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1. Introduction

Our main objective is to prove the existence of infinitely many positive,

radially symmetric entire solutions u(x) of the fourth order semilinear elliptic

differential equation

(1.1) A2u = /(|x|, H), xeRN, N ^ 3,

where A denotes the N-dimensional Laplacian, |x| denotes the Euclidean length of

x, and / is a real- valued continuous function in [0, oo)x(0, oo). An entire

solution of (1.1) is defined to be a function u e C4(J?N) satisfying (1.1) pointwise in

RN. Detailed hypotheses on (1.1) to be used for existence theorems of three

different types are listed in §2.

Emphasis will be placed on the prototype

(1.2) A2u = p(\x\)Uy9 xeRN,

where γ Φ 1 is a real constant and p: [0, oo)-»/? is a continuous function satisfying

one of the following three decay conditions:

(1.3) * 2 7 + 1IP(OIA< oo,

(1.4)

(1.5) t'p(i)dt < oo,

where δ = N—1—y(JV-4), -l<y<l, and p(t)^Q in (1.5). Our results establish,

in particular, the existence of infinitely many positive entire solutions of (1.2) of

each of the following three types under conditions (1.3), (1.4), or (1.5), respectively:

( I ) Unbounded entire solutions w(x) which are bounded above and below

by positive constant multiples of 1 + |x|2;

(II) Entire solutions which are bounded above and below by positive

constants; and
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(III) Entire solutions which decay uniformly to zero as |x|->oo.
Moreover, Corollaries 2.7 and 2.8 and Theorem 2.12 together show, under

condition (1.5), that equation (1.2) has infinitely many triples (uί, u2, u3)
of positive, radially symmetric entire solutions in RN, N^.5, where wx(x) is
unbounded, M2(x) is bounded above and below by positive constants, and u3(x)
decays to zero as |x|->oo. If p(t)^Q for all ί^O, these entire solutions have the
asymptotic behaviour

(1.6) lim | ;c |^00|x|-2M1(x) = >l1,

(1.7) lim | j cHoow2(x) = A29

(1.8) lim,^ \x\N~*u3(x) = A3

for some positive constants Aί9 A29 A3.
Conditions (1.3)-(1.5) are sharp: In fact, if p(t) has constant sign for all ί^O,

each condition (1.3), (1.4), or (1.5) is known to be necessary for the existence of a
radial solution M(X) of (1.2) in some exterior domain satisfying (1.6), (1.7), or
(1.8), respectively [1, p. 237].

Entire solutions of the equation Δmu=f(u\ m^2, have been investigated by
Walter [19, 20] and Walter and Rhee [21]. In particular, conditions on / are
given which guarantee that no entire solution in RN exists. Entire solutions of a
class of second order semilinear elliptic systems were studied recently by Kawano
[7] and Kawano and Kusano [8]. However, as far as we are aware, no theorems
are known which guarantee the existence of positive entire solutions of (1.1) or (1.2)
of any of the three types described above. Furthermore, we give explicit criteria
such as (1.3)-(1.5) for the existence of such solutions, rather than comparison
theorems.

There have been many recent papers dealing with the existence and non-
existence of entire solutions of second order semilinear elliptic equations of the type
Au=f(x, ύ), xe RN. For example, the existence of bounded and/or unbounded
entire solutions has been proved under various conditions by Gidas and Spruck
[4], Joseph and Lundgren [6], Kawano [7], Kusano and Oharu [11], Kusano and
Swanson [13], Naito [14], Ni [15], and Toland [18]. We shall not list the many
recent studies, outside the scope of our objectives, dealing with the case that
/(•, M) changes sign with respect to u, e.g., stationary Klein-Gordon equations.

The problem of existence of decaying positive entire solutions of Δu +
X|x|)tty = 0, xεRN, p(t)>Q for ί>0, has proved to be elusive. Some sublinear
(0<y<l) and singular (y<0) results of this type have been obtained by Fukagai
[2, 3], Kusano and Swanson [12]. However, superlinear decaying entire
solutions are known to exist only in special cases [4, 6, 10]. Not surprisingly,
therefore, it is much more difficult to obtain type III entire solutions of the fourth
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order equation (1.2) than type I or II entire solutions. Theorem 2.12 below es-

tablishes the existence of positive decaying entire solutions of (1.2) in sublinear and

singular cases only; it remains an important open problem to obtain such a

result for superlinear equations.
There are many known theorems concerning nonexistence of entire solutions

in RN of second order elliptic equations and inequalities; see, e.g., Haviland [5],
Keller [9], Osserman [16], and Redheffer [17], A few parallel fourth order
results of Fink and Kusano [1], Walter [19, 20], and Walter and Rhee [21] have
already been mentioned. Use of some of the nonexistence criteria in [1] enables
us to obtain necessary and sufficient conditions for the existence of positive entire
solutions of (1.1) and/or (1.2), of each type (I), (II), and (III): see Theorems 2.5
and 2.6, Corollaries 2.9 and 2.10, and Remark 2.13.

2. Statement of theorems

The hypotheses to be imposed on the function /in (1.1) will be selected from

the list below.

HYPOTHESES

(fi) /'• [0> oo)x(0, oo)->jR is continuous.
(f2) There exists a continuous function F: [0, oo)x(0, oo)->[0, oo) which is
nondecreasing in the second variable such that

(2.1) |/(ί, ιι)| ^ F(t, ii) for all t ̂  0, u > 0.

(ff) There exists a continuous function F: [0, oo)x(0, oo)->[0, oo) which is
nonincreasing in the second variable and satisfies (2.1).

(f3) Superlinearity: u~~1F(t, u) is nondecreasing in we(0, oo) for each ί^O and
satisfies the condition

lim^o+w-1/^, 0 = 0, ί^O.

(/£) Sublinearity : u~ίF(t, u) is nonincreasing in we(0, oo) for each ίΞ>0 and
satisfies

, w) = 0, t ^ 0.

(f4) There exists a positive constant c such that

oo.
o

(f5) There exists a positive constant c such that
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Γ°°
\ ί3F(ί, c)dt < oo.
Jo

THEOREM 2.1. Under hypotheses (fj), (f2), eiffcer (f3) or (f?), and (f4),
equation (1.1) nαs infinitely many positive radial entire solutions u(x) which are
bounded above and below by positive constant multiples ofl + \x\2 in RN, N^.3.

THEOREM 2.2. Under hypotheses (fj, (f2), either (f3) or (ff), and (f5),
equation (1.1) has infinitely many positive radial entire solutions which are
bounded above and below by positive constants in RN

9 N^5.

THEOREM 2.3. Under hypotheses (fA), (ff), and (f4), equation (1.1) /u*s
infinitely many unbounded positive radial entire solutions in RN, N^3, as
described in Theorem 2.1.

THEOREM 2.4. Under hypotheses (fj), (f f), and (f5), equation (1.1) nαs
infinitely many positive radial entire solutions which are bounded above and
below by positive constants in RN, N^.5.

The sharpness of conditions (f4) and (f5) is indicated by the additional
theorems below.

THEOREM 2.5. // any one of {(fj, (f2), (f3)} or {( f t), ( f2), (f ?)} or {(f J, (f J )}
flo/ds and f(t,u) has constant sign for all ί^O, w>0, ί/ien condition (f4) is
necessary and sufficient for the existence of a positive radial entire solution o/(l.l)
which is asymptotic to a positive constant multiple of \x\2 as |x|-»oo, uniformly

THEOREM 2.6. // any one of {(fj, (f2), (f3)} or {(f J, (f2), (f f )} or {(f J, (f f )}
and f(t,u) has constant sign for all f^O, w>0, ί/ien condition (f5) zs

necessary and sufficient for the existence of a bounded positive radial entire
solution o/(l.l) which is asymptotic to a positive constant as |x|-»oo, uniformly

The proofs are given in §4. For example, these theorems can be applied to
equation (1.2), where y ̂  1 and p: [0, oo)->/? is continuous. In this case/(ί, u) =
p(t)uγ and F(ί, ύ) in (f2) or (f J) can be taken to be

F(t, u) = \p(t)\u\ t ^ 0, u > 0.

Then (f2) and (f3) hold if y>l, (f2) and (f ξ) hold if 0^y<l, and (f J) holds if y<0.
Furthermore, (f4) and (f5) reduce to (1.3) and (1.4), respectively. Theorems 2.1-
2.6 therefore imply the corollaries below.

COROLLARY 2.7. For all y^l, condition (1.3) is sufficient for equation (1.2)
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to have infinitely many unbounded positive radial entire solutions in RN, N^.3,
as described in Theorem 2.1.

COROLLARY 2.8. For all y^l, condition (1.4) is sufficient for (1.2) to have
infinitely many positive radial entire solutions bounded above and below by

positive constants in RN, N^.5.

COROLLARY 2.9. Ifγ^ 1 and p(t) has constant sign in [0, oo), condition (1.3)
is necessary and sufficient for the existence of a positive radial entire solution of
(1.2) which is asymptotic to a positive constant multiple of \x\2 as |x|-»oo,
uniformly in RN, N^.3.

COROLLARY 2.10. If y^l and p(t) has constant sign in [0, oo), condition
(1.4) is necessary and sufficient for the existence of a positive radial entire solution
of (1.2) which is asymptotic to a positive constant as |x|-»oo, uniformly in RN,

REMARK 2.11. If y > 1 and N^5, (1.3) implies (1.4), and consequently (1.3) is

sufficient for the existence of infinitely many pairs of positive entire solutions

(uι(x), w2(X))» where u^(x) is bounded above and below by positive constants, and
u2(x) is bounded above and below by constant multiples of l + |x|2 throughout
RN. Similarly, if y < 1 and N^.5, (1.4) is sufficient for the existence of infinitely
many such pairs of positive entire solutions.

THEOREM 2.12. Let p be a nonnegative-valued continuous function in
[0, oo) satisfying (1.5), N^5, and -l<y<l. Then equation (1.2) has at least

one decaying positive radial entire solution u(x) in RN. Specifically, there exist
positive constants c1 and c2 such that

cjxl4-" ^ u(x) ^ c2|x|4-N, |x| ^ 1.

REMARK 2.13. The sharpness of condition (1.5) is demonstrated by the
known fact [1, p. 237] that (1.5) is a necessary condition for equation (1.2), with

p(i)>Q in [0, oo), to have a positive radial solution u(x) defined in any exterior

domain in RN, N^5, such that lim^i^ \x\N~4u(x) = constant >0.

REMARK 2.14. If y < 1, condition (1.5) implies both (1.4) and (1.3). There-

fore, if N^5 and -l<y<l, Corollaries 2:1 and 2.8 together with Theorem 2.12

show that condition (1.5) is sufficient for the existence of infinitely many triples

(w1? M2, u3) of positive radial entire solutions of (1.2) in RN, N^.5, where u^(x) is

unbounded, u2(x) is bounded above and below by positive constants, and w3(x)

decays to zero as |x|-»oo.
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3. Estimates for iterated intergral operators Φ2, ΦΨ, and Ψ2

The notation 1̂ (0, oo) will be used for the set of all real-valued measurable
functions g in (0, oo) such that

< oo.Γ tλ\g(t)\dt
Jo

We define integral operators Φ: C[0, oo)-»C2[0, oo) and Ψ: C[0, oo) n L{(0, oo)
->C2[0, oo) by

(3.1) (ΦA) (0 =

(3.2) (Ψh)(t) = j ^ - sh (s)ds + jΛ(j)ώ , / £ 0, N ̂  3.

The operator Φ has been used by Kawano [7], Kusano and Oharu [11], and Ψ

has been used by Fukagai [2] in existence theory of entire solutions of second
order semilinear elliptic equations.

LEMMA 3.1. Φ and Ψ have the following properties:

(A) (AΦh)(\x\) = h(\x\) for all h6C[0,oo);

(B) (AΨK)(\x\) = - h(\x\) for all ΛeC[0, oo) n L}(0, oo)

(C) lim,^ (Ψh)(t) = 0 if he C[0, oo) n Lί(0, oo)

(D) Ψ maps C[0, oo) n 14(0, oo) into C2[0, oo) n L}(0, oo), N ^ 5.

These properties are easily verified from (3.1) and (3.2) and the polar form

We intend to employ the iterates Φ2, ΦΨ, and Ψ2 in the sequel to obtain entire
solutions of (1.1) or (1.2) in RN which are unbounded, bounded, and decaying to
zero as |x|->oo, respectively.

LEMMA 3.2. // /ι(ί)^0 and /ιeC[0, oo), the function u(x) = (Φ2h)(\x\) is a
(radially symmetric) entire solution of (A2u)(x) = h(\x\) in RN, N^3, satisfying

(3.3) 0 ̂  (Φ2/z) (0 ^ l 2 sh(s)ds9 t ̂  0.

If in addition h eL}(0, oo), there exists a positive constant K such that
Kt2, ί^O.
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PROOF. Clearly u satisfies A2u = h in RN from property (A) of Lemma
3.1. Furthermore (3.1) implies that

0 ^ (Φ2/*)(0 g ( N 2 ) 2 s rh(r)drds

= 2(N-2)2 - >

implying (3.3). The last statement of the lemma is obvious.

LEMMA 3.3. If h(t) is a nonnegative function in [0, oo) and /ιeC[0, oo) Π
L^(0, oo), then the function u(x)= — (ΦΨh)(\x\) is a (radially symmetric) entire
solution of(Δ2u)(x) = h(\x\) in RN, N^5, such that

(3.4) 0 ί (ΦΨh)(t) ^ 2(N-2)(N-4) \"s*hWs> r ^ °

PROOF. The first statement follows from Lemma 3.1. The definitions (3.1)
and (3.2) show that

N-2

ί3"N Γ rN-lh(r)drds + (' sΓ rh(r)drds\
o Jo Jo Js /

For ί>0,JV^ 5 define

(3.5) p(ί) = min{l, <4-^}; σ(ί) = min {ί,
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and p(0) = 1, σ(0) = 0. Let I± and /2 be the functional defined by

(3.6) /,(*> = N(N_}m_4) Jo"
(3.7) /2(Λ) = max{/3(Λ),/4(A)},

where

(3-8) I^

and

(3-9) /,<*) = - ^

with domains defined to be C[0, oo) n Lj^ ^O, oo), N^

LEMMA 3.4. // Λ e C[0, oo) n Li_ι(0, oo), N^5, α«J /ι(0^0 in [0, oo), then

u(x) = (Ψ2h)(\x\) is a (radially symmetric) entire solution of (A2u)(x) = h(\x\) in

RN such that

(3.10) /ι(*)p(0 ^ (ίP2*) (0 ^ I2(K)p(t)

for all ί^O. /n particular, lim^^^ u(x) = Q uniformly in RN.

The technically complicated proof will be deferred to the Appendix.

4. Proofs of theorems

PROOF OF THEOREM 2.1. Hypothesis (f3) shows that

λ-W(t9 A(l + ί2)) ̂  c-ltF(t, c(l + ί2))

for all ί^O, 0</l^c, where c is as in (f4), and furthermore that

limA_0 + λ-ltF(t, λ(l + ί2)) = 0, ί ̂  0.

In view of (f4), it follows from the dominated convergence theorem that

limA_0 + (̂ί, (̂1 + ί2))Λ = 0.

Then there exists a sufficiently small positive constant k such that

(4.1)
Jo

Let C[0, oo) denote the locally convex space of all continuous functions in
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[0, oo) with the topology of uniform convergence on every compact interval in
[0, oo). With k as in (4.1), consider the closed convex subset & of C[0, oo)
defined by

(4.2) 0r = |yeC[0, oo): /c(l+ Q g y(t)^k(\+2t2\ ί^

With Φ as in (3.1) let ̂ : <^->C[0, oo) be the mapping defined by

(4.3) (Jty) (0 = /c(l + t2) + Φ2f(t, XO) , t ^ 0.

The Schauder-Tychonov fixed point theorem shows that Jt has a fixed point
y e <& after verification that Jt is a continuous mapping from ®/ into ̂  such that

JtW is relatively compact. To show that JtW c^, let y e W and use (f2) and (4.2)
to obtain

*)), ί^o.
Lemma 3.2 shows, for all ί^O, that

by (4.1), and hence (4.3) gives

|(uf j;)(ί) - fe(l + t 2)\ < ~ t2 for all t ̂  0.

This means that Jty e ®/.

If {yn} is a sequence in ®J converging to y e ̂  in the C[0, oo) topology, use of

(f3) and (f4) together with the dominated convergence theorem establishes easily
that (Λyn)(t) converges to (Λy)(t) uniformly in [0, oo) as n->oo, proving the
continuity of Jί in C[0, oo). Ascoli's theorem can be used to show that Jt<& is
relatively compact. Then the Schauder-Tychonov fixed point theorem implies
the existence of a function y e ̂  such that (Jty)(i) = y(t) for all t ̂  0. Lemma 3.2

applied to (4.3) shows that u(x) = y(\x\) is a positive entire solution of (1.1) with the

properties stated in Theorem 2.1.

In the case of the alternative hypothesis (f £), the proof is virtually the same,

except that (4.1) holds for a sufficiently large positive constant k.

PROOF OF THEOREM 2.2. In view of (f5), the same argument leading to (4.1)

shows that there exists a sufficiently small (if (f3) holds) or large (if (f £) holds)

positive constant k such that

(4.4) Γ ί3F(ί, 2k)dt ^ k.
Jo
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In analogy with (4.2) and (4.3), let & be the subset of C[0, oo) and let Jί be the

mapping defined, respectively, by

(4.5) <& = ye CIO, oo): £y(i)£2k for all ί ^ θ ,

(4.6) (Λy)(t) = k-ΦΨf(t,y(t)\ t > 0.

If y e < ,̂ it follows from (f2) that

^ *U 2fc), ί £ 0,

and hence /( , j) e C[0, oo) n L^(0, oo) by (4.4). Then Lemma 3.3 can be

applied to give

\ΦΨf(t, X0)l ^ ΦΪTα 2/c)

< for all ί ̂  0

by (4.4) and (4.5). Then (4.6) implies that

l(uf)0(0-fc| < y fora11 '^ 0 >

from which ^y e ̂ . Therefore f̂ maps <^ into itself. The continuity of Ji in
the C[0, oo) topology and the relative compactness of ̂ ^ are verified as in the
proof of Theorem 2.1, and hence the Schauder-Tychonov theorem guarantees the

existence of a function y ε $ such that (j?y)(t) = y(t) for all t ̂ 0. Application of
Lemma 3.3 to (4.6) completes the proof of Theorem 2.2.

The proofs of Theorems 2.3 and 2.4 are virtually the same as those of

Theorems 2.1 and 2.2, respectively.

PROOF OF THEOREM 2.5. For any one-signed function /ιeC[0, oo), calcu-

lation yields

(PK)"(i) = (ΦΛ)(ί) + -î - Γ sN-l(Φh)(s)ds, t > 0.
t Jo

Then use of L 'Hospital's rule three times shows that

(4.7) lim,^ (φ2ff(0 = -^ lim^. (Φh)(t),

the limit being finite if and only if h e L}(0, oo) in view of (3.1). Let u(x)=X|x|)
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be a solution of (1.1) obtained in Theorem 2.1 or 2.3. Then y(i) = (Λy)(i) for

where ft =/( - , X - )) e L}(0, oo) by (4.1) and (4.2). It follows from (4.7) that

(4.8) lim^co 4£ = lim ,,,_ -̂  = A>0

exists and is positive. Therefore (f4) is sufficient for (1.1) to have a positive
radial entire solution u(x) which is asymptotic to a positive constant multiple of
|x|2 as |x|->oo.

Conversely, if/(ί, M) has constant sign for all ί^O, u>0, a theorem of Fink
and Kusano [1, p. 237] states that (f4) is necessary for the existence of a radial
solution of (1.1) defined in an exterior domain and satisfying (4.8). This proves
Theorem 2.5.

Theorem 2.6 is proved similarly: A solution u(x) = y(\x\) of (1.1) obtained in
Theorem 2.2 or 2.4 has the property, replacing (4.8),

(4.9) lim^j^oo u(x) = constant > 0.

On the other hand, if /(ί, u) has constant sign, (f5) is known to be necessary for
(1.1) to have a radial solution u(x) in an exterior domain in RN, ΛΓ^5, satisfying
(4.9) [1, p. 237].

PROOF OF THEOREM 2.12. Suppose first that 0^y<l. Let p(ί) = mίn{l,
}, N^5, as in §3, and define

(4. 10) & = {y e C[0, oo) : kίP(t) ^ y(f) ^ k2p(t\ t^ 0} ,

where ki and k2 are positive constants satisfying the inequalities

(4.11) /q ^ UitipW"1-* ^ U2(PPΎ)Y/(ί-y) ^ *2 -

It follows from (1.5) and (3.6)-(3.9) that I^(ppy) and I2(pρv) are finite. Let
Jt\ <^->C[0, oo) be the mapping defined by

(4.12)

If j e^, then by (4.10),

tN~lp(t)yy(t) ^ kltδp(t\ δ = N - 1 - y(N-4),

for ί^l, N^5. Therefore pyyeL^_1(Q, oo) and Lemma 3.4 is applicable to
h = pyy. It then follows from (3.10) and (4.12) that
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(4.13) /iG^MO ^ (Jy)(t) ^ ι2(pyy)p(t), t ̂  o.

For y e &, (4.10) and (4.13) imply that

(4.14) k\I,(ppy)p(t) ^ (Jy)(ί) ^ k2I2(pp2)p(t)

for all ί^O. Consequently (4.11) yields the inequalities

Uy)(0 ^ klk\-yp(i) = /c2p(ί)

and

from which Λyε& Therefore Jtq/^®/, and it can be verified that Jϊ is
continuous in the C[0, oo) topology and that Jϊ$/ is relatively compact. The

Schauder-Tychonov fixed point theorem then implies the existence of y e & such

that (Λy)(t) = y(t) for all ί^O. From Lemma 3.4, u(x) = y(\x\) is a positive

decaying entire solution of (1.2), as described in Theorem 2.12, for a choice of ki

and k2 satisfying (4.11).

The proof in the singular case — l<y<0 is virtually the same, except that the

constants kί and k2 in the definition (4.10) of ®j are replaced by

and

respectively. Again the desired decaying entire solution is obtained as a fixed

point of Jί in $/.

5. Appendix: Proof of Lemma 3.4.

The notation in (3.5)-(3.9) will be used in the proof.

The first part of Lemma 3.4 is a consequence of Lemma 3.1. The definition
(3.2) shows, if h e C[0, oo) n L .̂̂ O, oo), JV^5, that

where
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One easily finds upon application of Fubini's theorem that

/l(ί) = (N~\V ΓlΓ ('2-''2)'-N-1A('-)<fr + Mt r»"h(r)drvv ~~AJ L ^ Jo yv Jo

/N TOO η

+ ~Γ)( rA(r)drJ;

Define G(0 = (!P2ΛXO= ̂ ι

(N-2)2G(t) = -̂ ί2"^

Differentiation of (5.1) gives

(N-2)2G'(t) =^Ltι-
2 o

^2rh(r)dr- th(t)

It follows that

from which G'(ί) < 0 for all t > 0. In particular G(ί) is decreasing in the interval
0^ ί ̂  1, and accordingly G(l)^ G(ί)g G(0) in this interval. From (5.1),

and

(N-2)*G(l) = 4- Γ (1 -^Ji^-'AWrfr + ̂  Γ r"*1 A(r)rfr + ̂
£ Jo ^v Jo ^v Ji
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Hence

N(N-)(N-4)

This proves the estimates (3.10) in the case 0^ t g 1.
In order to estimate G(f) for ί ̂  1, we use the notation H(f) = tN~4G(f). From

(5.1), calculation gives

(N-2)2H'(t) = - r3 Γ (t2-r2)rN-^h(r)dr + r1 (' r^-lh(r)dr
Jo Jo

- A r3 Γ rN+1A(r)rfr+ ̂ - tN+ίh(t)

- - th(t) + t»

+ ̂ 1 ^-5 ί°° (r2-t2)rh(r)dr- tN~^ rh(r)dr.

Then

(N-2)2H'(t) ^ ̂ ^ ?N-3 f α°rA(r)rfr+ ̂ ^ ̂ '5 Γ (A 2-/2)^(r)Jr

from which H'(t)>0 for all f>0, and in particular H(l)^H(t)^H(oo) for

allί^l. We note that //(l) = G(l)^/1(/ι), and since ΛeL^^O, oo), #(oo) is
estimated as follows:

(N-2)2H(π) ^ \ Γr^h(r)dr + ̂  Γ^-^(r)^ 4-
^ Jo 7V Jo

and so

+ +

We combine the above estimates to obtain

I,(K) ^ H(l) ^ H(ί) = ί^-4G(0 ^ H(oo) ^ /4(fc),

i.e., for ί^l,

Iι(h)t*-N ^ G(t) ^ I2(h)*~N.

This proves (3.10) in the case t^ 1.
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