Sr(t, x) which possesses the following properties:

(5.6) (s0, y0) = (t + h, y) and t + h ^ sn ̂  sn + 1 ̂  t + /i* for n ^ 0;

(5.7) l im^0 05n = ^ + /i*;

(5.8) |j r t+1-5(sM+1-sM)>;n - (sw+1-sn)B(sn, >;n)| ^ (s n + 1

for n>0 .
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Set (s0, yo) = (t + h, y). Suppose that (sn, yn) is defined in QnSr(t,x) in
such a way that sne[t + h, t + h*~\ and \yn-S(sn-t)x\^(sn-t)(M+l), and define
an to be the supremum of those <r^0 satisfying sn + G^t + h* and

(5.9) d(S(a)yn + <rB(sn, yn\ Q(

Then, choosing a number an e [<rn/2, <7n], we put sn+1 = sw 4- crn and take an element
yn+1 of Q(sn+l) such that

(5.10) | ^ + 1 - S(sw+!-*„)}>„ - (sn+1-*„)£(*,,, yn)\ ^ (sn+i-sn)el4.

Note that, by (5.9) and (Q2)9 sn<sn+1 whenever sn<t + h*. Since

\yn+1 - S(sn+i-sn)yn\ ^ (sn+1-sn)(M+l)

by (5.10), we have

IJVn -S(sn+1-t)x\

^ \yn+l - S(sn+l-sn)yn\

and

l ^ + i - * l ^ b»+i - S ( s B + ! - 0 x | + \S(sm+1-t)x - x\

g ( s B + 1 - 0 ( ^ + 1 ) + sup{|5((j)x - x|; 0 ^ a g fc0} < r,

which shows that (sn + 1 , j ; n + 1 ) e £ n -Sr(̂ , x). In this way we obtain a sequence
{(sn, yn)}n>0 in i2 n Sr(t, x) satisfying (5.6) and (5.8). Now it remains to show
that s = limn_> ̂  sn = t + h*. Suppose to the contrary that s<t + h*. Then Lemma
5.2 and (5.8) together imply that {yn}n^0 is a Cauchy sequence in X and (s, y*) =
limn^^ (sn9 yn)eQ f] Sr(t, x). Moreover we can find a number rj>0 such that

— s and

(5.11) <*(Sfa)j>* + riB(s, y*)9 {Ks + rj)) ^ ije/12.

Choose an integer JV^ 1 such that s — sngfy/2 for n^N, and set >/„ = s — sn + fy for
each n^N. Then srt + ^/l = s + f/^r + /i* and r\n>rj^2(s — sn)>2(jw^CTB for all
n ^ N . Here we have employed the fact that sn<sn+l <s for all n^O. Hence it
follows from the definition of dn that

d(S(rin)yn + f7nB(sw, yn), G(

for n^iV. Using the continuity of B and noting that sn + rjn = s-\-rj, we obtain

d(S(ti)y* + f/B(s, y*), C(s + iy)) = l i m ^ ^ ^ ( S ^ ^ + rjnB(sn9 yn\ Q(sn + rjn))
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which contradicts (5.11) and hence limw^^ sn = s = 1+ h*. Thus it has been shown
that the sequence {(sn, yn)}n^0 has all of the desired properties (5.6)-(5.8).

It is now easy to prove the lemma. First by (5.1) we have

(5.12) yn - S(sn-t-h)y-(sn-t-h)B(t + h, y)

= Z l=h S(s» -sk+l)lyk+i- S(sk + i - sk)yk -(sk+1- sk)B(sk, yj]

+ ZS»Jfe+i-54)S(s l l-s4+1)[B(st, yk) - B(t, x)]

+ Zn
k=b(sk+l-sk)[S(sn-sk+l)B(t, x) - B(t, x)]

for n^O. Since (̂  + /i*, y*) and (sn, yn) are contianed in Q n S/^, x) for n ^
we obtain the estimate

Passing to the limit as n-^oo, we finally obtain

\y* - S(h*-h)y - (h*-h)B(t + h, y)\ ^ (h*-h)e.

This completes the proof.

6. Approximate solutions

This section is devoted to the construction of approximate solutions to the
problems (IVP; T, Z).

We begin by introducing the notion of e-approximate solutions.

DEFINITION 6.1. Let (t, z)eO. Let e>0 and Te(0, b-x). A strongly

measurable function u from [T, T 4- T] into X is said to be an e-approximate
solution to (IVP; T, Z) on [T, T + T] if it has the following properties:
(el) W(T) = z and (f, u(0) e Q for all t e [T, T + T];
(e2) B(s, w(s)) is integrable in the sense of Bochner and

(6.1) KO - S(t-x)z - ^S(t-s)B(s, u(s))ds\ ^ (r-T)e

for all re[r , T + T ] .

REMARK 6.1. Since B is continuous and S(h)x is continuous with respect
to h for each xeX, the strong measurability of S(t — s)£(s, w(s)) with respect to
s e [0, t] follows from the strong measurability of u.

The purpose of this section is to prove the following.

PROPOSITION 6.1. Suppose that conditions (Qi) and (Q2) hold. Let
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(T, Z )eQ. Let R and M be positive numbers such that x + R<b and \B(t, x)\^M
for (t,x)eQ(]SR(T,z). Let T be a positive number such that T(M+\) +
SUPO^<T<£T \S{a)z — z\<R. Then for each s > 0 there exist a positive number
5E and a family of ^-approximate solutions {ue

s; <5e(0, <5J} to (IVP; T, Z) on
[T, T + T ] with the following properties:

(PI) IIJ(T) = z and (t, i# J(0) e Q n S*(T, z) /or S e (0, <5J an^ t e [T, T + T];

(i>2) |w|(0-w|(s)|^£/or (5e(0, 5J and f, se[ i , T + T ] wir^ \t-s\^S]

(P3) ^ \u%(s) - S(d)u*d(s-d) - SB(s, u*d(s))\ds ^ 5e;

{PA) IJj(O-u%(t)\ ^ s for S, S' e (0, SJ and t e [r, T + T].

REMARK 6.2. Proposition 6.1 is valid even if the semigroup S is not a
contraction semigroup of class (Co). However, for simplicity, we deal with only
the case where S is a contraction semigroup of class (Co) in this paper.

We first need the following lemma.

LEMMA 6.1. Let (t, x)eQ and ee(0, 1). Let r > 0 be a number such that
\B(s, y)-B(t, x)| ̂ e/4 for (s, y)eQ n Sr(', *), s u p o ^ r |S((r)B(r, x)-B(^, x)| ^
e/4 and swcn that \B(s, y)\^M for (s, j / )ef i n Sr(t, x) with some constant M > 0 .
Set /io = sup{/ie(0, fc~0; « ( ^ + l ) + supo^<TgJ5(a)x-x|gr} and to r* and S
be such that t<t + d<t*^t + h0. Then there exist a sequence {yn}n^0 of real-
valued step functions on [f, t*) and a sequence {^}n^0 of X-valued step functions
on [t, t*) with the following properties:

(6.3) yn(t) = tforn^0.

(6.4) ym(ym(s)) = yn(ym(s)) = ym(s) for 0 S m ^ n and s e [t, t*).

(6.5) yn(s-S) = yn(s) - 6for n ^ 0 and se[t + d, t*).

(6.6) The sequence {yn(s)}n^0 is monotone nondecreasing and yn(s) t s as

n -> oo for each s e [f, t*).

(6.7) ^ ( 0 = x and (yn(s)9 vn(s)) e Q n SJiU x)for n^Oandse [f, t*).

(6.8) 1^(5)- S(yn(s) -t)x\S (yn(s)- i) (M +1) for n ^ 0 and s e It, t*).

(6.9) |i;0(s) - S(6)vo(s - S) - SB(yo(s - 3), vo(s - 3))\ ^ Se for sefr + S, t*).

(6.10) 117,(5) - S(yn(s) - yn_x{s))vn. t(s) - (yn(s) - y^^Biy^x(s), vn. t(s))\

^ (yn(s)-yn-i(s))sfor n ^ 1 andselt, t*).

(6.11) ^.(s) - S(yn(s) - yo(s))vo(s) - (yn(s) - yo(s))B(yo(s)9 vo(s))\

^ 2(yn(s)-yo(s))efor n ^ 1 and se [ r , t*).
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(6.12) \vn(s) - S(yn(s) - Ox - (yn(s) - t)B(t, x)\ S 2(yn(s) - t)e forn^O

and se[t, f*).

PROOF. For each nonnegative integer n, let N(n) be an integer satisfying
t + N(n)dl2n<t*^t + (N(n)+1)6/2" and set tn

k = t + kdj2n for 0^k^N(n) and
In = {ti; 0^k<LN(n)}. Then Inc:In+1 and t%+1eln for k even. For each n^O,
we define a step function yn on [f, t*) with values in /n by

yn(s) = *» for s e [fjj, fj+1) and 0 ̂  fc ̂  N(n) - 1,

= ^ ( n ) for se[tffin)9t*).

Then it is easy to see that the sequence {yn(s)}n^0 has properties (6.2)-(6.6).
We then construct a sequence {vn}n^0 of X-valued step functions on [f, t*)

with properties (6.7)-(6.10). To this end, we begin by choosing a sequence
°f e l e m e n t s i n X such that

(6.13) i?0(rg) = x and (t°k, vo(t%)) EQ n Sr(t, x) for 0 ̂  fc

(6.14) | t ; oO2)-S(*2-0* |g( 'g-0(M+l) for U ^

(6.15) \v0W)-S(d)v0(tU)-m0k-uV0(tU))\^Se for

This is accomplished by induction on k. In fact, set vo(t$) = x. Suppose that
vo(t%) is chosen so that (6.13) and (6.14) hold. Then we can apply Proposition
5.1 with h = t%-t and h* = tl+1-t = h + S to select an element vo(t%+1)eX such
that (*2+1, vo(t°k+1))eQnSr(t,x) and \vo(ti+1)-S(8)vo{i$)-6B(!i> vo(m^Ss.
Hence (6.13) and (6.15) hold for k replaced by /c+1. From this and (6.14) it
follows that |i>0(*k+i)-S(fg+1 - x ) | ^(rg+ 1 -t)(M+1). Thus the desired sequence
is constructed. We now set

(6.16) vo(s) = vo(yo(s))

for s e It, r*). Then it follows from (6.13)-(6.15) that v0 satisfies (6.7)-(6.9) with
n = 0. This completes the first stage of our construction.

Next we find the sequence {vn}n^1 by induction. Assume that vn has been
defined in such a way that (6.7)-(6.10) hold for se [t, t*). To construct vn + 1 on
It, r*), we first specify the values of vn+ x on the set In+l. Let seln+1. If s e /„,
we set vn+ i(s) = i;n(s). If seln+1-ln, we can choose with the aid of Proposition
5.1 with h = yn(s)-t, y = vn(s) and h* = s-t, an element, say vn+l(s), so that

\vn+1(s) - S(s-yn(s))vn(s) - (s-yn(s))B(yn(s), vn(s))\ ^ (s-

Set
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(6.17) vn+1(s) = vn+1(yn+l(s))

for s e [t, t*). Then we infer from the definition of vn+1 that

(y.+i(s).«Vn(s))eQ n Sr(<, x),

\vn+1(s) - S(yn+l(s)-yn(s)Ms) - (yn+1(s)-yn(s))B(yn(s), vn(s))\ g (yn+1(s)-yn(s))e

and

\vn+1(s) - S(yn + 1(s)-t)x\ g (yn+1(s)

Thus a sequence {vn}n^0 of functions satisfying (6.7)-(6.10)has been constructed.
We now show that the sequences {yn}tt^0 and {!>„}„g0 constructed above enjoy

properties (6.11) and (6.12). Letse[r, **). Let k be such that yo(s) = fg. First,
in view of Lemma 5.1, we observe that vn(s) can be written as

= H"jZhS(yn(s)-yJ+1(s))Lvj+1(s)-S(yJ+1(s)-yJ(s))vJ(s)

for n ̂  0. Since (y/s), w/s)) e i2 n Sr(«, x) for 0 g j g n, we have

K(s) - S(7n(s)-0x - (yn(s)-t)B(t, x)\

, *) - Wt, x)\

, *) - m, x)\

for n^O. Similarly, we have
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\vn(s) - S(yn(s)-y0(s))v0(s) - (yn(s)-yo(s))B(yo(s), i;0(s))|

y/s), Vj(s))\

/ / / - B(t, x)|

+ Z5=o(?y+ i(s)-yj(s))\S(yn(s) - y7+ ^ s ) ) ^ , x) - B(t, x)|

+ (7^)-yo(5))|5(Vo(5), vo(s)) - B(t,x)\

^2(yn(s)-y0(s))e

for n^O and s e [t, t*). This completes the proof.

LEMMA 6.2. Let (t, x), e, r, t* and d be as in Lemma 6.1. Then there
exists an X-valued, strongly measurable function v on \_t, t*) with the following
properties:

(6.18) v(t) = x and (s, v(s)) e f i n S£t, x)for s e [f, t*).

(6.19) |i<s) - S(s - t)x - (s - t)B(t, v(t))\ ^ 2(s - t)e for s e [r, t*).

(6.20) \v(s) - S(d)v(s-5) - 5B(s, v(s))\ ̂  ldsforse[t + d, t*).

PROOF. By Lemma 6.1 one finds a sequence {yn}n^0 °f real-valued step
functions on [r, f*) and a sequence {vn}n^0 of X-valued step functions on It, t*)
satisfying (6.2) through (6.12). Since limn_ „ yn(s) = s and vn(s) = vn(yn(s)), it
follows from (6.10) and Lemma 5.2 that the sequence {i?n(s)}n^0 is a Cauchy
sequence in I for each se\_t, t*). We then define a function v on [r, t*) by
i;(s) = lim/1_00 t;n(s). Clearly, v is strongly measurable; and (6.7) and (£21) together
imply that (s, v(s))eQ 0 Sr(t, x). Moreover, by use of (6.11) and (6.12), we
obtain

\v(s) - S(s-t)x - (s-t)B(t, x)| g 2{s-i)£

and

\v(s) - S(s-yo(s))vo(s) - (s-yo(s))B(yo(s), vo(s))\ ^ 2(s-yo(s))e

for s e [U*) . Using the terms ±S(s-yQ(s))v0(s\ +(s-yo(s))B(yo(s), vo(s)),
±S(8)S(s-yo(s))vo(s-5)9 ±S(S)(s-yo(s))B(yo(s-Sl vo(s-8j), etc, we have

v(s) - S(S)v(s-S) - SB(s, v(s))

= v(s) - S(s-yo(s))vo(s) - (s-yo(s))B(yo(s), vo(s))

- S(S)lv(s-d) - S(s-yo(s))vo(s-S) - (s-yo(s))B(yo(s-5)9 vo(s-d))-]

+ S(s-yo(sMvo(s) - S(8)vo(s-S) - dB(yo(s-5), vo(s-

+ (s-yo(s))lB(yo(s% vo(s))-B(t, x)]
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- (s-yo(s))S(d)£B(y0(s-d)9 vo(s-5)) - B(t, x)]

+ 5S(s-yo(s))lB(y0(s-8), vo(s-3)) - B(t, x)] - <5[B(s, v(s)) - B(t, x)]

- (s-yo(s)) [S(i)B(r, x)-B(f, x)] + 5lS{s-yo(s))B(t9 x) - £(f, x)].

From this it follows that

\v(s) - S(S)v(s-S) - 5B(s, v(s))\

^ 2(s-yo(s))s + 2(s-yo(s))e + <5e + (s - yo(s))e/4 + (5-y

+ <5s/4 + ^e/4 + (s-yo(s))e/4 + (5e/4 g 75e

for all s e [f, t*). This completes the proof of Lemma 6.2.

LEMMA 6.3. Lef (T, Z)eO. Le^ R>0 and M>0 be such that r + R<b and
\B(t, x)|^M /or (̂ , x) e O n SK(r, z). Ler T>0 be smal/ enough to satisfy
^ M + ^ + supo^^^rlS^z-z^jR. Then /or each 2e(0, 1) r/zere exists a
sequence {(ti9 Xi)}o^,•^^ in & mfn rne properties listed below.

( i ) (t0, x0) = (T, Z) and tN = % + T.
(ii) 0 < r i+1 - ff ^ e/or O ^ i ^ J V - 1 .
(iii) (ti9 xt) e Q n 5^(1, z)/or 0 ̂  i ^ N.
(iv) |x i +! -5 ( r i + 1 - ^)x f-(r l +! - fJBft, xf)| ^ 0 l + i - ^ / o r 0 S i S N - 1.

(v) For each i with 0 ^ i: ̂  N — 1 there eixsts a number r(i)e(0, s] such

that

(6.21) S^^cS^z),

(6.22) |B(s, j) -5(^ , xf)| ̂  8/4/or fl// (5, y)eQ (] Sr(i)(ti9 xt),

(6.23)

(6.24) (f l+1-r,)(Af+1) + sup {ISOOXi-x,!; 0 ̂  a ^ rf+1 - *,} g r(z).

PROOF. The proof can be given in a way similar to that of Proposition 5.1.
Let ee(0, 1). Set (t0, XO) = (T, Z). We define a sequence {(th X ^ J O ^ N in O n

SK(T, Z) in the following manner: Suppose that (tt, xt) is defined in Q n 5^(T, Z)
in such a way that ^ [ T , T + T ] and |x4 —S(fj —T)z|^(fj — T)(M+1). First we
take the supremum r(i) of all r e (0, £] such that

(6.25) 5 rfex,)c:SR(T, z),

(6.26) \B(s, y)-B(ti9 xf)| ̂  e/4 for all (s,
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and

(6.27) supo^ r \S(&)B(ti9 xd-B(ti9 xt)\ g e/4.

Since r(i)>0, we set ht = sup {he(0, b-t); h(M-\-l)-\-supo^a^h\S(a)xi-xi\^
r(i)} and define ti+l=min{ti-^hi9 T-\-T}. Observe that tt<ti+1 whenever
tt<T+T. Next, by using Proposition 5.1, one finds an element x j+1 of Q(ti+1)
such that

tu xt)\ ^ (ti+t-tje.

From this and the hypothesis on xt we infer that

|x l+1 -S(ti+1-T)z\

^ \xi+1 - S(ti+1-tdxt\ + \S(ti+1-tdxt - S(ti+l-T)z\

and hence | x l + 1 — z\^\xi+l— S(ti+l — T)z\ + \S(ti+1 — T)Z — z\<R. This shows

that (ti+1, xi+1)eQ f] SR(T, Z). We continue this induction argument.
We now claim that tN = x + Tfor some integer N ^ 1. Assume to the contrary

that ff<T+Tfor all i^O. Then, by Lemma 5.2, (f̂ , xoo) = limi^oo (rf, xt) exists
and (r^, XoJeGnSjiCr, z). Since the set {(^, xf); O^f^oo} is compact in D,
there is a number re(0, e] such that Sr(ti9 xt)c:SR(T, z), |B(s, 3;)-B(^
and supo^^^,. IS((T)B(r£, x^-Bfe x£)|^e/4 for (s, j ) e Q n % x£) and
Further, there is a number h>0 such that ^(M+lJ + supo^^^^ I S ^
But in virtue of the definition of r(i) and hi9 we would have h^h for i^O. This
contradicts the fact that hi = ti+l — ti-^O as i->oo. Hence we conclude that there
is an integer JV^l such that tN__1<tN = x+T. It is now easy to see that the
sequence {(th x f)}0^^^ has the properties (i)-(iv). This completes the proof.{(h ^ ^ ) p

Proposition 6.1 is a direct consequence of the following lemma.

LEMMA 6.4. Let (T, z)eQ. Let R>0 and M>0 be such that T + R<b and
\B(t9x)\£M for (r, x)eQ n SR(T9 Z). Let T>0 be small enough to satisfy
T(M+l) + supo^^T|5((T)z-z|<JR. Let ee(0, 1) and let {(ti9 x^}0^t^N be a
sequence in Q as in Lemma 6.3. Then there exist a number dB and a family
{ud\ <5e(0, SJ} of X-valued strongly measurable functions on [T, T + T ] such
that

(a) u&d = xtfor0£i£N and (t, ud(t)) e Q n SR(T9 Z) for t e [T, T + T],
(b) Iud(t) - S(t - T)Z - £ S(* - s)B(s, M,(S))^| ^ 3(r - T)6
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(c) \us(t) - u / s ) | g le for t,se[x,r+ T ] with \t - s\ g 5,

(d) £** \ud{s) - S(S)ud{s-S) - SB(s, u£s))\ds ^ Hide,

(e) |Ji>) - iv(f)l ^ 4£2 /or t e [t, T + T] and 5, 5' e (0, <5J.

PROOF. Let ee(0, 1). Set c5e=min {(f;+1-f f)/2: O g i ^ i V - 1 } and fix any
§ e(0, <5J. Applying Lemma 6.2 with t=(, and t* = ti+i, one finds an X-valued
strongly measurable function vt on [tt, ti+l) satisfying

(6.28) Vi(t,) = Xi and (t, t\(t)) e O n SR(r, z) for (6 [_th ti+,);

(6.29) | t ; , (0 - S(t - tdx, -(t- t,)B(ti, vM\ ^ 2(t - f,.)e f o r t e p , , t i + 1 ) ;

(6.30) k<0 - S(^(t-^) - SB(t, v(t))\ g 7̂ 8 for te\tt+&, ti+1).

For each t e [T, T + T], set

if <6[t,,*J+1), and U^

Then it is clear that the function us is strongly measurable and satisfies
conditon (a). Let f e[r, T + T ] and let i be the integer such that te[th ti+l).
Then we have the following relation:

(6.31) ud(t) - S(t - x)z - £ S(t- s)B(s, Ui(s))ds

= ud(t) - Sit-t^x, - [' S(t-s)B(s, u

+ S}-i s(t - tJ+,) [x i +! - s(«y+, - tj)Xj

- ['J*lS(tJ+1-s)B(s,ud{s))ds-]

= ud(t) - Sit-tfo - (t-t,)B(ti, x,)

xf) - B(t,, xfids

J , v/s))-B(tj, j
tj

<J+1 LS(tJ+1-s)B(tj, Xj)-B(tj, Xj)1ds.
tj

It follows from (6.25)-(6.29) and (6.31) that
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- S(t-S)z - £ S(t-s)B(s, ug(s))ds\ ^ 3(f-T)e

which is nothing but condition (b).
Let s, te[i, T + T ] with s<t<s+8. Since <5<fi+1 — th we have

(t-s)M+ |S(<-s)Xi-x,|

< (*i+i -ti)(M+1) + sup {|S(ff)x,-x,|; 0 ̂  <7 g *l+1 - (,} < s.

If tt^s<t<ti+1 for some i^O, then we have

MO - ««(s)| g bXO - so-^x, - (t-tMh, xi)l

+ lô s) - SCs-fi)*; - (s- I^ t f , x,)|

+ (r-s)|BOf, xf)| + ISO-s)*, - xt\

^ 2(f-(()e + 2(s-rf)e + £ ̂  5s,

since fl+1 —tf^6<l. If ti_1^s<ti^t<ti+l for some i^l ,

,, xt)\

g 2((-ff)e + 2(s-/(_1)fi + (*,-*,-i)8 + (*i —*i-i)e/4 + £ ̂  7«.

Thus conditon (c) is satisfied.

To see that ua satisfies condition (d), we estimate the norm of

\us(s) - S(8)us(s-d) - 8B(s, us(s))\

for SE[T + 5, T + T ] . If fj+(5^s<*j+1 for some i, then (6.30) yields

(6.32) \us(s) - S(S)us(s-d) - SB(s, us(s))\ g Ids.

If <i^s<*f + <5 for some i, then we have

(6.33) |ttj(s) - S(d)u£s-5) - 8B(s, us(s))\
£ \v,{s) - S(s-t,)Xi - (s-tdB(tt, x,.)|

is-S) - Sis-d-tt-fa-i - (s-«-»,_



524 Toshiyuki IWAMIYA

,, xf) - B0, - i , Xj-OI

+ d\B(s, Vi(s)) - B(tt, xd\

+ (ti-ti-^Sis-tMh, xt) - B(th xt)\

+ (s-S-ti_l)\S(d)B(ti_1, x,._!) - BO,

Now note that

\ud(s) — S(d)ud(s — d) — SB(s, ud(s))\ds
x+d

Cti^ \ud(s) - S(d)ud(s-S) - SB(s, ud(s))\ds

M \ud(s) - S(S)ud(s-d) - SB(s, ud(s))\ds.

Applying (6.32) and (6.33) respectively to the first and the second sums on the
right side, we see that the left integral is not greater than

H?=i^i+i-ti)Ss + HTjJiih-h-dfc ^ 14T(5£.

Thus we conclude that u8 satisfies conditon (d).
To complete the proof, take any pair <5, <5'e(0, <5J. Let ud and ub> be the

strongly measurable functions on [T, T + T] constructed for S and <5', respectively.
Let t e [T, T + T] and i be such that t e \tb ti+1). Then (6.29) implies

MO " *V(OI
^ \ud(t) - Sit-t^Xi - (t-tdB(ti9 xt)\

5̂  4(t — tt)e ̂  4e2,

which shows that condition (e) holds. Thus the proof is complete.

7. Local existence

In this section we give a result on the local existence of mild solutions to the
problems (IVP; r, z).
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THEOREM 7.1. Suppose that conditions (D1)-(O3) are satisfied. Let
(T, z)eQ. Let R>0 and M>0 satisfy T + R<b and \B(t9 x)|^M for (f, x)eOn
5R(T, z). Lef T be a positive number such that T ( M + l ^ s u p o ^ g r
\S(<T)Z — Z\<R. Then the problem (IVP; T, Z) has a unique mild solution u on
[T, T+T].

PROOF. Set r = 2(/*+|z|). Let Lr be an integrable function on [T, T + T ]

such that \g(t, w)\^Lr(t) for *G[T, T + T ] and for w with |w|^r; the existence
of such function Lr is guaranteed by condition (#1). Let {sn}n^l be a null-
sequence in (0, 1). Then Proposition 6.1 implies that for each n^.1 there exist a
number Sn and a family {un

8\ <5e(0, <5J} of ^-approximate solutions for (IVP; T, Z)
on [T, T + T ] with properties (PI) through (P4). Let m and n be positive integers.
Let S>0 be such that <5̂ <5m and d^Sn and such that

(7.1)

for T^s^r^T+Twith \t-s\£S. Set U'g>n(s) = \u'g(s)-un
d(s)\ for S E [ T , T + T ] .

By (Q3), we have

Ufa)) - B(s, iij(s)))| + <5#(s, |MJ(S) - u3(s)|)

|My(s) - S(3)iiy(s-S) - SB(s, ufa))\

ui(s) - S(5)u»d(s-d) - 5B(s9 uj(s))|

for se[T + <5, T + T ] . Let ^ and t2 be such that T^^1<r1+^<r2^T+T. Inte-
grating both sides of (7.2) from tx+dto t2 and using (P3), we obtain

(7.3) [t2 Uf-n(s)ds -
Jt2-s

Since |^ 'w(0-l/rn(s) |g|wT(0-w?(s)| + |MS(0-wKs)l^em + ̂  for t, se[T,T+T]
with \t-s\<>S by (P2), we obtain

SUj-'(t2) g \"
Jt2-s

and

Hence
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(7.4) S{UTn(t2)-UT"(ti)} g* \'2 UTn(s)ds - ( ' ' * Uf-"(s)ds

From (7.1), (7.3) and (7.4) it follows that

(7.5) U%>"(t2) - Wg-n{h) ^ ^%(s , I/y-"(s))ds -

For simplicity in notation we write um for wj1 with S = dm. Since

\UT"(t) - \um(t) - un(i)\ I ^ \u%(t) - um(i)\ + |wg(0 - un(i)\ g 6m + en

for re [T, T + T ] by (P4), combining (7.5) with Proposition 3.2, we see that

(7.6) lim^^oo \um(i) — un(i)\ = 0

holds for t e [T, T + T] and the convergence is uniform on [T, T + T ] . This means
that {un}nzi is uniformly Cauchy on [T, T + T ] .

We now define u(0 = limw_oo u
n(i) for each te[x, T + T ] . It is clear that

U(T) = Z and (f, u(t))e Q for t e [T, T + T] by (PI) and (01). Also, the continuity
of u is deduced from (P2) and the uniform convergence of {utl}n^l. Since
un is an an-approximate solution for (IVP; T, Z), the application of the Lebesgue
convergence theorem yields

u(i) = S(t-T)z + rs(f-s)£(s, ii(s))ds

for all ^G[T, T + T ] . This show that u is a mild solution to (/KP; T, Z) on
[T, T + T ] . Since the uniqueness of M follows from Proposition 4.1, the proof is
complete.

8. Existence in the large

This section is devoted to the verification of our main result on the global
existence we mentioned in Section 1.

In the previous section we established a result on the uniqueness and local
existence of mild solutions of the problems (IVP; T, Z), (T, z)eQ. By virtue of
this result, we may think of a family of mild solutions u(t; T, Z) of (IVP; T, Z),
(T, Z) e Q, which are not continuable to the right. Using this family, we may
construct a continuous local semiflow by

(8.1) U(t, T, z) = u(U T, z), t G [T, T(T, Z)) .

In view of Theorem 2.2, the following proposition plays an important role in
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proving the global existence of mild solutions of (IVP; T, Z).

PROPOSITION 8.1. Suppose that conditions (Ql)-(Q3) are satisfied. Let
(T, z)eQ. Then there is a number c with the following properties:

(i) x<c<b and (IVP; T, ) has a unique mild solution u on [T, C].
(ii) Let £>0. Then there is a number r>0 such that x + r<c and for

every (t9 x)eQ 0 Sr(?9 z), (IVP; t9 x) has a unique mild solution v on
[f, c] and v satisfies \v(s) — u(s)\^sfor all se[max{r, t}9 c].

PROOF. Let R>0 and M>0 be such that z + R<b and \B(t9 x)|^M for
(t9 x) e Q n SR(T9 Z). Let T > 0 be such that

We shall see that any number c in the interval (T, T 4- T) is the desired one. The
first property follows from Theorem 7.1. To show that c has the second property,
let £>0. By Lemma 3.1, one can find an ?/>0 such that a maximal solution
m(t; T, rj) exists on [T, C] and m(s; T, rj)^e for all 5 6 [T, C]. Choose an r>0 so
that T + r^c , r ^ r + T—c, (c — T ) ( M + l) + rCM + 4) + supo<ff<r \S(a)z — z\ <R and
suPo<<r^r \S(^)z — z\-\-r(M-\-3)^mfo<<T<r m(x-\-a; T, n). This is possible since
T<c<r+Tand info^ff^r m(T + cr; r, rj)>0 for sufficiently small r>0. Take any
(r, x)eQ n Sr(T, z) and set R* = R-r. Note that c-t<c-r + r^T and
|S((j)x-x|^|S((T)z-z|+2r for all <r^0. Since |5(s, }^)|̂ M for all (s, >>)eOn
Su*(r, x) and since

^ r | S (<7)z -z | + 2r

r(M + 3) + suP o g^T |S((7)z-z|

< R* by the choice of r > 0,

Theorem 7.1 implies that the problem (IVP; t9 x) has a unique mild solution v on
It, c] such that (s, v(s))eQ[\ SR(T9 Z) for s e [_t, c]. If t^T, then

X| + \x-z\

^ \S(x-t)x - x + £

r|S(ff)z-z| + r(M + 3)

Hence |i;(s) —M(S)| ̂ m(s; T, J7) for 5 e [r, c] by Proposition 4.1. If f >T ,
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^ r + \S(t-x)z - z

^ m(f; T, n).

Hence \v(s) — u(s)\^m(s; x9 77) for se[f, c] by Proposition 4.1. Thus the proof
is complete.

We are now in a position to prove our global existence theorem.

THEOREM 8.1. Suppose that conditons (Q1)-(Q3) are satisfied. Let C be a
connected component of Q and set d = sup {* e [a, b); C(0^</>}- Then for each
(T, z)eC, (IVP; T, Z) has a unique mild solution on [T, d). In particular, if Q
itself is connected, then for each (x9z)eQ. (lVP;x9z) has a unique mild
solution on [T, b).

PROOF. By virtue of Theorem 2.2, it suffices to show that the continuous
local semiflow U defined by (8.1) satisfies conditions (1') and (2') stated in Theorem
2.2. (T) follows from Proposition 8.1. Let {(xn9 zn)}n^l be a sequence in C such
that (TW, ZW)-»(T, Z)EC as n-»oo, and suppose that T(xn, zn)>c for n^ 1 and some
number o x . Then it follows from Proposition 8.1 that there is a number
c'^c such that T(T, z)>cr and U(t9 Tn9 zn)^>U(t, T, Z) uniformly for f e(r, c'].
Combining this with Proposition 4.1, we see that U(t, xn9 zn) converges uniformly
for f e(r, c] as n->oo. Define u(0 = lim/J_oo U(t9 xn9 zn) for te(x9 c\. Then it
follows from the Lebesgue convergence theorem that the limit function u is a
mild solution to (IVP; T, Z) on [T, C]. This implies that T(T, Z)>C and U(t9 xn9

zn)^U(t9 T, z) uniformly for te(x9 c] as n->oo. Hence (2') holds. Thus the
proof of Theorem 8.1 is complete.

9. Concluding remarks

1) From the point of view of the flow invariance for semilinear evolution
equations, it might be useful to summarize our results in the following form.

THEOREM 9.1. Suppose that Q is connected and that conditions (Ql) and
(Q3) are satisfied. Then the following are equivalent:

(a) limuo h-^diSWx + hBit, x)9 Q(t + h)) = 0for all (t9 x)eQ.
(b) l i m i n g ^-^(S(/i)x + /iB(r, x), Q(t + h)) = Ofor all (t9 x)eQ.
(c) For (t9 x)eQ and ee(0, 1), there is a number ho>0 with the following

property: Let he[09ho) and ye(t + h) satisfy \y-S(h)x\^
h(\B(t9 x)\ +1). Then for each h* e(h9 h0) there exists an element
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y*eQ(t + h*) such that
\y*-S(h*-h)y-(h*-h)B(t + h, y)\ ^ (h*-h)e.

(d) For each (T, z)eQ, there is a mild solution u to (IVP; T, Z) on [T, b).
2) It should be mentioned that the topological method evolved in Section 2

is discussed in terms of local semiflow and is not affected by the characteristics
of semilinear differential equations. Hence it would be applicable to a much
broader class of differential equations in order to deduce the global existence
from the local existence.
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