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About forty years ago the theory of algebraic Lie algebras of endomorphisms

of a finite-dimensional vector space had been developed mainly by C. Chevalley
in his works [2, 3, 4, 5] and the theory of splittable Lie algebras of endomorphisms

of a finite-dimensional vector space had been developed by the present author in
his paper [1.3]. On the other hand, recently the classical structure theorems
of finite-dimensional Lie algebras were extended to a certain kind of locally

finite Lie algebras by I. Stewart in his works [1, 11, 12].
In this paper, in connexion with the extended structure theorems we shall

generalize the theories of algebraic and splittable Lie algebras to a kind of locally
finite Lie algebras of endomorphisms of a not necessarily finite-dimensional vector

space.
Let Kbe a not necessarily finite-dimensional vector space over an algebraically

closed field ! of characteristic 0. For an algebraic endomorphism / of V we con-
sider the Chevalley-Jordan decomposition f=fs +fn and the rational decomposition

fs= Σ ζμfsμ, where {ξμ} is a basis of ! over the prime field. For a Lie algebra L
of endomorphisms of V of finite rank we call L splittable (resp. algebraic) if with

any element / of Lfs (resp. each/sμ) belongs to L. We shall observe the splittable

hull L and the algebraic hull L of L and show that L2 = L2 = L2 (Theorem 4.6).
By making use of a known result on Lie algebras consisting of nilpotent

endomorphisms of a finite-dimensional vector space, we shall show that L is split-

table (resp. algebraic) if and only if L has a splittable (resp. an algebraic) system

of generators (Theorem 6.4). We shall also show that L2 is always algebraic
(Theorem 6.7). Finally we shall generalize several known structure theorems of
splittable (resp. algebraic) Lie algebras in [3, 7, 13] to ideally finite splittable
(resp. algebraic) Lie algebras of endomorphisms of V (Theorems 7.2, 7.9 and 7.10).

§ 1. Preliminaries

Let L be a not necessarily finite-dimensional Lie algebra over a field f.
We write H <L when H is a subalgebra of L and //<ιL when H is an ideal of

L. We denote by £(L) the center of L.
Let λ be an ordinal. A subalgebra H of L is a A-step ascendant subalgebra of

L, denoted by #<ιAL, if there exists a series {//α|α<A} of subalgebras of L such that
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(1) H0 =

(2) HΛ^Ha+i for any ordinal
(3) Hβ = \JΛ<βHOL for any limit ordinal β < λ.

H is an ascendant subalgebra of L, denoted by H ascL, if //oAL for some oridnal

λ. {HΛ\QL<λ} is called an ascending series from H to L. Especially when λ =
n<ω, H is respectively an n-step subideal and a subideal of L, denoted by H si L.

For a totally ordered set I, # is a serial subalgebra (of type I) of L, denoted by

H ser L, if there exists a collection .{Λσ, Fσ|σ e Σ} of subalgebras of L such that

(1) #<Λσ a n d # < F σ f o r a l l σ e Γ ,

(2) Λτ<Vσ<Λσifτ<σ,

(3) L\H = W,6I(>1,\O,
(4) Vσ^Λσ for any σ e Γ.

Then an ascendant subalgebra of L is a serial subalgebra of L.
A class of Lie algebras is a collection of Lie algebras over f together with their

isomorphic copies and the 0-dimensional Lie algebra. We denote by 5> W , W,
E21, Lgr, L$l and LE$Ϊ the classes of finite-dimensional, abelian, nilpotent, soluble,

locally finite, locally nilpotent and locally soluble Lie algebras over f respectively.
Let A be any one of the relations <α and ser. For a class £ of Lie algebras,

L( Δ)% is the collection of Lie algebras L such that any finite subset of L lies inside
a subalgebra H of L satisfying HAL and belonging to £. Lie algebras belonging

to L(o)g and L(ser)5 are respectively called ideally finite and serially finite.
From now on let the basic field ! be of characteristic 0, unless otherwise

specified.

It is known [14] that the serially finite Lie algebras coincide with the
neoclassical Lie algebras in the sense of [1], Hence we have the following results

by [1, 11, 12].
Radicals. For a locally finite Lie algebra L, we denote by p(L) and σ(L) the

largest locally nilpotent and the largest locally soluble ideals of L respectively.

(1.1) Let L be locally finite and let HserL. Then ρ(H) = Hϊ\ρ(L) and

(1.2) Let L be ideally finite and let {Fλ\λeΛ} be the collection of finite-

dimensional ideals of L. Then p(L)=Σλ<=Λ p(Fλ)

Semisimplicity . A locally finite Lie algebra L is called semisimple if σ(L) = 0.

(1.3) Let L be serially finite. L is semisimple if and only if L is a direct
sum of finite-dimensional non-abelian simple ideals. Then such a direct sum
decomposition is unique.

(1.4) Let L be serially finite. IfL is semisimple, every ideal ofL is a direct
summand of L and is semisimple.
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Levi subalgebras. A subalgebra A of a locally finite Lie algebra L is called a
Levi subalgebra of L if L = σ(L) + A with <τ(L) n A = 0.

(1.5) Euery serially finite Lie algebra has a Levi subalgebra.

Borel subalgebras. For a locally finite Lie algebra L, a maximal locally
soluble subalgebra of L is called a Borel subalgebra of L.

(1.6) For an ideally finite Lie algebra L, any Borel subalgebra of L
contains σ(L).

(1.7) Let L be ideally finite. A subalgebra B of L is a Borel subalgebra of
L if and only if, for the decomposition Λ = @μΛμ in (1.3) of a Levi subalgebra A

of L, B = σ(L) + (®μBμ) where each Bμ is a Borel subalgebra of Aμ.

Cartan subalgebras. A subalgebra C of L is called a Cartan subalgebra of

L if C is locally nilpotent and C equals the idealizer of C in L.

(1.8) Every ideally finite Lie algebra has a Cartan subalgebra.

(1.9) Let C be a Cartan subalgebra of an ideally finite Lie algebra L.
Then C is a maximal locally nilpotent subalgebra of L. For an ideal H of L,

(C + #)/// is a Cartan subalgebra of L/H.

(1.10) Let L be ideally finite. Then a Cartan subalgebra of a Borel
subalgebra of L is a Cartan subalgebra of L.

(1.11) Let L be a locally soluble, ideally finite^ Lie algebra. Then a sub-
algebra C of L is a Cartan subalgebra of L if and only if C is a maximal locally

nilpotent subalgebra of L and L = p(L) + C.

L-modules. Let L be a Lie algebra over a field f of arbitrary characteristic

and let Fbe an L-module. Then the following result can be shown as in [9].

(1.12) For an L-module F, the following conditions are equivalent:
(1) V is a sum of irreducible submodules.

(2) V is completely reducible.
(3) For any submodule U of V, there exists a submodule U' of Vsuch that

V=U®U'.

Vis called locally finite if any finite subset of Flies inside a finite-dimensional

submodule of V.

§ 2. Semisimple and nil endomorphisms

From now on let f be an algebraically closed field of characteristic 0. We
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identify the prime field of f with the field Q of rational numbers and take a basis

{ξμ\μ e M} of f over Q containing ζ0 = 1.
Let Fbe a vector space over f which is not necessarily finite-dimensional. The

set End Fof endomorphisms of Fis a Lie algebra with commutator product, which

we denote by [End F]. Let/e End V. Then Fis an </>-module. For α e f, put

Fα = {veV\ ι;(/-α)" = 0 for some n} .

LEMMA 2.1. // Fis locally finite as an (fy-module, then F=0α Fα.

PROOF. For any finite-dimensional submodule U of F, it is known that

£/=Θαt/α where each α is an eigenvalue of f\υ. Denoting by A the set of
eigenvalues of/, we have F=Σαey4 Fα. It follows that V=®ΛeA Fα.

LEMMA 2.2. Let Wbe an /-invariant subspace of V. Then for αeί

a) wa=Wt]VΛ.

b) // V= Θα VΛ9 then (V/W)Λ = (VΛ+ W)/W.

PROOF, a) is evident and b) follows from

v/w= ΣΛV*

f is called semisimple if F has a basis consisting of eigenvectors of/. / is
called nil if for any vεV there exists an integer n = n(v)>Q such that vfn = Q.

We call /rationally semisimple if /is semisimple and all eigenvalues of /belong to

Q
It is immediate that if /is semisimple then Fis a locally finite </>-module.

LEMMA 2.3. Lef / be semisimple. Then for any eigenvalue α of /, Fα

consists of eigenvectors off corresponding to α.

PROOF. Let A be the set of eigenvalues of / and for α e A let Fα be the

eigenspace of / corresponding to α. Then Fα^ Fα and therefore F=ΣαeX Fαc

θαe/ι Fα= Fby Lemma 2.1. Hence Fα= Fα.

LEMMA 2.4. Lei JF fee 0n f-invariant subsapce of V and denote by f the
endomorphism of V/W induced by f. Iff is semisimple (resp. rationally semi-
simple, nil, nilpotent), then so are f\w and f.

PROOF. Let /be semisimple. Then by Lemmas 2.1 and 2.2,

V=®ΛVΛ, W= ®α(PFΓΊFα), V/W= ®Λ(VΛ+W)IW.

By Lemma 2.3 WnVΛ and (Fα-h W)l W respectively consists of eigenvectors of

f\w and / corresponding to α. Therefore f\w and / are semisimple. The case
that / is rationally semisimple is similarly shown and the other cases are evident.
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LEMMA 2.5. Letf, g eEnd V and assume thatfg = gf. If f and g are semi-
simple (resp. rationally semisimple, nil, nilpotent), then so isf+g.

PROOF. Let / and g be semisimple. Then by Lemmas 2.1 and 2.3, V=
©α VΛ where each VΛ consists of eigenvectors of / corresponding to α. Since

fg = gf, VΛ is 0-invariant and by Lemma 2.4 g\Vχ is semisimple. Hence by
Lemmas 2.1 and 2.3, VΛ=@β Vaβ where each VΛβ consists of eigenvectors of g\Vu

corresponding to β. It follows that any element of VΛβ is an eigenvector off+g
corresponding to cc + β. Hence f+g is semisimple. The case that /and g are
rationally semisimple is similarly shown and the other cases are evident.

§ 3. Chevalley- Jordan and rational decompositions

Let/e End V. If /is uniquely expressed in the form

/ = /.+/„ (1)

where fs is a semisimple element of End V, fn is a nil element of End V and fsfn =
/„/,, then (1) is called the Chevalley- Jordan decomposition of /. f, and /„ are
respectively called the semisimple and the nil parts of/.

It is shown in Proposition 3.1 that/s is uniquely expressed in the form

fs = ΣμeM^μ/sμ (2)

where each/sμ is a rationally semisimple element of End Fand/sμ/sv=/sv/sμ for

any μ, v e M. Here by fs = Σ MeM ζμfsμ

 we mean that for each v e V vfsμ = 0 except
a finite number of μ e M, that is, vfs is a finite sum ϋ(Σ?=ι ζμifsμ) We call (2) the
rational decomposition of/s and each/sμ the rationally semisimple part of/.

PROPOSITION 3.1. Iff is semisimple element of End V, then f has the rational
decomposition.

PROOF. Let A be the set of eigenvalues of/. Then by Lemmas 2.1 and 2.3
V= ®ΛeA VΛ where each Va consists of eigenvectors of/ corresponding to α. For
each α e A we have

Define /μe End V by

Λ l κ « = αμlκβ (αe^).

Then fμ is rationally semisimple and

/ = Σ μeM ^/μ> Λ/v = fvfμ fa V € M) .
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To show the uniqueness of the decomposition, assume furthermore that

/ = Σ μeM ξμfμ, fμfv = fvfμ (^ V ^ M)

where each fμ is rationally semisimple. For any α e A, fixe a nonzero element υ
of Fα. Since fμ commutes with/, fμ keeps Fα invariant and by Lemma 2Λfμ\Voc

is rationally semisimple. Hence Fα has a basis consisting of common eigenvectors

offμ\Vu (μ e M). Write v = Σj Vj as the linear sum of elements of this basis. Then

Vjλ = yμjvj 6weβ)
It follows that

vf = (Σj vj) (Σμ ξμfμ) = Σj (Σμ U>,

On the other hand

vf = (Σj vj)(Σv ίvΛ) = Σ; (Σv £Λ>; .

Hence we have

Σμ ξμjμj = Σv ξv*v f<>Γ Cadi J

and therefore yμj = aμ for each 7. It follows that

V/μ = <*μV = Vfμ '

Since α and v are arbitrary, we have fμ =fμ.

f is said to be algebraic if there exists q(f)εl[f] such that g(/) = 0. / is
algebraic if V is finite-dimensional. Furthermore / is algebraic if / is of finite
rank. If /is algebraic, then Fis locally finite as an </>-module.

The part a) of the following proposition is due to [11].

PROPOSITION 3.2. Let f be an algebraic element of End V. Then

a) / has the Cheυalley-Jordan decomposition f=fs+fn with fn nilpotent.
Furthermore there exist polynomials g, h eϊ[ί] without constant terms such that

b) The rational decomposition fs=ΣμeMζμfsμ °f fs

 7S a finite sum and
there exist polynomials gμεk\f] (μeM) without constant terms such that fsμ =

gJJ)

PROOF. Let q(t) be the minimal polynomial of/ and let

where α l v..,α f c are different from each other. Put Ff = Ker(/— αf)
mί. Then

Vι is /-invariant. Putting
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#ι(0> > qk(f) are relatively prime. Hence there exist polynomials p1(ί),..., pk(t)
over ϊ such that

For any v e V

Hence V= Σ?=ι Vt. Since FJc Fαί, by Lemma 2.1 F= ®*=1 Ff.
a) By the Chinese remainder theorem, there exists a polynomial g(t) over

ϊ such that

0(0 =
0 modi.

Put h(f) = t — g(i). Then 0(0 and h(t) are polynomials over ϊ without constant
terms. Put

fs = g(fl /„ = *(/)•

Then/s and/π belong to End V. Each Ff is invariant by/s and/π, and

fs\Vi = <X*ilvi>

(fn\v)mi = ((f-^\V)
mi = 0.

Hence fs is semisimple and/π is nilpotent. Obviously /=/s+/π, /s/n=/π/s.
To show uniqueness of the above decomposition, assume that

f = L+L JJn=fnL

where Js is semisimple and/n is nil. Then/,— /s=/π— /π. Since fs is expressed as
a polynomial of/,/s commutes with/s and therefore by Lemma 2.5/s— /s is semi-
simple. Similarly /„ -/„ is nil. Hence /s -Js =/„ -/„ = 0, that is, fs =fs and /„ =/„.

b) Each αf is expressed as

By the Chinese remainder theorem, for each μeM there exists a polynomial
0(ί) over I such that

0 modi.
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Putting

f,μ = 9μ(f)>

we have/sμ|Fi = αίμlF. (l<i<k). Hence fsμ is rationally semisimple and

/, = Σ ξμfsμ, fsμfsv = fsvfsμ O> V 8 M) .

By Proposition 2.1, this is the rational decomposition of fs and each fsιl is a
polynomial of/without constant term. For all μeM except a finite number of

elements of M we have αίμ = 0 (1 < i < k) and therefore fsμ=0.

LEMMA 3.3. Letf9 g eEnd Vand letf, g,f+g be algebraic. Iffg = gf, then

(/+ 9\ =f, + 9s, (/+ 0)Λ = /» + gn> (/+ flf)sμ = /sμ + 9sμ

for each μeM.

PROOF. By Proposition 3.2

/ + 0 = (/, + 0J + (/» + flα (3)

/, + Λ=ΣμβMίμ(Λμ + Λμ). (4)

Since /<gf = gf, by Proposition 3.2

/sσ s 9sJsi Jndn QnJni Jsμdsμ dsμJsμ

Hence by Lemma 2.5 fs + gs, fn+gn and fsμ + gsμ are respectively semisimple,
nilpotent and rationally semisimple. Since factors in (3) and (4) respectively
commute with each other, by Proposition 3.2 (3) is the Chevalley-Jordan decom-
position off+g and (4) is the rational decomposition of (f+g)s.

LEMMA 3.4. Let f be an algebraic element of End V. Let W be an
f-invariant subsapce of V and let f be an endomorphism of VjW induced by /.
Then

a) The Chevalley-Jordan decomposition of f induces the Chevalley-
Jordan decompositions off\w andf.

b) The rational decomposition offs induces the rational decompositions of

fs\w andfs.

PROOF, a) Let f=fs+fn be the Chevalley-Jordan decomposition of /.
Then by Proposition 3.2 W is invariant by fs and /„. Hence by Lemma 2.4

fs\w>fs are semisimple andfn\w,fn are nilpotent. Since/I^, and / are algebraic,

f \ w = f,\w+fn\w and / =
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are respectively the Chevalley- Jordan decomposition o f f \ w and/.
b) is similarly shown.

LEMMA 3.5. Let L<[End K] and let f be an algebraic element of L. Iff is
semisimple (resp. nilpotent, rationally semisimple), then so is adL/.

PROOF. By Lemma 2.4 it suffices to show the case that L coincides with
[EndKJ. Put£=[EndF].

Assume that / is a semisimple element of E. Then VΛ consists of eigenvectors
of/ corresponding to α. Since/ has only a finite number of eigenvalues, denote
them by α1?..., αn and put F f= Fα.. Then by Lemma 2.1 V= 0?=1 Vt. Hence

where Hom(Ff, Vj) is the subspace of E consisting of all endomorphisms g of V
such that Vβ e J/ and Vkg = 0 (k φ i). It follows that

toy, /] = («, - «^y (0y € Horn (Fί? F,)) .

Hence choosing a basis of each Horn (Vi9 F7 ), we have a basis of E consisting of
eigenvectors of ad£/. Therefore ad£/ is semisimple.

This reasoning also shows that if/ is rationally semisimple then so is ad£/.
Finally, let / be nilpotent. Since

<7(adjr = Σf=o (- 1)1 ( 7 )fi9fm~i (9 e E) ,

/r = 0 implies (ad^/)21"1 = 0. Therefore ad£/ is nilpotent.

COROLLARY 3.6. Let L be an ideally finite subalgebra of [End F] and letf
be an algebraic element of L. Iffs and fn belong to L, then

(adL/X = adL/s,

If furthermore fsμ belongs to L for any μeM, then

(adL/)s, = adL/5μ

PROOF. Let /s, /„ e L. Then for the Chevalley-Jordan decomposition /=

/ β +/ Λ of/wehave

adL/=adL/s + adL/M. (5)

Since fs and /„ are algebraic, by Lemma 3.5 we see that adL/s and adL/π are
respectively semisimple and nilpotent and are commutative. By our hypothesis
that Le L(<ι)5, adL/is an algebraic element of End L. Hence (5) is the Chevalley-
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Jordan decomposition of adL/.
Furthermore let fsμeL for any μeM. Then it is similarly shown that

s— Σ ζμ^L/sμ is the rational decomposition of (adL/)5.

Let L be a subalgebra of [End V~\. L is called splittable, provided every
element / of L has the Chevalley- Jordan decomposition and fs, fn belong to L.

We call L algebraic, provided every element f of L has the Chevalley- Jordan

decomposition and fs, /„, fsμ belong to L for any μeM.
Especially in the case that every element/of L is of finite rank, by Proposition

3.2 / has the Chevalley- Jordan decomposition and the rational decomposition of

fs is a finite sum. Hence L is algebraic if for every element/ of L all the rationally
semisimple parts belong to L. In the beginning of Section 2 we fixed a basis

{ξμ\μeM} of ! over Q, but in this special case the definition of algebraicity does
not depend on the choice of such a basis.

We remark that when V is of finite dimension the above definition of
algebraicity coincides with the known definition (e.g. [4], Chap. 2, §4,
Definition 1).

Evidently if L is algebraic then L is splittable.
Next, let L be a Lie algebra over f which is not necessarily linear. An element

x of L is called ad-semisimple (resp. ad-rationally semisimple, ad-nil, ad-nilpotent)

if adLx is semisimple (resp. rationally semisimple, nil, nilpotent).
Let L be ideally finite. If for every element x of L

x = xs + xn, xs, xπ e L, [xs, xj = 0

and adLx=adLxs+adLxn is the Chevalley- Jordan decomposition of adLx, then

L is called ad-splittable. Furthermore if

XS = ΣμeM ξμXSμ> *sμ ̂  L, [x,μ, X,v] =0 (//, V € M)

and adLxs=ΣμeM£μadιΛμ is the rational decomposition of adLxs, then L is
called ad-algebraic.

We here give examples of algebraic Lie algebras in the following

PROPOSITION 3.7. Let A be an algebra over I.
a) The Lie algebra Derj A of all derivations of A of finite rank is algebraic.
b) If A is finite-dimensional, then the derivation algebra Der A is algebraic.

PROOF, a) Let δ e Derj A. Then A is a locally finite <(5>-module. Hence
by Lemma 1.1

A = ®α Aa .

For any eigenvalues α, β of δ, we have AΛAβ^Aa+β. If α= ΣμeM £μ«μ Oμ e β),
by Proposition 3.2 b)
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&aμ I AΛ = «M!A. -

Hence for x e Aa and y e Aβ

(xy)δsμ = (α + /Qμ(x>0 = K + £μ)(*}0 = (xaf> + x(yδsμ).

That is, <5sμ e Der A. Since <5SAί is expressed as a polynomial of δ without constant
term, δsμ E Derj A.

b) is a special case of a).

§ 4. Splittable and algebraic hulls

Let F(F) be the set of endomorphisms of Fof finite rank. Then F(F) is a

subalgebra of [End F]. F(F) = [End F] if Fis finite-dimensional.

LEMMA 4.1. Let L be a subalgebra o/F(F). Forfί9...,fmeL, put

Then K is a finite-dimensional subalgebra of L containing f^...yfm. Especially
if L is splitίable (resp. algebraic), then so is K.

PROOF. Evidently /!,..., /meK<L. W is of finite dimension and U is of

finite codimension. Hence if we take a subspace Uf of V complementary to 17,

dim K < dim Horn (£/', W) < oo.

Especially, let L be splittable (resp. algebraic). Then for /e K fs (resp. fsμ (μ E M))

belongs to L. By Proposition 3.2 we see that/s (resp. fsμ (μeM)) belongs to K.

Therefore K is splittable (resp. algebraic).

PROPOSITION 4.2. a) F(F) is locally finite and algebraic.
b) Let L be an ideally finite subalgebra o/F(F). If L is splittable (resp.

algebraic), then L is ad-splittable (resp. ad-algebraic).

PROOF, a) Applying the first part of Lemma 4.1 to L = F(F), we see that

F(F) is locally finite. For any element/ of F(F), by Proposition 3.2 b)fsμ belongs

to F(F) for any μeM. Hence F(F) is algebraic.

b) Let L be splittable (resp. algebraic). Then for any element / of L we

have the Chevalley- Jordan decomposition of /(resp. the rational decomposition

of/)

. f, = Σ peM ξμfsμ, f,β € L (// E M)) .
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Then by Corollary 3.6

aάj = adL/s + aάLfn (resp. aάjs= ΣμeM ξ

is the Chevalley- Jordan decomposition of adL/(resp. the rational decomposition of
(adL/)s). Hence L is ad-splittable (resp. ad-algebraic).

The first half of Lemma 4.1 and local finiteness of F(K) in Proposition 4.2 a)
are due to [11].

By Proposition 4.2 a) F(F) is algebraic and therefore splittable. Hence for
any subalgebra L of F(F) there exist the smallest splittable subalgebra and the
smallest algebraic subalgebra of F(F) containing L. We call them the splittable
hull and the algebraic hull of L, and denote them by L (or L") and L (or L~)
respectively.

ThenL<L<L. If H<L then #<L and H<L.

LEMMA 4.3. Let L be α subalgebra of F(K). // Le g then L, Leg.

PROOF. Assume that Le g and let /ι,...,/m be a basis of L. We set W9 U as
in Lemma 4.1 and put K={fe F(V)\Vf^ W9 Uf=0}. Since F(K) is algebraic by
Proposition 4.2 a), by Lemma 4.1 K is a finite-dimensional algebraic subalgebra of
F(F) containing L. Hence L < K. Therefore L, L e g.

LEMMA 4.4. Let a subalgebra L of F(F) be ideally finite and splittable
(resp. algebraic). For A, B,C<L and C<AΓ\B,if[A,B]^C then \_Ά, B]<^C

(resp. Dl,S]£C).

PROOF. Let K = {feL\\_A,f]<^C}. Then K is a subalgebra of L. For
any element / of K, fs (resp. fsμ (μ e M)) belongs to L. By Corollary 3.6

adL/ = adL/s + adL/M (resp. adL/s= Σ <^adL/sμ)

is the Chevalley- Jordan decomposition (resp. the rational decomposition). Hence
by Proposition 3.2

(resp.

It follows that fs (resp. fsμ (μ e M)) belongs to K. Hence K is splittable (resp.
algebraic).

By assumption B<K. Therefore B<K (resp. B<K)9 whence

[Λ, £]c;C (resp. [A, 5] <ΞC).

Next, apply the above reasoning to β, ^4, C (resp. 5, A, C). Then we have
[£, i] <Ξ C (resp. [5, Jϊ] c C).
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LEMMA 4.5. Let L be a subalgebra of F(F). Assume that L = \jλeΛHλ

with Hλ<L and that for any λ, μeA there exists veA such that Hλ[) Hμ^Hv.
Then

L = \JλGAfiλ and L = \JλeΛHλ.

PROOF. Put K = \JλeΛ fiλ. For any elements/, g of K, take A, μεA such
that/e fiλ and g e ftμ, and take v e A such that Hλ\jHμ^ Hv. Then fiλ\]fiμ^ Hv.
It follows that [/, 0] efiv^K. Hence K<L Therefore K is a splittable sub-

algebra of £ containing L. Thus K = L and L = \JλeA Bλ
The other formula is similarly shown.

THEOREM 4.6. For a subalgebra L of¥(V),

a) L<"> = £<"> = !
b) Ln = L» = Ln

PROOF. By Proposition 4.2 a) we have Le Lg. Let {Fλ|λ e ΛL} be the set of
finite-dimensional subalgebras of L. Then L=\jλeΛFλ and yd satisfies the
condition of Lemma 4.5. By Lemma 4.5

By Lemma 4.3 Fλ e g. Applying Lemma 4.4 to L = Fλ, we have

FS = FJ

by induction on n. It follows that

L» = \JλeΛF»λ = Vλ

In particular L(1> = L(1). Now by induction on n we have

Since L < L < L, we have the assertions of the theorem.

PROPOSITION 4.7. Let L be a subalgebra o/F(F) and let 3E fee any one of the
following classes:

g, M, E21, 5R, E2T n S, 91 n g, LE^I, L9ΐ,

L(<ι)af, ι<<ι)(Eα n so, L(<oαn n S).

IfLeX,thenL9 LeX.

PROOF. The case that £ = 3r was shown in Lemma 4.3. The cases that
3E = 2I, E2I, 91 follow from Theorem 4.6, the cases that 3E = E9ί n S, 91 n g follow
from Lemma 4.3 and Theorem 4.6, and the cases that ϊ = LE2I, L91 follow from
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Lemma 4.5 and Theorem 4.6.

We now show the case that 3E = L(<ι)gί. Assume that LeiXo)^ and let
{Fλ\λeΛ} be the set of finite-dimensional ideals of L. Then L = \JλeΛFλ. By
Lemmas 4.3 and 4.5 we have

£ = ^λeΛ Fλ and Fλ e g for any λ e Λ.

For Fλ<Fμ, apply Lemma 4.4 to L=Fμ, A = C=Fλ and £=Fr Then we have
[FA, Jy] £ FΛ. It follows that

[/^ jFj £ Fλ for any v e Λ,

which shows that Fλ^L. Hence L e L(o)g and therefore L e L(<3)g.

The remaining cases follow from the facts that

L(<0(E« n 3r) = LESί n L(<ι)3r and L(<0(91 n g) = L$Tt n L(<α)3r.

PROPOSITION 4.8. Let L be an ideally finite subalgebra of F(V).
a) //H<ασL, ίΛen β^σL and H^σL.

b)

PROOF. By Lemma 4.7 £, LeL(<ι)g. Let H<\σL and let {/fα|α<σ} be
an ascending series from H to L.

a) Evidently fL=HQ* and L — Hσ^. For any ordinal α<σ, by Lemma 4.4

we have Hα

Λ<α/Γα+1

Λ. For any limit ordinal A<σ, by Lemma 4.5 we have /fA^ =

Wα < λ Hβ". Hence #<ισL. Similarly 5<ισL.
b) For σ=l by Lemma 4.4 we have ff<αL. For any non-limit ordinal σ,

Hσ-ι<3L. It follows that Hσ.ί^L. Hence H^σL. For any limit ordinal σ,

by a) we have #<ι#<ισL. Since σ is infinite, H<3σL. Hence for all σ> 1

and therefore

§ 5. Lie algebras of endomorphisms of a finite-dimensional vector space

In this section, we assume that V is a finite-dimensional vector space over ϊ

and we observe several known properties of subalgebras of [End V~\.

LEMMA 5.1. Let L be a subalgebra of [End V~\ and let R denote the soluble

radical of L. Then the set Rn of nilpotent elements of R is an ideal of L con-

taining [Λ, L].

PROOF. For any element / of L, R + </> is a soluble subalgebra of L and
may be triangulated by Lie's theorem. It follows that [R,f]^Rn. Again

triangulating R, we see that Rn is a subspace of R and [^π,/]^[^,/]^^π.
Hence
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PROPOSITION 5.2. Every semisimple subalgebra of [End V] is algebraic.

PROOF. Let L be a semisimple subalgebra of [End V\. By Theorem 4.6
we have LoL. Regard L as an L-module by ad£L. Then WeyΓs theorem says
that there exists a subspace A of L such that

L = L+ A, L n A = 0, [A, L] c A.

By Proposition 3.2 b) and Corollary 3.6 we have [A, L]^A. It follows from

Theorem 4.6 that [A9 L] s L n A = 0, that is, X = C(£). Again by WeyΓs theorem
K=0£=1 j/. where each Ff is an irreducible submodule of V. For any element/

of A, we have fsμ e L and therefore

By Schur's lemma h^^λ^. (\<i<ή). Since L = L2, tr(/|κ.) = tr(^|κ.) = 0.

Hence

It follows that tr(/sμ|κ.) = 0 and therefore tr(/ι|F.) = 0. Hence A f = 0 (l<i<

and Λ = 0. Thus fsμ = ge L.

PROPOSITION 5.3. Let L be a subalgebra of [End 7]. // L-module V is

completely reducible, then L is splittable.

For the proof, see [8, Chap. 3, Theorem 17].

Let F0>S=F® ®F be the space of contravariant tensors of rank s. For

/eEndF, let/0 f l=/and

fo,s =/®!® ®l

Then /0)S 6 End K0>s. Putting F0>r/0,s = ° for r^s, we may consider that /0>s

on θί=ι ^o,r

LEMMA 5.4. Let /e End V. Then

(/s)θ,r=ΣμeM ξμ(/sμ)θ,r

are respectively the Chevalley- Jordan decomposition o//0>Γ and ί/ie rational

decomposition of (/s)0,r

b) Lβί W be a subspace of φj=1 F0>r w/iic/i is invariant by Σί=ι/o,r>

let J be the restriction of Σί=ι/o,r ίo ̂  Then W is invariant byfs,fn,fsμ and

J Js ' 7w> /s == ^μeM ζμJsμ
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are respectively the Chevalley- Jordan decomposition of f and the rational

decomposition of fs.

For a subalgebra L of [End F], we put

THEOREM 5.5. Let L be an r-dimensional subalgebra of [End V~\ con-
sisting of nil potent elements. If an element g of End V satisfies

(m = l, 2, 3,..., 4'),

then g belongs to L.

Outline of the proof is as follows. Assume that /, /' e End V and / is
nilpotent. Then it is shown that if Ker/c Ker/' and Ker/0>2 £ Ker/'0>2, then /'

is expressed as a polynomial of/ without constant term. Owing to this it can

be shown that if Ker /c Ker/', Ker/0>2cKer/'0>2 and Ker/0>4cKer/'0j4, then

f' = cf with c e ϊ. Using this fact, the assertion of the theorem may be shown by
induction on r.

For detail, see [5, 6].

§ 6. Splittable and algebraic systems of generators

We begin with

LEMMA 6.1. Let L be a finite-dimensional subalgebra of¥(V). Then there
exists a finite-dimensional subspace VQ of V so that we can regard

L< [EndF0] < F(F).

PROOF, Let /!,...,/„ be a basis of L. Take W and U as in Lemma 4.1 and

put

K = {feF(V)\Vf<=w,Uf=0}.

Then X is a finite-dimensional subalgebra of F(F) containing L. Let U' be a
subspace of V complementary to U and put

KO = U' + W.

Then dim V0< oo and there exists a subspace Vv of t/ such that V= F0® Fj. We
now identify an element /0 of End F0 with an element of End V which is obtained
from /o by putting F1/0 = 0. Then we have End F0£End F and therefore L<
[EndF0]<F(F).
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By this lemma, we can apply the results on Lie algebras of endomorphisms of
a finite-dimensional vector space to finite-dimensional subalgebras of F(F).

PROPOSITION 6.2. Every semisimple serially finite subalgebra of F(F) is
algebraic.

PROOF. Let L be a semisimple serially finite subalgebra of F(F). By (1.3)
we have

where each Lλ is a finite-dimensional non-abelian simple ideal of L. By
Proposition 5.2 and Lemma 6.1 each Lλ is algebraic. Hence any element / of
L is expressed as

Since /!,..., /fc commute with each other, by Lemma 3.3 we have

fsμ = (Λ)βμ +-+ (Λ).μeΣ}=1.LA| < L

for any μ e M. Therefore L is algebraic.

For a subalgebra L of F(F), we call a system {/J^e/} of generators of L
splittable if the semisimple and the nilpotent parts of each /t belong to L, and
algebraic if the semisimple, the nilpotent and the rationally semisimple parts of
each /, belong to L. We similarly define splittability .and algebraicity of a
basis of L.

LEMMA 6.3. Let Vbe a finite-dimensional vector space over ϊ and let L be a
subalgebra of [End V~\. Then L is splittable (resp. algebraic) if L has a
splittable (resp. an algebraic) system of generators.

PROOF. Let L have a splittable (resp. an algebraic) system G = {/1?...,/m}
of generators of L. Let R be the soluble radical of L. Then by Lemma 5.1
RI = [L, K] consists of nilpotent elements. Denoting r = dim Rί we put

and for any element / of End V we define

/= Σi = l/0,i

Since R^ is an ideal of L by Proposition 4.8 b), Wis invariant by/for any element
/ of L. Hence put J=J\W and for A c L put

A = {f\feA}.
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Then R is the center of L. Now let L = R + Λ be a Levi decomposition of L.

Then we have

ft = 9i + hh gi εR, hteA (1 < i < m).

Since [gi9 fc;] = 0, by Lemma 3.3

(7ι), = foi). + (ΰ (resp. (7λμ = toλμ + (hi)sμ) -

Since /I is algebraic by Proposition 5.2, it follows from Lemma 5.4 b) that

jμ = (A,),., e A),

= ( f i ) s e L (resp. (/,),„ = (/f)SAt E L) .

Hence

(gi)sεL (resp.(^)sμeL) (l<i<m). (1)

For any element / of L,

= Σ αJi + Σ^α.v^I/ii' '/ΰJ (fiJi^G).

Replacing ft by ,̂ + /!,-, we have

/= 0 + A, /ι = Σ<*Λ + Σj^αίΓ .ίyCAi^..., A/,.],

^ = the sum of remaining terms.

Since h e Λ,

Es = TιseΛ (resp. HSfl = h^e Λ). (2)

On the other hand, g = Σ /?fc#fc and therefore by (1)

£s = Σ βMs e I (resp. gsμ = Σ βk(dk)Sfί e L) . (3)

From (2) and (3) it follows that

fs=fs = 9s+ S S 6L

(resp. y^ =/βμ = gsμ + bsμ e L) .

Hence there exists an element p (resp. qμ) of L such that

We have
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whence by Theorem 5.5

fs ~ peRi

It follows that / seL (resp./sμeL for any μeM). Therefore L is splittable
(resp. algebraic).

THEOREM 6.4. For a subalgebra L of¥(V) the following are equivalent:
a) L is splittable (resp. algebraic).

b) L has a splittable (resp. an algebraic) basis.

c) L has a splittable (resp. an algebraic) system of generators.

PROOF. Assume that L has a splittable system of generators. Replacing
each element by its semisimple and nil parts, we may assume that L has a system
of generators consisting of semisimple and nilpotent endomorphisms of V.
Denote this system of generators by {/JαeA}.

Let {Lλ\λeΛ} be the set of finite-dimensional subalgebras of L. Then by
Proposition 4.2 a) L=\JλeΛLλ and therefore by Lemma 4.5 L = ̂ jλeΛ Lλ. Let

0!,..., gn be a basis of Lλ. Then

Let Gj be the set of fΛJ appearing in this formula and put G = W?=1 G f. Since G is
finite, there exists a subalgebra Lμ (μ e /i) containing G. Hence

L λ < < G > < L μ .

By Lemma 6.1 there exists a finite-dimensional subspace Vμ of Fsuch that

L μ <[Endl/J<F(F).

It follows from Lemma 6.3 that <G> is splittable and therefore

Hence

£ = \JλLλ = \jλLλ = L,

that is, L = L. Therefore L is splittable.

The case of algebraicity is similarly shown.

COROLLARY 6.5. For a subalgebra L o/F(F), L (resp. L) is a vector space

spanned by semisimple (resp. rationally semisimple) and nilpotent parts of
elements of L.

PROOF. Let K be a subspace of F(K) spanned by semisimple (resp. rationally
semisimple) and nil parts of all elements of L. Then



110 ShigeakiTόGό

L £ K <Ξ L (resp. L £ K <= L) .

Hence by Theorem 3.6 we have

[#, /Γ] £ L2 £ L £ #

and therefore K is a subalgebra of L (resp. L). Since K has a splittable (resp.

an algebraic) basis, by Theorem 6.4 K is splittable (resp. algebraic). Thus

COROLLARY 6.6. The Lie algebra generated by any collection of splittable
(resp. algebraic) subalgebras of¥(V) is splittable (resp. algebraic).

PROOF. The Lie algebra L generated by such a collection of subalgebras of

F(F) has a splittable (resp. an algebraic) system of generators. Hence by

Theorem 6.4 L is splittable (resp. algebraic).

THEOREM 6.7. For any subalgebra L of¥(V) L2 is algebraic.

PROOF. Let {Lλ\λeA} be the set of finite-dimensional subalgebras of L.

Then by Proposition 4.2 a) L=\jλ Lλ. Hence

For each LΛ, by Lemma 6.1 there exists a finite-dimensional subspace Vλ of V

such that

L Λ <[EndFJ<F(K).

Hence by Lemma 5.1 the soluble radical of L2

λ consists of nilpotent elements and
by Proposition 5.2 a Levi subalgebra of L2

λ is algebraic. Therefore by Theorem 6.4

L2

λ is algebraic. Thus by Corollary 6.6 we conclude that L2 is algebraic.

§ 7. Structure theorems

In this section we shall examine the structure of ideally finite subalgebras of

F(F).

THEOREM 7.1. Let L be an ideally finite subalgebra of¥(V). Then

a) σ(LΓ = σ(L\ σ(L)~ = σ(L) and σ(L) = σ(L) n L = σ(L) Π L.
b) Every Levi subalgebra of L is a Levi subalgebra of L and of L.
c) For any Borel subalgebra B of L, B and B are respectively Borel

subalgebras of L and L, and B = B n L — E n L.

PROOF. Let A be a Levi subalgebra of L. Then σ(LY + Λ is a subalgebra
of L by Theorem 4.6 and has a splittable basis by Proposition 6.2. Hence by
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Theorem 6.4 L = σ(LY + A. Similarly we have L = σ(L)~ + A.
a) By Propositions 4.7 and 4.8 a) σ(L)" is a locally soluble ideal of L.

Let H be any locally soluble ideal of L. Then H + σ(L)~ is a locally soluble ideal
of L. In fact, let K be a finitely generated subalgebra of H + σ(Lγ. Since

F(F) is locally finite, K is finite-dimensional and therefore (K + H)/H is soluble.
It follows that K(n^H. Hence K ( π> is soluble, that is, K is soluble. Therefore
H + σ(LY is locally soluble, as asserted. Now

H + σ(LΓ = (# + σ(LΓ) n

whence H<σ(L)~. Thus σ(L)^ is the largest locally soluble ideal of L and
σ(LY = σ(L). By maximality of σ(L), we have σ(L) = σ(L) n L.

The assertion for σ(L) is similarly proved.

b) Taking account of the part a), L = σ(L)~ + Λ and L = σ(L)~ + A are Levi
decompositions of L and L respectively.

c) By (1.3) A = ®μAμ where each Λμ is a finite-dimensional non-abelian
simple ideal of A. Hence by (1.7)

where each Bμ is a Borel subalgebra of Aμ. By Proposition 6.2

Bμ < Aμ = Aμ

and by Proposition 4.7 Bμ is soluble. Hence we have Bμ = Bμ by maximality of

Bμ, that is, Bμ is algebraic. Now by Corollary 6.6 σ(L)~ + (©μ Bμ) is a splittable
subalgebra of B containing B and therefore

From a) and (1.7) it follows that B is a Borel subalgebra of L. By maximality of
B wehave£ = J 3 Π L .

The assertion for B is similarly proved.

THEOREM 7.2. Lei L be an ideally finite subalgebra of F(K). Then the
following are equivalent:

a) L is splittable (resp. algebraic).

b) σ(L) is splittable (resp. algebraic).

c) v4 Borel subalgebra of L is splittable (resp. algebraic).

d) A Cartan subalgebra of L is splittable (resp. algebraic).

PROOF. a)ob) If L is splittable (resp. algebraic), then by Theorem 7.1 a)

σ(LΓ = σ(t) = σ(L) (resp. σ(L)~ = σ(L) = σ(L)) ,
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that is, σ(L) is splittable (resp. algebraic). Conversely, if σ(L) is splittable (resp.

algebraic), by (1.5) take a Levi subalgebra A of L. Then by Theorem 7.1

L = σ(LY + Λ = σ(L) + Λ = L

(resp. L = σ(L)~ + A = σ(L) -M = L) ,

that is, L is splittable (resp. algebraic).

a)oc) Let B be a Borel subalgebra of L. If L is splittable (resp. algebraic),
B<L (resρ.5<L). By Theorem 7.1 c) B = βπL = B (resp. £ = £ Π L = S),
that is, B is splittable (resp. algebraic). Conversely, let B be splittable (resp.
algebraic). By (1.6) σ(L)<B. Taking a Levi subalgebra A of L we have L =
B + Λ. Hence by Proposition 6.2 and Corollary 6.6 L is splittable (resp.
algebraic).

a)od) Let C be a Cartan subalgebra of L. If L is splittable (resp. alge-

braic), by Proposition 3.7 C (resp. C) is a locally nilpotent subalgebra of L.
By maximality of C we have (? = C (resp. C = C), that is, C is splittable (resp.

algebraic). Conversely, let C be splittable (resp. algebraic). By (1.9) (C + L2)/L2

is a Cartan subalgebra of L/L2. Hence (C + L2)/L2 = L/L2. It follows that L =

C + L2. Since by Theorem 6.7 L2 is algebraic, by Corollary 6.6 L is splittable

(resp. algebraic).

LEMMA 7.3. Lei L be a locally soluble, ideally finite Lie algebra. Then for
an element x of L, x belongs to ρ(L) if and only z/adLx is nilpotent.

PROOF. Let xep(L). Then by (1.2) there exists a finite-dimensional nil-

potent ideal K of L containing x. Hence adxx is nilpotent and therefore adLx is

nilpotent.
Conversely, let adLx be nilpotent. Take a finite-dimensional ideal F of L

containing x. Then adFx is nilpotent. Since F is soluble, it follows that xe

p(F). By (1.1) we have x e ρ(L).

PROPOSITION 1.4. Let L be an ideally finite subalgebra of¥(V).
a) // L is splittable (resp. algebraic), then p(L) is splittable (resp.

algebraic).
b) L = p(L) + L. Therefore L is splittable if and only if p(L) = p(L).

c)

PROOF, a) Let L be splittable (resp. algebraic). Then by Propositions 4.7
and 4.8 a) p(LY (resp. p(L)~) is a locally nilpotent ideal of L. By maximality of
ρ(L) we have p(L)*=ρ(L) (resp. p(L)~ = p(L)), that is, p(L) is splittable (resp.

algebraic).
b) Put R = σ(L). By Proposition 4.7 £ e LE^Ϊ Π L(o)g. Put Rl = ρ(R) + R.

Then #!<#. For any element / of ρ(R)\jR, we have fneR and therefore
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acWM is nilpotent. By Lemma 7.3 it follows that fn e ρ(K). Hence 1̂  has a
splittable basis. By Theorem 6.4 Rt is splittable and Rί=R. That is,

A = />(£) + R.

Let L=R + Λ be a Levi decomposition of L. Then by (1.1) and Theorem 7.1
we have

t = R + A = p(R) + R + A = p(£) + L.

c) If /eC(L), by Lemma 4.4 we have [</>, L]=0 and therefore /e£(L).
Hence ζ(L)<ζ(L). It follows that ζ(L) = C(L)ΠL. Therefore ζ(L) = ζ(£) n L.

PROPOSITION 7.5. Let L be an ideally finite subalgebra ofF(V). Then for
a Cartan subalgebra C of L there exist Cartan subalgebras Cί and C2 of L and
L respectively such that C = Cί Π L = C2 ΓΊ L.

PROOF. Let B be a Borel subalgebra of L containing C. Then C is a Cartan
subalgebra of B. By Theorem 7.1 β is a Borel subalgebra of L and by Zorn's
lemma there exists a maximal locally nilpotent subalgebra C1 of j§ containing C.
Hence by Proposition 4.7 Cx is splittable. Therefore C<Cit

Now by (1 . 1 1) B = p(B) + C. Hence by Corollary 6.6 £ = p(#Γ + 6. Since
p(Bγ is a locally nilpotent ideal of 6 by Propositions 4.7 and 4.8 a), we have
p(B)"<ρ(B) and therefore

From (1.11) it follows that C1 is a Cartan subalgebra of £. Therefore by (1.10)
Ct is a Cartan subalgebra of L. By (1.9) we have C1 n L=C.

The existence of a Cartan subalgebra C2 of L such that C2 Π L= C is similarly
shown.

For a subalgebra L of F(F), we denote by Ln and Ls the sets of nilpotent and
semisimple elements of L respectively. Then we have

LEMMA 7.6. Let L be an ideally finite subalgebra o/F(F). Then σ(L\ is
a locally nilpotent ideal of L.

PROOF. Let {Fλ\λ e A} be the set of finite-dimensional ideals of L. Then
L = \JλFλ. Putting Nλ = σ(Fλ)n, Nλ is a nilpotent ideal of Fλ by Lemmas 5.1,
6.1 and EngeFs theorem. Since Fλ n σ(L) = σ(Fλ)by(l.l), we have Fλ n σ(L)n=Nλ.
Hence

For λ, μ E A, there exists v e A such that Fλ V Fμ^Fv and we have
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Nλ U Nμ = (Fλ U Fμ) n σ(L)M £ Fv n σ(L)n = Nv,

[ΛΓ A ,FJS[ΛΓ V ,F V ]SN V .

Therefore

andσ(L)π6L5ft.

PROPOSITION 7.7. Lef L be a locally nilpotent, ideally finite subalgebra of
F(F). Then L is splittable (resp. algebraic) if and only if L is the direct sum of

an ideal Ln and a central ideal (resp. an algebraic central ideal) Ls.

PROOF. Assume that L is splittable (resp. algebraic). By Lemma 7.6 Ln

is an ideal of L. If/e Ls, by Lemmas 3.5 and 7.3 adL/is semisimple and nilpotent.

Hence adL/=0 and therefore /e C(L). By Lemma 3.3 Ls is a central ideal (resp.

an algebraic central ideal) of L and L=Ln®Ls.

The converse follows from Corollary 6.6 and the fact that Ln is algebraic.

When L is a subalgebra of F(F), an abelian subalgebra Tof L is called a torus

of L if every element of T is semisimple. When L is a not necessarily linear Lie

algebra, an abelian subalgebra Tof L is called an ad-torus if every element of Tis
ad-semisimple.

LEMMA 7.8. Let L be a torus 0/F(F) and let Vbe a locally finite L-module.
Then Vis completely reducible.

PROOF. Let U be a finite-dimensional submodule of V. Then U is an
L/CL(l/)-module. Here CL(U) = {/e L\ Uf= 0}<ιL and by Lemma 2.3 L/CL(U) is
a finite-dimensional torus of [End f7]. Hence there exists a basis of U consisting
of common eigenvectors of elements of L/CL(U). Namely, U is a direct sum of
1-dimensional submodules. Each 1-dimensional submodule of U is a submodule
of L-module V. Since Fis locally finite, Fis a sum of 1-dimensional submodules.

By (1.12) Fis completely reducible.

THEOREM 7.9. Let L be an ideally finite subalgebra of F(F). // L is
splittable (resp. algebraic), then there exist a torus (resp. an algebraic torus) T
and a Levi subalgebra A of L such that

σ(L) = σ(L\ + T, σ(L\ n Γ= 0, \Λ9 T] = 0.

PROOF. Let L be splittable. Put R = σ(L). Then by (1.1) p(R) = ρ(L) and
by Lemma 7.6 p(L)n = Rn. Since p(L) is splittable by Proposition 7.4 a), as in
the proof of Proposition 7.7 we see that p(L)s is a central ideal of R and
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Now let The a maximal torus of R containing p(L)s. Then by Lemma 3.5 Tis an
ad-torus of JR. Taking a maximal ad-torus T0 of .R containing T, we have

By Theorem 7.2 R is splittable and therefore by Proposition 4.2 b) jR is ad-
splittable. Hence by [11, Theorem 13.2] CR(T0) is a Cartan subalgebra of R and

by (1.11)

R = p(L) + CR(T0) = p(L) + CR(T).

For any element / of CK(T) we have /„ e Rn. Since by Corollary 3.6 [T, /J = 0,
by Lemma 2.5 T+</5> is a torus of .R and by maximality of T we have fsε T.

Hence

R = p(L) + T=Rn+ T, RnnT=Q.

Next, since adLTis completely reducible by Lemma 7.8, there exists a subspace
ΛI of L such that

L=R + Λί9 £ 0 ^ = 0, [Λ!, Γ] c Λ! .

It follows that [T, ΛJsK nA 1 =0. Putting L^QjT), L! is a subalgebra of
L containing A^. Hence Lt = (# n L^ + A^. Put #! =fl n Lt. Then

LJR, * (Lt + KϊlR = (R + ylO/R = L/Λ,

whence L^K! is semisimple and therefore JR1 = σ(L1). Now let A be a Levi
subalgebra of Lj. Then

L = R + ΛI £ # + L! = R + A,

that is, L = jR + ΛL Here .R n Λ = Q, since Λ n A is semisimple as an ideal of A by
(1.4). Therefore A is a Levi subalgebra of L. We also have [T, A] £ [T, LJ = 0,
thatis,[Γ, Λ] = 0.

Especially if L is algebraic, by Theorem 7.2 R is algebraic. Hence T<R.
By Theorem 4.6 and Corollary 6.5 T is a torus. By maximality of T we have

τ=T.

THEOREM 7.10. Let L be an ideally finite subalgebra of¥(V). Then there

exists a torus A of L such that

L = L+A, £ = L+(£fM), L f ] A = Q.

PROOF. Put R = σ(L). Then by Theorem 7.1 R = σ(L). By Theorem 7.9

there exists an algebraic torus T of L such that

£ = £„ + r, J?M n τ=o.
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Putting Rί =R + T9 by Theorem 3.6 we have jRx <K. Hence

RI = (Ri n Rn) + T.

Since Tis algebraic, #! has an algebraic basis and therefore by Theorem 6.4 R^
is algebraic. Hence jR t =β, that is,

R = R + T.

Take a subspace A of T complementary to # n T. Then A is a torus of L such
that R n 4 = 0. By (1.5) L has a Levi subalgebra /I and by Theorem 7.1 b)

L = R + A = (R + A) + A = L+ A.

Since β n L=K by Theorem 7.1 a), it follows that

LnA = RnA = Q.

Finally, since L<£<L, we have £ = L+(£ n A).
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