A Hausdorff-Young inequality for the Fourier transform on Riemannian symmetric spaces

Masaaki EGUCHI¹⁾, Shin KOIZUMI¹⁾ and Shohei TANAKA²⁾ (Received May 13, 1986)

§1. Introduction

Let G/K be a Riemannian symmetric space of non-compact type. In [1] spherical Fourier transforms of left K-invariant L^p (1 functions on <math>G/K are studied and it is shown that the spherical transforms of these functions are extended holomorphically to a certain domain T_p , which is determined only by p, in a_C^* and a Hausdorff-Yong inequality holds. We adopt $\pi_v(f) = \int_G f(x)\pi_v(x)dx$ as the Fourier transform of $f \in C_0^{\infty}(G/K)$; here π_v denotes the induced representation of class one from the minimal parabolic subgroup P of G. The purpose of this paper is to show that the Fourier transforms of K-finite L^p functions on G/K also satisfy a Hausdorff-Young type inequality in the domain T_p similar to the spherical case.

§ 2. Notation and Preliminaries

Let G be a connected semisimple Lie group with finite center and g its Lie algebra. We denote by $\langle \cdot, \cdot \rangle$ the Killing form of g. Let G = KAN be an Iwasawa decomposition and f, a and n the Lie subalgebras of g corresponding to K, A and N respectively. Each $x \in G$ can be written uniquely as $x = \kappa(x) \cdot$ exp H(x)n(x), where $\kappa(x) \in K$, $H(x) \in a$ and $n(x) \in N$. Let M' and M be the normalizer and the centralizer of a in K respectively and denote by W = M'/Mthe Weyl group. Throughout this paper, we denote the dual space of a real or complex vector space V by V* and the complexification of a real vector space V by V_c . We fix an ordering on a* which is compatible with the above Iwasawa decomposition. Let Σ denote the set of all positive roots of (g, a) and $m(\alpha)$ the multiplicity of $\alpha \in \Sigma$. Let Σ_0 be the set of elements in Σ which are not integral multiples of other elements in Σ . We put $a(\alpha) = m(\alpha) + m(2\alpha)$ for $\alpha \in \Sigma_0$ and $\rho = 2^{-1} \sum_{\alpha \in \Sigma} m(\alpha) \alpha$. Let a^*_+ be the positive Weyl chamber of a^* and put

$$\mathfrak{a}_+ = \{H \in \mathfrak{a} \mid \alpha(H) > 0 \text{ for all } \alpha \in \mathfrak{a}_+^*\}; \quad A^+ = \exp \mathfrak{a}_+.$$

For any $\varepsilon \ge 0$, we put

$$C_{\varepsilon\rho} = \{\lambda \in \mathfrak{a}^* \mid |(s\lambda)(H)| \le \varepsilon \rho(H) \text{ for all } H \in \mathfrak{a}_+ \text{ and } s \in W\}.$$

Now we write T_p for the tube domain $a^* + \sqrt{-1}C_{\epsilon\rho}$ in a_c^* , where $\epsilon = 2/p - 1$ $(1 \le p < 2).$

Let \hat{K} be the set of all equivalence classes of irreducible unitary representations of K. For each $\tau \in \hat{K}$, we fix a representative of τ and denote it by the same symbol τ . For each τ , we denote by V_{τ} , χ_{τ} and $d(\tau)$ its representation space, character and degree respectively. Let \hat{K}_M be the subset of \hat{K} which consists of all the class one representations with respect to M. We fix a finite subset F of \hat{K}_M and put $\bar{\chi}_F = \sum_{\tau \in F} d(\tau) \bar{\chi}_{\tau}$. If M is a manifold, $C^{\infty}(M)$ and $C_0(M)$ denote the set of all C-valued C^{∞} functions and the set of all C-valued continuous functions with compact supports on M respectively and put $C_0^{\infty}(M) = C^{\infty}(M) \cap C_0(M)$. Let $C_{0F}^{\infty}(G/K)$ denote the set of all $f \in C_0^{\infty}(G)$ which satisfy f(gk) = f(g) $(g \in G, k \in K)$ and $\bar{\chi}_F * f = f$, * denoting the convolution on K. Let dk_M denote the invariant measure on K/M such that the total measure equals 1 and da the $(2\pi)^{-1/2}$ -times of the euclidean measure on A $(l=\dim A)$ which is induced by the Killing form. We denote by dx the invariant measure on G/K such that

$$\int_{G/K} f(x) dx = \int_{K/M \times A^+} f(ka) \delta(a) dk_M da,$$

where $\delta(a) = \prod_{\alpha \in \Sigma_0} (\sinh \alpha (\log a))^{m(\alpha)}$.

For $f \in C_{0F}^{\infty}(G/K)$, we put $||f||_p = \left(\int_{G/K} |f(x)|^p dx \right)^{1/p}$. And its L^p completion is denoted by $L_F^p(G/K)$. If \mathscr{H} is a complex separable Hilbert space, then $\mathscr{B}(\mathscr{H})$ denotes the space of all bounded linear operators on \mathcal{H} . For $B \in \mathcal{B}(\mathcal{H})$, its operator norm is denoted by $||B||_{\infty}$ and the *p*-norm $||B||_p$ is defined by $||B||_p =$ $(\operatorname{tr} (B^*B)^{p/2})^{1/p}$ $(1 \le p < \infty)$, where B^* denotes the adjoint operator of B.

§3. The estimate of the norm of $\pi_{v}(f)$

Recall first the definition and properties of the induced representations of the class one from the minimal parabolic subgroup P to G. Let $L^2(K/M)$ be the space of right *M*-invariant functions in $L^2(K)$ and denote by (\cdot, \cdot) the inner product in $L^2(K/M)$. For each $v \in \mathfrak{a}_{\mathbf{C}}^*$ the induced representation π_v of G on $L^{2}(K/M)$ is defined by

$$(\pi_{\nu}(x)\Phi)(k) = e^{(\sqrt{-1}\nu - \rho)(H(x^{-1}k))}\Phi(\kappa(x^{-1}k)),$$

$$(\Phi \in L^{2}(K/M), \ x \in G, \ k \in K).$$

For $f \in C_0^{\infty}(G/K)$ the bounded linear operator $\pi_v(f)$ on $L^2(K/M)$, which is called the Fourier transform of f, is defined by

$$\pi_{\nu}(f) = \int_{G} f(x)\pi_{\nu}(x)dx.$$

Then the following Parseval equality and the inversion formula are known (cf. [2]):

$$\|f\|_{2}^{2} = [W]^{-1} \int_{a^{*}} \|\pi_{v}(f)\|_{2}^{2} |c(v)|^{-2} dv;$$

$$f(x) = [W]^{-1} \int_{a^{*}} \operatorname{tr} (\pi_{v}(f)\pi_{v}(x^{-1})) |c(v)|^{-2} dv \qquad (f \in C_{0}^{\infty}(G/K));$$

where c(v) is the Harish-Chandra *c*-function for G/K and [W] denotes the order of the Weyl group *W*. For $f \in C_0^{\infty}(G/K)$ and $a \in A$ we define a function f^a on K/M by $f^a(kM) = f(ka)$. We fix, for each τ , an orthonormal basis $\{v_1, ..., v_{d(\tau)}\}$ of V_{τ} such that $\{v_1, ..., v_{d_1(\tau)}\}$ is an orthonormal basis in V_{τ}^M , V_{τ}^M denoting the subspace of all *M* fixed vectors in V_{τ} . Denote by $\{v_1^*, ..., v_{d(\tau)}^*\}$ the dual basis of $\{v_1, ..., v_{d(\tau)}\}$. Here we denote by $L_F^2(K/M)$ the closed subspace of $L^2(K/M)$ which is spanned by the set $\{d(\tau)^{1/2}v_j^*(\tau(k^{-1})v_i)|\tau \in F, 1 \le i \le d(\tau), 1 \le j \le d_1(\tau)\}$ and put $C_F^{\infty}(K/M) = L_F^2(K/M) \cap C^{\infty}(K/M)$. Then it is known that the set forms an orthonormal basis of $L_F^2(K/M)$ (cf. [4]). For simplicity, we put d = $\sum_{\tau \in F} d(\tau)d_1(\tau)$ and denote by $\{\Phi_1, ..., \Phi_d\}$ the above orthonormal basis of $L_F^2(K/M)$. Let $f \in C_{0F}^{\infty}(G/K)$. If we put $f^i(a) = (f^a, \Phi_i)$, then $f^a \in C_F^{\infty}(K/M)$ is written as

$$f^{a}(kM) = \sum_{i=1}^{d} f^{i}(a) \Phi_{i}(kM).$$
(3.1)

We now put

$$C_0^{\infty}(A^+, \mathbf{C}^d) = \{ \varphi = (\varphi^1, \dots, \varphi^d) \colon A^+ \longrightarrow \mathbf{C}^d \mid \varphi^i \in C_0^{\infty}(A^+), \, 1 \leq i \leq d \},\$$

and we denote its L^p completion with the norm $\|\varphi\|_p^p = \int_{A^+} \sum_{i=1}^d |\varphi^i(a)|^p \delta(a) da < \infty$ by $L^p(A^+, \mathbb{C}^d)$. By using the decomposition (3.1), we can define a natural linear isomorphism D of $C_{0F}^{\infty}(G/K)$ into $C_0^{\infty}(A^+, \mathbb{C}^d)$ by $f \mapsto (f^1, ..., f^d)$.

We first show the following lemma.

LEMMA 1. If $f \in C_{0F}^{\infty}(G/K)$ then we have

$$d^{-2+1/p} \|f\|_p \le \|Df\|_p \le d^{1+1/p} \|f\|_p \quad (1 \le p < \infty).$$

PROOF. We shall prove the second inequality. Using the Hölder inequality, we have

$$\|Df\|_{p}^{p} = \int_{A^{+}} \left(\sum_{i=1}^{d} |f^{i}(a)|^{p} \right) \delta(a) da$$
$$= \int_{A^{+}} \sum_{i=1}^{d} |(f^{a}, \Phi_{i})|^{p} \delta(a) da$$
$$\leq \int_{A^{+}} \sum_{i=1}^{d} \|f^{a}\|_{p}^{p} \|\Phi_{i}\|_{q}^{p} \delta(a) da .$$

where 1/p + 1/q = 1. Since $|\Phi_i| \le d$, we have

$$\begin{split} \|Df\|_{p}^{p} &\leq d^{p+1} \int_{A^{+}} \|f^{a}\|_{p}^{p} \delta(a) da \\ &= d^{p+1} \int_{K/M \times A^{+}} |f^{a}(kM)|^{p} \delta(a) \ dk_{M} da \\ &= d^{p+1} \|f\|_{p}^{p} \,. \end{split}$$

The first inequality is proved in a way similar to the above.

By this lemma, D can be uniquely extended to a linear isomorphism of $L_F^p(G/K)$ onto $L^p(A^+, \mathbb{C}^d)$ and we use the same symbol D for it. Let $f \in C_0^\infty(G/K)$. From the right K-invariantness of f we get

$$\|\pi_{\mathbf{v}}(f)\|_{\infty} = \|\pi_{\mathbf{v}}(f)\Phi_{0}\|_{2},$$

where Φ_0 is the constant function on K/M with value 1.

LEMMA 2. For $f \in C_{0F}^{\infty}(G/K)$ the following inequality holds.

 $\|\pi_{v}(f)\|_{\infty} \leq d^{3}\|f\|_{1} \qquad (v \in T_{1}).$

PROOF. Using decomposition (3.1), we have

$$\begin{aligned} |(\pi_{\nu}(f)\Phi_{0})(k_{1})| &= \left| \int_{G} f(x)(\pi_{\nu}(x)\Phi_{0})(k_{1})dx \right| \\ &= \left| \int_{K\times A^{+}} \sum_{i=1}^{d} f^{i}(a)\Phi_{i}(k)e^{(\sqrt{-1}\nu-\rho)(H(a^{-1}k^{-1}k_{1}))}\delta(a)dkda \right| \\ &\leq \int_{K\times A^{+}} \sum_{i=1}^{d} |f^{i}(a)||\Phi_{i}(k_{1}kM)||e^{(\sqrt{-1}\nu-\rho)(H(a^{-1}k^{-1}))}|\delta(a)dkda \\ &\leq d\int_{A^{+}} \sum_{i=1}^{d} |f^{i}(a)| \left(\int_{K} |e^{(\sqrt{-1}\nu-\rho)(H(a^{-1}k^{-1}))}|dk \right)\delta(a)da \,. \end{aligned}$$

Because

$$\int_{K} |e^{(\sqrt{-1}v - \rho)(H(a^{-1}k^{-1}))}| dk \le 1 \qquad (v \in T_1)$$

(cf. [2]) we have

$$|(\pi_{v}(f)\Phi_{0})(k)| \leq d \int_{A^{+}} \sum_{i=1}^{d} |f^{i}(a)|\delta(a)da = d \|Df\|_{1}$$

$$\leq d^{3} \|f\|_{1} \quad (by \text{ Lemma 1}).$$
(3.2)

This implies $\|\pi_{\mathbf{v}}(f)\|_{\infty} \leq d^3 \|f\|_1$.

We see that the Fourier transform can be extended to $L_F^1(G/K)$. If $\varphi \in L^p(A^+, \mathbb{C}^d)$ then we write, for simplicity, φ^{\dagger} for $D^{-1}\varphi$. From (3.2) We get

COROLLARY. If $\varphi \in L^1(A^+, \mathbb{C}^d)$ then we have

$$\|\pi_{\mathbf{v}}(\varphi^{\dagger})\|_{\infty} \leq d\|\varphi\|_{1} \quad (\mathbf{v} \in T_{1}).$$

§4. The Hausdorff-Young inequality in real case

To prove the Hausdorff-Young inequality on \mathfrak{a}^* , we use the Riesz-Thorin theorem for vector valued functions. Let (X, μ) and (X', μ') be two σ -finite measure spaces. We denote by $\mathscr{S}(X, \mathbb{C}^d)$ the set of all compactly supported simple functions on X with values in \mathbb{C}^d . Namely

$$\mathscr{S}(X, C^{d}) = \{ \varphi = (\varphi^{1}, ..., \varphi^{d}) \colon X \to C^{d} \mid \varphi^{i} \text{'s are compactly}$$
supported simple functions on X}

Let T be a linear mapping of $\mathscr{S}(X, \mathbb{C}^d)$ to the space of all μ' -measurable functions on X'. If there exists a positive constant k such that $||T\varphi||_q \leq k ||\varphi||_p$ for all $\varphi \in \mathscr{S}(X, \mathbb{C}^d)$, then T is called of type (p, q) and in addition the infimum of such k is called the (p, q)-norm of T.

LEMMA 4. Suppose that T is simultaneously of type (p_i, q_i) with (p_i, q_i) -norm $k_i (1 \le p_i, q_i \le \infty)$ for i=0, 1. For each 0 < t < 1, define p_t and q_t by

$$\frac{1}{p_t} = \frac{1-t}{p_0} + \frac{t}{p_1} \quad and \quad \frac{1}{q_t} = \frac{1-t}{q_0} + \frac{t}{q_1}.$$

Then T is of type (p_t, q_t) and its (p_t, q_t) -norm k_t satisfies the inequality $k_t \le dk_0^{1-t}k_1^t$. Namely,

$$\|T\varphi\|_{q_t} \le dk_0^{1-t} k_1^t \|\varphi\|_{p_t} \qquad (\varphi \in \mathscr{S}(X, C^d)).$$

$$(4.1)$$

Moreover, if $p_t < \infty$ then T can be extended to an operator on $L^{p_t}(X, C^d)$ and satisfies the same inequality as (4.1).

The proof of this lemma is accomplished by applying the Riesz-Thorin theorem to each component φ^i of $\varphi = (\varphi^1, ..., \varphi^d) \in \mathscr{S}(X, \mathbb{C}^d)$ and so it is omitted. The aim of this section is to prove the following theorem.

THEOREM 1. If 1 and <math>1/p + 1/q = 1, then the Fourier transform can be extended to $L_F^p(G/K)$ and there exists a positive constant C_{pF} , which depends only on p and F, such that

$$\left(\int_{a^*}^{\cdot} \|\pi_{\nu}(f)\|_q^q |c(\nu)|^{-2} d\nu\right)^{1/q} \le C_{pF} \|f\|_p \qquad (f \in L^p_F(G/K)).$$

To prove the theorem, we need a lemma. We consider two measure spaces $(A^+, \delta(a)da)$ and $(a^*, [W]^{-1}|c(v)|^{-2}dv)$ and define linear mappings T^i (i=1,...,d)

of $\mathscr{S}(A^+, \mathbb{C}^d)$ to the space of \mathbb{C} -valued functions on \mathfrak{a}^* by

$$T^{i}(\varphi)(v) = (\pi_{v}(\varphi^{\dagger})\Phi_{0}, \Phi_{i}) \quad (\text{for } \varphi \in \mathscr{S}(A^{+}, C^{d})).$$

Then clearly $T^{i}(\varphi)$ is measurable on \mathfrak{a}^{*} and

$$\pi_{\nu}(\varphi^{\dagger})\Phi_{0} = \sum_{i=1}^{d} T^{i}(\varphi)\Phi_{i}.$$
(4.2)

In addition, for $1 \le p \le \infty$, we easily have

$$\|\pi_{\mathbf{v}}(\varphi^{\dagger})\|_{p} = (\sum_{i=1}^{d} |T^{i}(\varphi)|^{2})^{1/2}.$$
(4.3)

LEMMA 5. Let 1 and <math>1/p + 1/q = 1. Then each T^i can be extended to $L^p(A^+, \mathbb{C}^d)$ and there exists a positive constant C'_{pF} such that

$$||T^{i}(\varphi)||_{q} \leq C'_{pF} ||\varphi||_{p} \quad (\varphi \in L^{p}(A^{+}, C^{d})).$$

PROOF. We fix an *i*. Using (4.3) and the corollary to Lemma 2, we have for $\varphi \in \mathscr{S}(A^+, \mathbb{C}^d)$

$$\|T^{i}(\varphi)\|_{\infty} = \sup_{\nu \in \mathfrak{a}^{*}} |T^{i}(\varphi)(\nu)| \leq \sup_{\nu \in \mathfrak{a}^{*}} \|\pi_{\nu}(\varphi^{\dagger})\|_{\infty} \leq d\|\varphi\|_{1}.$$

and so T^i is of type $(1, \infty)$. On the other hand, using (4.3), the Parseval equality and Lemma 1, we have for $\varphi \in \mathscr{S}(A^+, \mathbb{C}^d)$

$$\|T^{i}(\varphi)\|_{2} = \left([W]^{-1} \int_{a^{*}} |T^{i}(\varphi)(v)|^{2} |c(v)|^{-2} dv \right)^{1/2}$$

$$\leq \left([W]^{-1} \int_{a^{*}} \|\pi_{v}(\varphi^{\dagger})\|_{2}^{2} |c(v)|^{-2} dv \right)^{1/2}$$

$$= \|\varphi^{\dagger}\|_{2} \leq d^{3/2} \|\varphi\|_{2},$$

and so T^i is of type (2, 2). Applying Lemma 4 to our case, we can find a positive constant C'_{pF} which satisfies the desired inequality.

PROOF OF THEOREM 1. From (4.3), we have

$$\begin{aligned} \|\pi_{\mathbf{v}}(\varphi^{\dagger})\|_{q}^{q} &= (\sum_{i=1}^{d} |T^{i}(\varphi)|^{2})^{q/2} = (\sum_{i=1}^{d} (|T^{i}(\varphi)|^{q})^{2/q})^{q/2} \\ &\leq d^{q/2} \sum_{i=1}^{d} |T^{i}(\varphi)|^{q} . \end{aligned}$$

Therefore using the Minkowski inequality, we get

$$\begin{split} \left(\int_{a^*} \|\pi_v(\varphi^{\dagger})\|_q^q |c(v)|^{-2} dv \right)^{1/q} \\ &\leq d^{1/2} \left(\int_{a^*} \sum_{i=1}^d |T^i(\varphi)|^q |c(v)|^{-2} dv \right)^{1/q} \\ &\leq d^{1/2} \sum_{i=1}^d \|T^i(\varphi)\|_q \leq d^{3/2} C'_{pF} \|\varphi\|_p \,. \end{split}$$

72

Because D is a bijection, the proof is completed.

§5. The Hausdorff- Young inequality in general case

To prove the Hausdorff-Young inequality on \mathfrak{a}_{C}^{*} , we use the Kunze-Stein interpolation theorem (cf. [3]). The function space which we consider is not $L^{p}(A^{+})$ but $L^{p}(A^{+}, \mathbb{C}^{d})$ and so we need a slight extension of the theorem. Let (X, μ) be a σ -finite measure space. $\mathscr{S}(X, \mathbb{C}^{d})$ and $L^{p}(X, \mathbb{C}^{d})$ are the same as in section 4 and section 3 respectively. Moreover let Y be a locally compact space satisfying second countability axiom with a regular measure ω and let \mathscr{H} be a complex separable Hilbert space. If F is a $\mathscr{B}(\mathscr{H})$ -valued measurable function on Y, then we define p-norms $||F||_{p} (1 \le p \le \infty)$ by

$$\|F\|_{p} = \left(\int_{Y} \|F(y)\|_{p}^{p} d\omega(y) \right)^{1/p} \quad (1 \le p < \infty),$$
$$\|F\|_{\infty} = \operatorname{ess. sup}_{y \in Y} \|F(y)\|_{\infty}.$$

For a, $b \in \mathbb{R}$, b > a, we put $D = D(a, b) = \{z \in \mathbb{C} | a \le \text{Im } z \le b\}$. And suppose $T_z (z \in D)$ is a linear operator from $\mathscr{S}(X, \mathbb{C}^d)$ to the space of all $\mathscr{B}(\mathscr{H})$ -measurable functions on Y. The family $\{T_z | z \in D\}$ is called admissible on D if (i) for any Φ , $\Psi \in \mathscr{H}$ and $\varphi \in \mathscr{S}(X, \mathbb{C}^d)$, the C-valued function $(T_z(\varphi)(y)\Phi, \Psi)$ is locally integrable on Y; and (ii) for any measurable relatively compact subset Y' of Y, the function

$$\phi(z) = \int_{Y'} (T_z(\varphi)(y)\Phi, \Psi) \, d\omega(y)$$

is admissible on D. Here we say that a C-valued function ϕ on D is admissible if (i) ϕ is holomorphic in the interior of D and is continuous on D; and (ii) ϕ is of admissible growth, that is, ϕ satisfies

$$\sup_{a \le y \le b} \log |\phi(x + \sqrt{-1}y)| = O(e^{c|x|})$$

for some $c < \pi/(b-a)$.

Let $1 \le p_0$, $p_1 \le \infty$ and $1 \le q_0$, $q_1 \le \infty$. If $t \in \mathbb{R}$, a < t < b, then we put $\tau = (t-a)/(b-a)$,

$$\frac{1}{p} = \frac{1-\tau}{p_0} + \frac{\tau}{p_1}$$
 and $\frac{1}{q} = \frac{1-\tau}{q_0} + \frac{\tau}{q_1}$.

Let A_i (i=0, 1) be positive functions on **R** which satisfy, for some C>0 and $c < \pi/(b-a)$, the inequality

$$\log A_i(x) \le C e^{c|x|} \qquad \text{for} \quad i = 0, \, 1$$

simultaneously. The following lemma is an easy consequence of Kunze-Stein [3].

LEMMA 6. Let $\{T_z | z \in D\}$ be an admissible family on D of linear operators of $\mathscr{S}(X, \mathbb{C}^d)$ to the space of $\mathscr{B}(\mathscr{H})$ -valued measurable functions on Y such that

$$\|T_{x+\sqrt{-1}a}(\varphi)\|_{q_0} \le A_0(x) \|\varphi\|_{p_0}$$
$$\|T_{x+\sqrt{-1}b}(\varphi)\|_{q_1} \le A_1(x) \|\varphi\|_{p_1}$$

for all $\varphi \in \mathscr{S}(X, \mathbb{C}^d)$. Then we have

$$\|T_{\sqrt{-1}t}(\varphi)\|_q \leq dC_t \|\varphi\|_p \quad (\varphi \in \mathscr{S}(X, C^d))$$

for a positive constant C_t which is given by

$$\log C_t = \int_{-\infty}^{\infty} \chi(1-\tau, x) \log A_0((b-a)x) dx$$
$$+ \int_{-\infty}^{\infty} \chi(\tau, x) \log A_1((b-a)x) dx, \qquad (5.1)$$

where

$$\chi(\tau, x) = \tan\left(\frac{\pi\tau}{2}\right) \operatorname{sech}^{2}\left(\frac{\pi\tau}{2}\right) / 2\left(\tan^{2}\left(\frac{\pi\tau}{2}\right) + \tanh^{2}\left(\frac{\pi\tau}{2}\right)\right).$$

To prove the Hausdorff-Young inequality, we need another lemma.

LEMMA 7 (cf. [1]). There exist positive constants B_1 and B_2 such that

$$B_1|c(v)|^{-2} \leq \prod_{\alpha \in \Sigma_0} |\langle v, \alpha \rangle|^2 (1+|\langle v, \alpha \rangle|)^{a(\alpha)-2} \leq B_2|c(v)|^{-2}$$

for all $v \in \mathfrak{a}^*$.

We take two measure spaces $(A^+, \delta(a)da)$ and $(\mathfrak{a}^*, d\omega(v) = \prod_{\alpha \in \Sigma_0} (1 + |\langle v, \alpha \rangle|)^{a(\alpha)} dv)$ as (X, μ) and (Y, ω) respectively. Let 1 , <math>1/p + 1/q = 1 and $\varepsilon = 2/p - 1$. We fix $\eta \in C_{\varepsilon\rho}$ $(\eta \neq 0)$ and choose an orthonormal basis μ_1, \ldots, μ_l of \mathfrak{a}^* so that $\mu_1 = \eta/|\eta|$. We then put $D = D(0, |\eta|/\varepsilon)$. For $\varphi \in \mathscr{S}(A^+, \mathbb{C}^d)$ we put

$$F_{z\mu_1}(\varphi)(\nu) = \pi_{z\mu_1+\nu}(\varphi^{\dagger}) \prod_{\alpha \in \Sigma_0} (1 + |\langle \nu, \alpha \rangle|)^{-1} |\langle z\mu_1 + \nu, \alpha \rangle|$$
$$(z \in D, \nu \in \mathfrak{a}^*)$$

and define a family $\{T_z | z \in D\}$ by

$$T_z: \varphi \longrightarrow F_{zu}(\varphi) \quad (\varphi \in \mathscr{S}(A^+, C^d)).$$

From the relation $(\pi_{\nu}(\varphi^{\dagger})\Phi, \Psi) = \sum_{i=1}^{d} T^{i}(\varphi)(\nu)(\Phi, \Phi_{0})(\Phi_{i}, \Psi)$ and the fact that if

 $z \in D$ then $z\mu_1 + v \in T_1$, it follows that $\{T_z | z \in D\}$ is an admissible family on D. For $\xi = x + \sqrt{-1} |\eta| / \varepsilon$ ($x \in \mathbb{R}$), by the corollary to Lemma 2 and the inequality $|\langle v + \xi \mu_1, \alpha \rangle| \le (1 + |\langle v, \alpha \rangle|)(1 + |\langle \xi \mu_1, \alpha \rangle|)$, we have

$$\|T_{\xi}\|_{\infty} \leq d \|\varphi\|_1 \prod_{\alpha \in \Sigma_0} (1 + |\langle \xi \mu_1, \alpha \rangle|).$$

If we put $A_1(x) = d \prod_{\alpha \in \Sigma_0} (1 + |\langle \xi \mu_1, \alpha \rangle|)$, then for any $c, 0 < c < \varepsilon \pi / |\eta|$, we can choose a positive constant C_1 such that

$$\log A_1(x) \le C_1 e^{c|x|} \qquad (x \in \mathbf{R}).$$

On the other hand, for $\xi = x$ ($x \in \mathbf{R}$)

$$\begin{split} \|T_{\xi}\|_{2}^{2} &= \int_{\mathfrak{a}^{*}} \|T_{\xi\mu_{1}+\nu}(\varphi^{\dagger})\|_{2}^{2} \prod_{\alpha \in \Sigma_{0}} (1+|\langle \nu, \alpha \rangle|)^{a(\alpha)-2} |\langle \xi\mu_{1}+\nu, \alpha \rangle|^{2} d\nu \\ &\leq \int_{\mathfrak{a}^{*}} \|\pi_{\xi\mu_{1}}(\varphi^{\dagger})\|_{2}^{2} \prod_{\alpha \in \Sigma_{0}} (1+|\langle \xi\mu_{1}+\nu, \alpha \rangle|)^{a(\alpha)-2} |\langle \xi\mu_{1}+\nu, \alpha \rangle|^{2} d\nu \\ &\cdot \prod_{\alpha \in \Sigma_{0}} \sup_{\nu \in \mathfrak{a}^{*}} (1+|\langle \xi\mu_{1}+\nu, \alpha \rangle|)^{2-a(\alpha)} (1+|\langle \nu, \alpha \rangle|)^{a(\alpha)-2}] d\nu \end{split}$$

Because there exists a positive constant k such that

$$(1+|\langle \xi\mu_1+\nu,\,\alpha\rangle|)^{2-a(\alpha)} \leq k(1+|\langle\nu,\,\alpha\rangle|)^{2-a(\alpha)}(1+|\langle\xi\mu_1,\,\alpha\rangle|)^{|a(\alpha)-2|}$$

for all $v \in a^*$, we have by Lemma 7 and Lemma 1

$$\begin{split} \|T_{\xi}\|_{2}^{2} &\leq k \prod_{\alpha \in \Sigma_{0}} (1 + |\langle \xi \mu_{1}, \alpha \rangle|)^{|2-a(\alpha)|} \\ &\cdot \int_{\alpha^{*}} \|\pi_{\xi \mu_{1}}(\varphi^{\dagger})\|_{2}^{2} \prod_{\alpha \in \Sigma_{0}} (1 + |\langle \xi \mu_{1} + \nu, \alpha \rangle|)^{a(\alpha)-2} |\langle \xi \mu_{1} + \nu, \alpha \rangle|^{2} d\nu \\ &\leq B_{2} k \prod_{\alpha \in \Sigma_{0}} (1 + |\langle \xi \mu_{1}, \alpha \rangle|)^{|2-a(\alpha)|} d\|\varphi\|_{2}^{2}. \end{split}$$

If we put $A_0(x) = (dB_2k)^{1/2} \prod_{\alpha \in \Sigma_0} (1 + |\langle \xi \mu_1, \alpha \rangle|)^{|\alpha(\alpha)/2 - 1|}$ then for any $c, 0 < c < \epsilon \pi / |\eta|$, we can choose a positive constant C_0 such that

$$\log A_0(x) \leq C_0 e^{c|x|} \qquad (x \in \mathbf{R}),$$

and we have

$$||T_{\xi}(\varphi)||_{2} \leq A_{0}(x)||\varphi||_{2} \qquad (\varphi \in \mathscr{S}(A^{+}, C^{d})).$$

Applying Lemma 6 to our case, we can find a constant C > 0 such that

$$\|T_{\sqrt{-1}\eta}(\varphi)\|_q \leq dC \|\varphi\|_p.$$

Therefore, the following inequality holds:

$$\begin{split} \left(\int_{a^*} \|\pi_{\nu+\sqrt{-1}\eta}(\varphi^{\dagger})\|_q^q \prod_{\alpha \in \Sigma_0} (1+|\langle \nu, \alpha \rangle|)^{a(\alpha)-q} \\ \cdot |\langle \nu+\sqrt{-1\eta}, \alpha \rangle|^q d\nu \right)^{1/q} \leq C_{pF\eta} \|\varphi\|_p \,. \end{split}$$

Thus we obtain the following proposition.

LEMMA 8. Let 1 , <math>1/p + 1/q = 1 and $\varepsilon = 2/p - 1$. If we fix an $\eta \in C_{\varepsilon\rho}$, then there exists a positive constant $C_{pF\eta}$ which depends only on p, F and η such that

$$\left(\int_{\mathfrak{a}^*} \|\pi_{\nu+\sqrt{-1}\eta}(\varphi^{\dagger})\|_q^q |c(\nu)|^{-2} d\nu\right)^{1/q} \leq C_{pF\eta} \|\varphi\|_p$$

for all $\varphi \in \mathscr{S}(A^+, \mathbb{C}^d)$.

From this lemma we get the following theorem.

THEOREM 2. Let p, q and ε be in Lemma 8. If $f \in L^p_F(G/K)$ then the Fourier transform $\pi_v(f)$ can be holomorphically extended to the tube domain T_p and for any $\eta \in C_{\varepsilon \rho}$, there exists a positive constant $C_{pF\eta}$ such that

$$\left(\int_{\mathfrak{a}^*} \|\pi_{\nu+\sqrt{-1}\eta}(f)\|_q^q |c(\nu)|^{-2} d\nu\right)^{1/q} \leq C_{pF\eta} \|f\|_p \qquad (f \in L_p^F(G/K) \ .$$

§6. The Hausdorff-Young inequality for the Radon-Fourier transform

The Radon-Fourier tansform on the Riemannian symmetric space G/K is defined as follows. Let $f \in C_0^{\infty}(G/K)$. Then

$$\tilde{f}(kM, v) = \int_{A \times N} f(kan) e^{(-\sqrt{-1}v + \rho)(H(a))} dadn, \quad (kM \in K/M, v \in \mathfrak{a}^*).$$

Concerning this transform, the Parseval equality and the inversion formula are known: for $f \in C_0^{\infty}(G/K)$

$$\|f\|_{2}^{2} = [W]^{-1} \int_{K/M \times a^{*}} |\tilde{f}(kM, v)|^{2} |c(v)|^{-2} dk_{M} dv,$$

$$f(x) = [W]^{-1} \int_{K/M \times a^{*}} \tilde{f}(kM, v) e^{(\sqrt{-1}v - \rho)(H(x^{-1}k))} |c(v)|^{-2} dk_{M} dv.$$

The aim of this section is to give the Hausdorff-Young inequality for the Radon-Fourier transform. If $v \in \mathfrak{a}_{c}^{*}$ and $f \in C_{0}^{\infty}(G/K)$ then, by a simple calculation using integral formula for the Iwasawa decomposition, we have

A Hausdorff-Young inequality on symmetric spaces

$$(\pi_{\nu}(f)\Phi_{0})(kM) = \int_{G} f(x)e^{(\sqrt{-1}\nu - \rho)(H(x^{-1}k))}dx = \tilde{f}(kM, \nu)$$

Therefore, using (4.2), (4.3) and the Schwarz inequality, we have for any q > 1,

$$\begin{split} |\tilde{f}(kM, v)|^{q} &= |\pi_{v}(f)\Phi_{0}|^{q} = |\sum_{i=1}^{d} T^{i}(\varphi)\Phi_{i}|^{q} \\ &\leq (\sum_{i=1}^{d} |T^{i}(\varphi)|^{2})^{q/2} (\sum_{i=1}^{d} |\Phi_{i}|^{2})^{q/2} \leq d^{q/2} \|\pi_{v}(f)\|_{q}^{q} \,. \end{split}$$

Let 1 , <math>1/p + 1/q = 1 and $\varepsilon = 2/p - 1$. If $\eta \in C_{\varepsilon \rho}$ then we have from the above,

$$\begin{split} & \left(\int_{K/M \times \mathfrak{a}^*} |\tilde{f}(kM, v + \sqrt{-1}\eta)|^q |c(v)|^{-2} dv \right)^{1/q} \\ & \leq \left(\int_{K/M \times \mathfrak{a}^*} d^{q/2} \| \pi_{v + \sqrt{-1}\eta}(f) \|_q^q |c(v)|^{-2} dv \right)^{1/q} \\ & = d^{1/2} \left(\int_{\mathfrak{a}^*} \| \pi_{v + \sqrt{-1}\eta}(f) \|_q^q |c(v)|^{-2} dv \right)^{1/q} \\ & \leq d^{1/2} C_{pFn} \| f \|_p. \end{split}$$

Thus we obtain the following theorem.

THEOREM 3. Let 1 , <math>1/p + 1/q = 1 and $\varepsilon = 2/p - 1$. If $f \in L_F^p(G/K)$ and $\eta \in C_{\varepsilon \rho}$ then there exists a positive constant $C_{\rho F \eta}$ such that

$$\left(\int_{K/M \times a^*} |\tilde{f}(kM, v + \sqrt{-1}\eta)|^q |c(v)|^{-2} dv\right)^{1/q} \le C_{pF\eta} \|f\|_p.$$

References

- M. Eguchi and K. Kumahara, An L^p Fourier analysis on symmetric spaces, J. Functional Analysis, 47 (1982), 230-246.
- [2] S. Helgason, Groups and Geometric Analysis, Academic Press, New York, 1984.
- [3] R. A. Kunze and E. M. Stein, Uniformly bounded representations and harmonic analysis on the 2×2 real unimodular group, Amer. J. Math. 82 (1960), 1-62.
- [4] N. R. Wallach, Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, New York, 1973.

1) Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University

and

2) Department of Mathematics, Faculty of Science, Hiroshima University