# Cuts of ordered fields 

Daiji Kıima<br>(Received November 5, 1986)

We denote an ordered field by $(F, \sigma)$ or simply $F$, where $\sigma$ is an ordering of a field $F$. For ordered fields $(F, \sigma)$ and $(K, \tau)$, we say that $K / F$ is an extension of ordered fields if $K / F$ is an extension of fields and $\tau$ is an extension of $\sigma$. In this paper, $F(x)$ always means a simple transcendental extension of $F$. A pair $(C, D)$ of subsets of $F$ is called a cut of $F$ if $C \cup D=F$ and $c<d$ for any $c \in C$ and $d \in D$. Let $(F(x), \tau) /(F, \sigma)$ be an extension of ordered fields. Then $g(\tau):=(C, D)$, where $C=\{a \in F ; a<x\}$ and $D=\{a \in F ; a>x\}$, is a cut of $F$. If $F$ is a real closed field, then $g$ is a bijective map from the set of all orderings of $F(x)$ to the set of all cuts of $F$ (Theorem 1.2). In [2], we defined the rank of an ordered field and we said that an ordered field $F$ is a maximal ordered field of rank $n$ if $\operatorname{rank} F=n$ and for any proper extension $K / F$ of ordered fields, rank $K>n$.

Let $F$ be a real closed field of finite rank $n$ and let $A_{1} \subset \cdots \subset A_{n} \subset A_{n+1}=F$ be the compatible valuation rings of $F$. In this paper, we define the subsets $W_{i}$, $i=1, \ldots, n+1$, of the set of all cuts of $F$ (Definition 3.4) and show that for an ordering $\tau$ of $F(x)$, the following statements are equivalent (Theorem 3.10):
(1) $g(\tau) \in W_{i}$.
(2) There exist distinct convex valuation rings $B$ and $B^{\prime}$ of $F(x)$ with respect to $\tau$ such that $B \cap F=B^{\prime} \cap F=A_{i}$.

As a corollary of the above assertion, we have the following statement: $\operatorname{rank}(F(x), \tau)=\operatorname{rank} F+1$ if and only if $g(\tau) \in \cup_{i=1}^{n+1} W_{i}$. In particular, $F$ is a maximal ordered field if and only if any cut of $F$ is contained in $\cup_{i=1}^{n+1} W_{i}$.

## § 1. Real closed fields and cuts

Let $F$ be an ordered field. If $C$ and $D$ are subsets of $F$, we write $C<D$ if $c<d$ for all $c \in C, d \in D$. If $a \in F$, then we write $C<a$ or $a<D$ instead of $C<\{a\}$ or $\{a\}<D$, respectively. A pair $(C, D)$ of subsets of $F$ is called a cut of $F$ if $F=$ $C \cup D$ and $C<D$. We regard $(F, \phi)$ and $(\phi, F)$ as cuts of $F$. Throughout this paper, we denote by $X$ the set of orderings $\sigma$ of $F(x)$ where $(F(x), \sigma) / F$ is an extension of ordered fields. Let $C_{F}$ be the set of all cuts of $F$. We define the map $g_{F}: X \rightarrow C_{F}$ by $g_{F}(\sigma)=(C, D)$, where $C=\{c \in F ; c<x(\sigma)\}$ and $D=\{d \in F ; x<d(\sigma)\}$; here we write $a<b(\sigma)$ if $a<b$ with respect to the ordering $\sigma$. It is well known that there is an ordering $\sigma \in X$ such that $F<x(\sigma)$ and it is uniquely determined (cf. [1]). In this case, it is clear that $g_{F}(\sigma)=(F, \phi)$.

The following definition is stated in [2], Definition 2.1.
Definition 1.1. Let $(C, D)$ be a cut of an ordered field $F$.
(1) We say that $(C, D)$ is proper if $C$ and $D$ are non-empty, $C$ has no largest element and $D$ has no smallest element.
(2) We say that $(C, D)$ is archimedean if for any $e \in F, e>0$, there exist elements $c \in C$ and $d \in D$ such that $d-c<e$.

Let $K / F$ be an extension of ordered fields. We say that an element $b \in K$ is infinitely large (with respect to $F$ ) if $F<b$. If there is no infinitely large element in $K$, then we say that $F$ is cofinal in $K$.

The following Theorem 1.2 is stated in [1], Theorem 1, and we give a proof as a preliminary step to $\S 2$ and $\S 3$.

Theorem 1.2. If $F$ is real closed, then the map $g_{F}: X \rightarrow C_{F}$ is bijective.
Proof. First we show that $g_{F}$ is injective. Let $\sigma$ and $\tau$ be elements of $X$ such that $g_{F}(\sigma)=g_{F}(\tau)$. Let $f(x) \in F[x]$ be a polynomial over $F$. Since $F$ is real closed, we can write $f(x)=a \Pi\left(x-b_{j}\right)\left\{\left(x-c_{i}\right)^{2}+d_{i}^{2}\right\}$. By the fact $g_{F}(\sigma)=$ $g_{F}(\tau)$, the signatures of $x-b_{j}$ with respect to $\sigma$ and $\tau$ coincide. Hence it is clear that $\sigma=\tau$.

Next we show that $g_{F}$ is surjective. Let $(C, D)$ be any cut of $F$. We must show that there exists $\sigma \in X$ such that $g_{F}(\sigma)=(C, D)$.

Case 1. Assume that $(C, D)=(F, \phi)($ resp. $(C, D)=(\phi, F))$. Let $\sigma$ be the ordering of $F(x)$ where $x$ (resp. $-x$ ) is infinitely large. Then it is clear that $g_{F}(\sigma)=(C, D)$.

Case 2. Assume that there exists $c_{0}:=\max C$ (resp. $\left.d_{0}:=\min D\right)$. Put $y=\left(x-c_{0}\right)^{-1}$ (resp. $\left.y=\left(d_{0}-x\right)^{-1}\right)$ and let $\sigma$ be the ordering of $F(x)=F(y)$ for which $y$ is infinitely large. Then we can readily see that $g_{F}(\sigma)=(C, D)$.

Case 3. Assume that $(C, D)$ is a proper cut. For any monic polynomial $f(x)$, we can write $f(x)=\Pi\left(x-b_{j}\right)\left\{\left(x-c_{i}\right)^{2}+d_{i}^{2}\right\}$. Let $S$ be the set of all monic polynomials $f(x)=\Pi\left(x-b_{j}\right)\left\{\left(x-c_{i}\right)^{2}+d_{i}^{2}\right\}$ such that the number of elements in the set $\left\{j ; b_{j} \in D\right\}$ is even. We put $S_{1}=\{a f(x) ; a$ is a positive element of $F$ and $f(x) \in S\}$ and $S_{2}=\{a f(x) ; a$ is a negative element of $F$ and $f(x)$ is a monic polynomial which is not contained in $S\}$. Put $P:=\left\{f_{1}(x) / f_{2}(x) ; f_{1}(x), f_{2}(x) \in\right.$ $\left.S_{1} \cup S_{2}\right\}$. It is easy to show that $P$ is a multiplicative subgroup of $\dot{F}(x)$ of index 2 . We remark that for a polynomial $f(x)$, the following statements are equivalent:
(1) $f(x) \in S_{1} \cup S_{2}$.
(2) there exists an element $c \in C$ such that $f\left(c^{\prime}\right)>0$ for any $c^{\prime} \in C, c<c^{\prime}$. By the above remark, $S_{1} \cup S_{2}$ is additively closed and so is $P$. Hence there is an ordering $\sigma \in X$ such that the positive cone of $\sigma$ is $P$. Now it is clear that $g_{F}(\sigma)=$ (C, D).
Q.E.D.

Remark 1.3. Even if $F$ is not real closed, $g_{F}$ is surjective. In fact, let $K$ be a real closure of $F$. For any cut $(C, D)$ of $F$, we put $C^{\prime}=\{b \in K ; b \leqq c$ for some $c \in C\}$ and $D^{\prime}=K \backslash C^{\prime}$. By Theorem 1.2, there exists an ordering $\sigma$ of $K(x)$ such that $g_{K}(\sigma)=\left(C^{\prime}, D^{\prime}\right) \in C_{K}$. It is clear that $g_{F}(\sigma \mid F)=(C, D)$, where $\sigma \mid F$ is the restriction of $\sigma$ to $F$, and so $g_{F}$ is surjective.

Proposition 1.4. Let $F$ be a real closed field. Then $F$ is cofinal in $(F(x), \sigma)$ if and only if $g_{F}(\sigma)$ is a proper cut of $F$.

Proof. First we assume that $g_{F}(\sigma)$ is not a proper cut of $F$. By case 1 and case 2 in the proof of Theorem 1.2, it is clear that $F$ is not cofinal in $(F(x), \sigma)$. Next we assume that $g_{F}(\sigma):=(C, D)$ is a proper cut of $F$. First we show that for any $f(x) \in S_{1} \cup S_{2}\left(S_{1}, S_{2}\right.$ were defined in the proof of Theorem 1.2), there exist elements $a, b \in F$ such that $0<a<f(x)<b$. Let $e$ be the absolute value of the leading coefficient of $f(x)$. Then $f(x) / e$ is a product of polynomials, $x-c, c \in C$, $d-x, d \in D$, and $(x-c)^{2}+d^{2}$. So we may assume that $f(x)=x-c, c \in C, f(x)=$ $d-x, d \in D$, or $f(x)=(x-c)^{2}+d^{2}$.

Case 1. Suppose $f(x)=x-c, c \in C$. Let $c_{1} \in C$ with $c<c_{1}$ and $c_{2} \in D$. Then we have $0<c_{1}-c<f(x)=x-c<c_{2}-c$.

Case 2. Suppose $f(x)=d-x, d \in D$. Let $c_{1} \in C$ and $c_{2} \in D$ with $c_{2}<d$. Then we have $0<d-c_{2}<f(x)=d-x<d-c_{1}$.

Case 3. Suppose $f(x)=(x-c)^{2}+d^{2}$. By case 1 and case 2, there exists an element $c_{3}$ with $(x-c)^{2}<c_{3}$. Then $0<d^{2}<(x-c)^{2}+d^{2}<c_{3}+d^{2}$.

Now we must show that $F$ is cofinal in $(F(x), \sigma)$. Let $\alpha$ be any positive element of $F(x)$. By the proof of Theorem 1.2, we can see that the positive cone of $\sigma$ is $\left\{f_{1}(x) / f_{2}(x) ; f_{1}(x), f_{2}(x) \in S_{1} \cup S_{2}\right\}$. So we can write $\alpha=f_{1}(x) / f_{2}(x)$ for some $f_{1}(x), f_{2}(x) \in S_{1} \cup S_{2}$. By the above argument, there exist $a, b \in F$ such that $0<a<f_{2}(x)$ and $0<f_{1}(x)<b$ and we have $\alpha=f_{1}(x) / f_{2}(x)<b / a$. This shows that $F$ is cofinal in $F(x)$. Q.E.D.

Lemma 1.5. Let $E$ and $F$ be subfields of a field L. Let $\sigma$ and $\tau$ be orderings of the composite field $E F$. Suppose that $E /(E \cap F)$ is an algebraic extension and $\sigma|E=\tau| E, \sigma|F=\tau| F$. Then we have $\sigma=\tau$.

Proof. Suppose $\sigma \neq \tau$. Then there exists an element $\alpha \in E F$ such that $\alpha>0(\sigma)$ and $\alpha<0(\tau)$. We may assume that $\alpha \in F\left(e_{1}, \ldots, e_{n}\right)$ for some $e_{1}, \ldots, e_{n} \in E$. We put $N=(E \cap F)\left(e_{1}, \ldots, e_{n}\right)$. Then $N /(E \cap F)$ is a finite extension and $N F$ contains $\alpha$. Let $\sigma_{1}$ and $\tau_{1}$ be the restrictions of $\sigma$ and $\tau$ to $N F$ respectively. The fact $\alpha \in N F$ implies $\sigma_{1} \neq \tau_{1}$. These observations show that we may assume $E /(E \cap$ $F)$ is a finite extension. We put $E=(E \cap F)(\theta)$. Let $f(x)$ and $g(x)$ be the minimal polynomials fo $\theta$ over $E \cap F$ and $F$ respectively. Let $K$ be a real closure of the ordered field $(F, \sigma \mid F)$ and let $K^{\prime}$ be the algebraic closure of $E \cap F$ in $K$. It iw well
known that $K^{\prime}$ is a real closure of $E \cap F$. Let $\alpha_{1}$ and $\alpha_{2}$ be the roots of $g(x)$ in $K$ such that orderings $\sigma$ and $\tau$ are canonically induced by injections $f_{i}: F(\theta) \rightarrow F\left(\alpha_{i}\right)$ $\subset K, f_{i}(\theta)=\alpha_{i}, i=1,2$, respectively (cf. [3], Chapter 3, §2). Then the orderings $\sigma \mid E$ and $\tau \mid E$ are canonically induced by the injections $h_{i}: E=(E \cap F)(\theta) \rightarrow(E \cap F)$ $\left(\alpha_{i}\right) \subset K^{\prime}, h_{i}(\theta)=\alpha_{i}, i=1,2$, respectively. So the assumption $\sigma|E=\tau| E$ implies $\alpha_{1}=\alpha_{2}$, and this shows $\sigma=\tau$.
Q.E.D.

Let $F$ be an ordered field and $F(x, y)$ be an extension field of $F$ where $x, y$ are variables. Let $\sigma$ and $\tau$ be orderings of $F(x, y)$ which are extensions of the ordering of $F$ such that $F<x(\sigma), F(x)<y(\sigma), F<y(\tau)$ and $F(y)<x(\tau)$. Then $F<x(\sigma \mid F(x))$ and $F<x(\tau \mid F(x)$ ). So we have $\sigma|F(x)=\tau| F(x)$ and similarly we have $\sigma \mid F(y)=$ $\tau \mid F(y)$. From the fact that $x<y(\sigma)$ and $y<x(\tau)$, it follows that $\sigma \neq \tau$. So in Lemma 1.5, the assumption that $E /(E \cap F)$ is an algebraic extension is essential.

Theorem 1.6. Let $K$ be a real closure of an ordered field $F$ and $Y$ be the set of all orderings of $K(x) . \quad$ For $\tau \in Y$, we let $\psi(\tau)$ be the restriction of $\tau$ to $F(x)$. Then the map $\psi: Y \rightarrow X$ is bijective.

Proof. First we show that $\psi$ is surjective. Let $\sigma$ be any element of $X$ and $L$ be a real closure of $(F(x), \sigma)$. The algebraic closure of $F$ in $L$ is a real closure of $F$, and so we can identify it with $K$. It is clear that $x \in L$ is transcendental over $K$. Let $\tau$ be the restriction of the ordering of $L$ to $K(x)$. Then it is easily shown that $\psi(\tau)=\sigma$, and so $\psi$ is surjective. By Lemma 1.5, it is clear that $\psi$ is injective.
Q.E.D.

As a corollary of Theorem 1.2 and Theorem 1.6, we have Theorem 5 in [1]. We also have the following corollary.

Corollary 1.7. Let F be a real closed field. Then the following statements hold:
(1) Let $(F(x), \sigma)$ and $(F(y), \tau)$ be ordered fields where $x$ and $y$ are variables. If $\{a \in F ; a<x(\sigma)\}=\{a \in F ; a<y(\tau)\}$, then the isomorphism $h: F(x) \rightarrow F(y)$, defined by $h(x)=y$, is an order preserving isomorphism.
(2) Let $\sigma$ and $\tau$ be orderings of $F(x)$. If there exist elements $y, z$ of $F(x)$ so that $F(x)=F(y)=F(z)$ and $\{a \in F ; a<y(\sigma)\}=\{a \in F ; a<z(\tau)\}$, then $(F(x), \sigma)$ and $(F(x), \tau)$ are isomorphic as ordered fields.

## § 2. Ordered fields of finite rank

In this section, we assume that $F$ is a real closed field of finite rank (cf. [2], Definition 1.1). Take an ordering $\sigma \in X$ and suppose that $F$ is cofinal in $(F(x), \sigma)$ and $\operatorname{rank}(F(x), \sigma)=\operatorname{rank} F+1$ (as for the existence of such an ordering, see Remark 2.1). We fix this ordering $\sigma \in X$. Since $\operatorname{rank}(F(x), \sigma)=\operatorname{rank} F+1$,
there exist convex valuation rings $B_{1}, B_{2}$ of $F(x)$ such that $B_{1} \neq B_{2}$ and $B_{1} \mid F=$ $B_{2} \mid F$ and the valuation rings $B_{1}$ and $B_{2}$ are overrings of $A(F(x), Q)$ (cf. [2]). So we may assume that $B_{1} \subset B_{2}$. We put $A:=B_{1}\left|F=B_{2}\right| F$. We denote the maximal ideals, the groups of units, the valuations and the value groups of $A$, $B_{1}$ and $B_{2}$ by $(A, M, U, v, G),\left(B_{1}, M_{1}, U_{1}, v_{1}, G_{1}\right)$ and ( $B_{2}, M_{2}, U_{2}, v_{2}, G_{2}$ ) respectively. We denote by $h: G_{1} \rightarrow G_{2}$ the canonical surjection. $H:=\operatorname{Ker} h$ is the convex subgroup $v_{1}\left(U_{2}\right)$ of $G_{1}$ corresponding to the prime ideal $M_{2}$ of $B_{1}$. There are canonical injections $h_{1}: G \rightarrow G_{1}$ and $h_{2}: G \rightarrow G_{2}$. It is clear that $h h_{1}=h_{2}$, and we identify $h_{1}(G)$ and $h_{2}(G)$ with $G$.

Remark 2.1. Let $\boldsymbol{R}(x, y)$ be an extension field of $\boldsymbol{R}$, the field of real numbers, where $x, y$ are variables. Let $\tau$ be an ordering of $\boldsymbol{R}(x, y)$ such that $\boldsymbol{R}<x(\tau)$ and $\boldsymbol{R}(x)<y(\tau)$. Let $L$ be a real closure of $(\boldsymbol{R}(x, y), \tau), K$ be the algebraic closure of $\boldsymbol{R}(y)$ in $L$ and $\sigma:=\tau \mid K(x)$. Then for any element $z$ of $K(x)$, we have $z<y^{n}$ for some positive integer $n$, since the set $\left\{y^{n} ; n=1,2, \ldots\right\}$ is cofinal in $L$. This implies $K$ is cofinal in $K(x)$. Next we show that rank $K(x)=\operatorname{rank} K+1$. In general, for an ordered field $N$ of finite rank, the following assertions hold (cf. [2], Proposition 1.2):
(1) Let $N_{1} / N$ be an algebraic extension of ordered fields. Then rank $N_{1}=$ rank $N$.
(2) $\operatorname{rank} N(x)=\operatorname{rank} N+1$, where $N(x) / N$ is a simple transcendental extension of ordered fields such that $x$ is infinitely large.

By the above assertions, we have $\operatorname{rank} L=2$ and $\operatorname{rank} K=1$. Since $L / K(x)$ is an algebraic extension, $\operatorname{rank} K(x)=2=\operatorname{rank} K+1$.

Lemma 2.2. There exists an element $b \in F$ such that $v_{1}(x-b)$ is not contained in $G$.

Proof. Suppose to the contrary that $v_{1}(x-b) \in G$ for any $b \in F$. Let $f(x)$ be any monic irreducible polynomial of $F[x]$. Since $F$ is real closed, $\operatorname{deg} f(x) \leqq 2$. If $\operatorname{deg} f(x)=2$, then we can write $f(x)=(x+a)^{2}+b^{2}, b \neq 0$. If $v_{1}(x+a) \neq v_{1}(b)$, then $v_{1}(f(x))=\min \left(v_{1}\left((x+a)^{2}\right), v_{1}\left(b^{2}\right)\right)$. If $v_{1}(x+a)=v_{1}(b)$, then $v_{1}(f(x))=$ $v_{1}\left((x+a)^{2}\right)=v_{1}\left(b^{2}\right)$ since $B_{1} / M_{1}$ is formally real. So we have $v_{1}(f(x)) \in G$. This shows that the value of any irreducible polynomial of $F[x]$ is contained in $G$. This contradicts the fact $G \neq G_{1}$.
Q.E.D.

Lemma 2.3. Take an element $b \in F$ so that $e:=v_{1}(x-b) \notin G$. Then $G_{1}=$ $G \oplus Z e$.

Proof. Since $G$ is divisible ([2], Proposition 1.7), it is clear that $Z e \cap G=$ $\{0\}$. Let $\alpha$ be any polynomial of $F[x]$. We can write $\alpha=a_{n}(x-b)^{n}+\cdots+a_{1}(x-$ $b)+a_{0}$. Since $Z e \cap G=\{0\}$, the values $v_{1}\left(a_{i}(x-b)^{i}\right), i=0, \ldots, n$, are different from each other. So $v_{1}(\alpha)=v_{1}\left(a_{i}(x-b)^{i}\right)$ for some $i$ and we have $v_{1}(\alpha) \in G+Z e$.

This implies $G_{1}=G \oplus Z e$.
Q.E.D.

Proposition 2.4. $G_{2}=G, H \cong Z$ and $G_{1}=G \oplus H$ (the ordering of $G \oplus H$ is lexicographic).

Proof. By Lemma 2.3, $G_{1} / G$ is isomorphic to $Z$. Since $H \cap G=\{0\}$, $H$ is isomorphic to $(G+H) / G$ which is a subgroup of $G_{1} / G$. Hence we have $\boldsymbol{H} \cong \boldsymbol{Z}$. The fact $G_{1} / G \cong \boldsymbol{Z}$ also shows that $G_{1} /(G+H) \cong \boldsymbol{Z} / n \boldsymbol{Z}$ for some $n>0$. Since $G_{2} / G$ is isomorphic to $G_{1} /(G+H), G_{2} / G$ is a torsion group. On the other hand, by [2], Proposition 1.7, $G$ is divisible, and so $G_{2} / G$ is torsion free. This implies $n=1$, and $G_{2}=G$. Now it is clear that $G_{1}=G \oplus H$ and the ordering of $G \oplus H$ is lexicographic.
Q.E.D.

The proof of the following Proposition 2.5 is similar to that of Proposition 2.4 and we omit it.

Proposition 2.5. Let $\tau$ be an element of $X$. Suppose that $F$ is not cofinal in $(F(x), \tau)$. Then $B:=\{b \in F(x) ; b<a(\tau)$ for some $a \in F\}$ is a non-trivial valuation ring of $F(x)$ and $B$ is compatible with respect to $\tau$.

Let $v_{B}$ be the valuation of $B$. Then $v_{B}$ is trivial on $F$ and the value group of $v_{B}$ is isomorphic to $\boldsymbol{Z}$. Moreover there exists $b \in F$ such that $v_{B}(x-b)$ is a generator of this value group.

In the situation of Proposition 2.5, there exists an element $y$ of $F(x)$ such that $y$ is a change of variable (i.e. $F(x)=F(y)$ ) and $v_{B}(y)=-1, y>0(\tau)$. Then it is clear that $F<y(\tau)$.

Let $\tau_{1}$ and $\tau_{2}$ be elements of $X$ and suppose that $F$ is not cofinal in $F(x)$ with repect to $\tau_{1}$ and $\tau_{2}$. Then by the above argument, there exist $y_{1}$ and $y_{2}$ such that $F(x)=F\left(y_{1}\right)=F\left(y_{2}\right)$ and $F<y_{1}\left(\tau_{1}\right), F<y_{2}\left(\tau_{2}\right) . \quad$ So $\left(F(x), \tau_{1}\right)$ and $\left(F(x), \tau_{2}\right)$ are isomorphic as ordered fields by Corollary 1.7.

Proposition 2.6. For $\tau \in X$, if $g(\tau)$ is proper archimedean, then $\operatorname{rank}(F(x)$, $\tau)=\operatorname{rank} F$.

Proof. Let $F_{C}$ be the completion of $F$ (cf. [2], Definition 2.5). By [2] Proposition 1.3, rank $F=\operatorname{rank} F_{C}$. Since $F$ is real closed, $y:=g(\tau) \in F_{C}$ is transcendental over $F$. Let $\mu$ be the ordering of $F(y)$ induced by the ordering of $F_{\mathcal{C}}$. Then $\{a \in F ; a<y(\mu)\}=C$ where $(C, D)=g(\tau)$. By Cororally 1.7, $(F(x), \tau)$ and $(F(y), \mu)$ are isomorphic as ordered fields. So we have $\operatorname{rank}(F(x), \tau)=\operatorname{rank}(F(y)$, $\mu)=\operatorname{rank} F$.
Q.E. D.

## §3. Maximal ordered fields and cuts

In this section, we assume that $F$ is a real closed field of rank $n$. Let
$A(F, Q)=A_{1} \subset \cdots \subset A_{n} \subset A_{n+1}=F$ be the convex valuation rings of $F$ and $v_{i}$ be the valuations of $A_{i}, i=1, \ldots, n$.

Definition 3.1. For a cut $(C, D)$ of $F$, we put $M(C, D):=\{x \in F ; \pm x \in C$ or $\pm x \in D\}$ and $\dot{M}(C, D):=M(C, D) \backslash\{0\}$.

If $C=F^{-}:=\{a \in F ; a<0\}$, then $M(C, D)=\{0\}$. For any cut $(C, D)$, it is clear that $0 \in M(C, D)$.

Proposition 3.2. Let $(C, D)$ be a cut of $F$ and $v$ be a compatible valuation of $F$. Then $g^{\prime} \leqq g$ for any $g \in v(\dot{M}(C, D))$ and $g^{\prime} \in v(\dot{F} \backslash \dot{M}(C, D))$. In particular, the set $v(\dot{M}(C, D)) \cap v(\dot{F} \backslash \dot{M}(C, D))$ consists of at most one element.

Proof. First we remark that if $a \in \dot{M}(C, D)$ and $0<b<a$ then $-a \in \dot{M}(C, D)$ and $b \in \dot{M}(C, D)$. There exist elements $a \in \dot{M}(C, D)$ and $b \in \dot{F} \backslash \dot{M}(C, D)$ such that $v(a)=g$ and $v(b)=g^{\prime}$. By the above remark, we may assume $0<a \leqq b$. Since $v$ is compatible, $v(b) \leqq v(a)$ and so $g^{\prime} \leqq g$.
Q.E.D.

Definition 3.3. For $i=1, \ldots, n$ we put $T_{i}=\left\{(C, D)\right.$ a proper cut of $F ; v_{i}(\dot{M}(C$, $D)) \cap v_{i}(\dot{F} \backslash \dot{M}(C, D))=\phi$ and $\min v_{i}(\dot{M}(C, D))$ or $\max v_{i}(\dot{F} \backslash \dot{M}(C, D))$ exists $\}$. If $(C, D) \in T_{i}$, then we denote $\min v_{i}(\dot{M}(C, D))$ or $\max v_{i}(\dot{F} \backslash \dot{M}(C, D))$ by $\alpha\left(v_{i}\right.$, ( $C, D)$ ).

If $(C, D) \in T_{i}$, then it is clear that $v_{i}^{-1}\left(v_{i}(\dot{M}(C, D))\right)=\dot{M}(C, D)$, and we can show that $M(C, D)$ is a fractional ideal of $A_{i}$. For a cut $(C, D)$ and an element $a \in F$, we put $C+a=\{c+a, c \in C\}$ and $D+a=\{d+a, d \in D\}$. It is clear that $(C+a, D+a)$ is a cut of $F$.

Definition 3.4. For $i=1, \ldots, n$, we put $W_{i}:=\left\{(C+a, D+a) ;(C, D) \in T_{i}\right.$, $a \in F\}$ and we let $W_{n+1}$ be the set of all non-proper cuts of $F$.

Proposition 3.5. Let $(C, D)$ be a cut of $F$ which belongs to some $T_{i}$. For an element $y \in F$, the following statements are equivalent:
(1) $y \in M(C, D)$.
(2) $(C, D)=(C+y, D+y)$.

Proof. (1) $\Rightarrow(2)$ : Let $y$ be any element of $M(C, D)$. First we assume that $0 \in C$; in this case $M(C, D) \subset C$. Suppose $C+y \neq C$. There are two cases $C+y \supset C$ and $C+y \subset C$. Replacing $y$ by $-y$ if necessary, we may assume that $C+y \supset C$. Then there exists an element $c \in C$ such that $0<c$ and $c+y \in D$. Since $c \in M(C, D)$ and $M(C, D)$ is additively closed, $c+y \notin D$, a contradiction. As for the case $0 \in D$, the assertion can be proved similarly.
(2) $\Rightarrow(1)$ : Suppose $C+y=C$. If $0 \in C$, then $y$ and $-y$ are contained in $C$. So $y \in M(C, D)$. If $0 \notin C$, then $0 \in D$, and the fact $D+y=D$ also implies $y \in$ $M(C, D)$.
Q.E.D.

Proposition 3.6. $\cup_{i=1}^{n} W_{i}$ is a disjoint union.
Proof. Suppose to the contrary that there exists a cut $(C, D) \in W_{i} \cap W_{j}$ for some $i \neq j$. We may assume $i<j$. There exist cuts $\left(C_{i}, D_{i}\right) \in T_{i}$ and $\left(C_{j}, D_{j}\right) \in$ $T_{j}$ such that $(C, D)=\left(C_{i}+c_{i}, D_{i}+c_{i}\right)=\left(C_{j}+c_{j}, D_{j}+c_{j}\right)$ for some $c_{i}, c_{j} \in F$. It is clear that $\left\{a \in F ; C_{i}+a=C_{i}\right\}=\{a \in F ; C+a=C\}$ and so we have $\{a \in F$; $\left.C_{i}+a=C_{i}\right\}=\left\{a \in F ; C_{j}+a=C_{j}\right\}$. Let $H$ be the kernel of the canonical surjection $G_{i} \rightarrow G_{j}$ (cf. §2). We fix an element $0<\beta \in H$. There exist elements $s$ and $s^{\prime}$ such that $0<s, 0<s^{\prime}$ and $v_{i}(s)=\alpha\left(v_{i},\left(C_{i}, D_{i}\right)\right)-\beta, v_{i}\left(s^{\prime}\right)=\alpha\left(v_{i},\left(C_{i}, D_{i}\right)\right)+\beta$. Since $v_{i}(s) \in v_{i}\left(\dot{F} \backslash \dot{M}\left(C_{i}, D_{i}\right)\right)$ and $v_{i}\left(s^{\prime}\right) \in v_{i}\left(\dot{M}\left(C_{i}, D_{i}\right)\right)$, we have $s \notin M\left(C_{i}, D_{i}\right)$ and $s^{\prime} \in M\left(C_{i}, D_{i}\right)$. By Proposition 3.5, $C_{i}+s^{\prime}=C_{i}$ and $C_{i}+s \neq C_{i}$ and so by the fact $\left\{a \in F ; C_{i}+a=C_{i}\right\}=\left\{a \in F ; C_{j}+a=C_{j}\right\}$, we have $C_{j}+s^{\prime}=C_{j}$ and $C_{j}+s \neq C_{j}$. On the other hand, since $v_{j}(s)=v_{j}\left(s^{\prime}\right)$, we can see that $s \in M\left(C_{j}, D_{j}\right)$ if and only if $s^{\prime} \in M\left(C_{j}, D_{j}\right)$. Hence by Proposition 3.5, $C_{j}+s^{\prime}=C_{j}$ if and only if $C_{j}+s=C_{j}$. This is a contradiction.
Q.E.D.

For $\sigma, \tau \in X$, we write $\sigma \sim \tau$ if $(F(x), \sigma)$ is $F$-isomorphic to $(F(x), \tau)$ as ordered fields. We can easily show that $\sim$ is an equivalence relation in $X$. We put $X_{1}=\{\sigma \in X ; \operatorname{rank}(F(x), \sigma)=n+1\}$. Then $X_{1}$ is a union of equivalence classes. We can define the equivalence relation in $C_{F}$ which is canonically induced by the bijection $g: X \rightarrow C_{F}$. We denote it by the same symbol $\sim$. By Proposition 1.4 and the argument after Proposition 2.5, $W_{n+1}$ is an equivalence class of $C_{F}$.

Proposition 3.7. Let $(C, D)$ and $\left(C^{\prime}, D^{\prime}\right)$ be any cuts of $F$ wihch belong to the set $W_{i}$ for some $i=1, \ldots, n$. Then $(C, D) \sim\left(C^{\prime}, D^{\prime}\right)$.

Proof. Let $\sigma$ be the element of $X$ such that $g(\sigma)=(C, D) . \quad$ By Corollary 1.7, it is sufficient to show that there exists an element $y$ of $F(x)$ such that $F(x)=F(y)$ and $\{d \in F ; d<y(\sigma)\}=C^{\prime}$. If $C^{\prime}=C+a$ for some $a$, then we put $y=x+a$. It is clear that $y$ satisfies the desired condition. So we may assume that ( $C, D$ ) and $\left(C^{\prime}, D^{\prime}\right)$ are contained in $T_{i}$. We suppose, for example, that $M(C, D) \subset C$, $M\left(C^{\prime}, D^{\prime}\right) \subset C^{\prime} \quad$ and $\quad \alpha\left(v_{i},(C, D)\right)=\min v_{i}(\dot{M}(C, D)), \quad \alpha\left(v_{i},\left(C^{\prime}, D^{\prime}\right)\right)=\max v_{i}(\dot{F}-$ $\dot{M}(C, D)$ ) (in the other cases, the assertions can be proved similarly). Let $a$ and $b$ be elements of $F$ such that $a>0, b>0, v_{i}(a)=\alpha\left(v_{i},(C, D)\right)$ and $v_{i}(b)=$ $\alpha\left(v_{i},\left(C^{\prime}, D^{\prime}\right)\right)$. We put $y=a b / x$. Let $d$ be a positive element of $F$ and suppose $d<y(\sigma)$. Then $a b / d>x$, and so $v_{i}(a b / d)<\alpha\left(v_{i},(C, D)\right)$. This implies $v_{i}(d)>$ $\alpha\left(v_{i},\left(C^{\prime}, D^{\prime}\right)\right)$, hence $d \in M\left(C^{\prime}, D^{\prime}\right) \subset C^{\prime}$. These observations show that $\{d \in F$; $d<y(\sigma)\} \subset C^{\prime}$. The converse inclusion is proved similarly.
Q.E.D.

Definition 3.8. For $\sigma \in X_{1}$, let $B_{1} \subset B_{2} \subset \cdots \subset B_{n+2}=F(x)$ be the convex valuation rings of $F(x)$ (with respect to $\sigma$ ). Then there exists a unique number $j(j=1, \ldots, n+1)$ such that $B_{j} \cap F=B_{j+1} \cap F=A_{j}$. We put $N(\sigma)=j$. It is clear that for $\sigma, \tau \in X_{1}$, if $\sigma \sim \tau$, then $N(\sigma)=N(\tau)$.

Theorem 3.9. The map $N: X_{1} / \sim \rightarrow\{1, \ldots, n+1\}$ is bijective, where $X_{1} / \sim$ means the set of equivalence classes in $X_{1}$.

Proof. First we show that $N$ is surjective. We fix a number $j, j=1, \ldots, n+1$. Let $C=F^{-} \cup A_{j}$ and $D=F \backslash C$. Then, since $A_{j}$ is convex, $(C, D)$ is a cut of $F$. Let $\sigma$ be the ordering of $F(x)$ such that $g(\sigma)=(C, D)$ and let $k_{j}$ be a maximal subfield of $A_{j}$. We put $B=A\left((F(x), \sigma), k_{j}\right)$. It is clear that $B$ is a convex valuation ring of $F(x)$ with respect to $\sigma$. By [2], Proposition 1.5, $A\left(F, k_{j}\right)=A_{j}$. This implies that $B \cap F=A_{j}$. We put $B^{\prime}=\left\{a \in F(x) ;|a|<x^{n}(\sigma)\right.$ for some positive integer $n\}$. From the facts $k_{j} \subset A_{j} \subset C<x(\sigma)$, and $x \in B^{\prime} \backslash B$, it follows that $B \subset B^{\prime}$ and $B \neq B^{\prime}$. We show that $B^{\prime}$ is a convex valuation ring of $F(x)$ with respect to $\sigma$ and $B^{\prime} \cap F=A_{j}$. By the definition of $B^{\prime}$, it is clear that $B^{\prime}$ is a convex subset of $F(x)$ with respect to $\sigma$ and $B^{\prime}$ is multiplicatively closed. Let $c$ and $d$ be any elements of $B^{\prime}$. Then there exist positive integers $s$ and $t$ such that $|c|<x^{s}$ and $|d|<x^{t}$. We may assume $s \leqq t$. We have $|c+d| \leqq|c|+|d|<x^{s}+x^{t} \leqq 2 x^{t}<x^{t+1}$. This shows that $c+d \in B^{\prime}$. Thus $B^{\prime}$ is additively closed and so $B^{\prime}$ is a subring of $F(x)$. Since $B^{\prime}$ is an overring of $B, B^{\prime}$ is a valuation ring. Let $b$ be a positive element of $B^{\prime} \cap F$. Then $b<x^{n}$ for some $n$ and so $0<b^{1 / n}<x$ (note that $F$ is real closed). This implies $b^{1 / n} \in F^{+} \cap C=A_{j}$, where $F^{+}$is the set of all positive elements of $F$. Thus $b \in A_{j}$, and we have $B^{\prime} \cap F=A_{j}$. This shows that $\sigma \in X_{1}$, $N(\sigma)=j$ and therefore $N$ is surjective.

Next we show that $N$ is injective. Let $\sigma, \tau$ be elements of $X_{1}$ such that $N(\sigma)=N(\tau)=j$. Let $B_{1} \subset B_{2} \subset \cdots \subset B_{n+2}=F(x)$ be the convex valuation rings of $F(x)$ with respect to $\sigma$. By Definition 3.8, $B_{j} \cap F=B_{j+1} \cap F=A_{j}$. Let $v_{j}$, $v_{j}^{\prime}$ and $v_{j+1}^{\prime}$ be the valuations of $A_{j}, B_{j}$ and $B_{j+1}$ respectively, and $G_{j}, G_{j}^{\prime}$ and $G_{j+1}^{\prime}$ be the value groups of $v_{j}, v_{j}^{\prime}$ and $v_{j+1}^{\prime}$ respectively. By Proposition 2.4, $G_{j+1}^{\prime}=G_{j}$ and $G_{j}^{\prime} \cong G_{j} \oplus \boldsymbol{Z}$ (the ordering of $G_{j} \oplus \boldsymbol{Z}$ is lexicographic). By Lemma 2.2 and Lemma 2.3, there exists an element $b$ of $F$ such that $v_{j}^{\prime}(x-b)=(g, \pm 1)$, $g \in G_{j}$. By a suitable change of variable, $x_{1}=a /(x-b)$ or $x_{1}=a(x-b)$, we can find an element $x_{1}$ of $F(x)$ such that $x_{1}>0(\sigma), v_{j}^{\prime}\left(x_{1}\right)=(0,-1)$ and $F(x)=F\left(x_{1}\right)$. Let $a$ be an element of $F$ such that $|a|<x_{1}(\sigma)$. Then $v_{j}^{\prime}(a)>v_{j}^{\prime}\left(x_{1}\right)$ (note that $v_{j}^{\prime}$ is compatible with respect to $\sigma$ and $\left.v_{j}^{\prime}\left(x_{1}\right)=(0,-1) \notin G_{j}\right)$. This shows that $v_{j}(a) \geqq 0$, and so $a \in A_{j}$. Conversely we can prove $\left\{a \in F ;|a|<x_{1}(\sigma)\right\} \supset A_{j}$, and so we have $\left\{a \in F ;|a|<x_{1}(\sigma)\right\}=A_{j}$. Similarly there exists an element $x_{2}$ of $F(x)$ such that $x_{2}>0(\tau), \quad F(x)=F\left(x_{2}\right)$ and $\left\{a \in F ;|a|<x_{2}(\tau)\right\}=A_{j}$. By Corollary 1.7, this shows that the isomorphism $f: F(x) \rightarrow F(x)$, defined by $f\left(x_{1}\right)=$ $f\left(x_{2}\right)$, gives an order preserving isomorphism between $(F(x), \sigma)$ and $(F(x), \tau)$. Thus we have $\sigma \sim \tau$.
Q.E.D.

For $j=1, \ldots, n+1$, let $Y_{j}$ be the equivalence class of $X_{1}$ such that $N\left(Y_{j}\right)=j$. It is clear that $Y_{n+1}$ is the set of orderings $\tau \in X$ such that $F$ is not cofinal in $F(x)$ with respect to $\tau$ and $g\left(Y_{n+1}\right)=W_{n+1}$.

Theorem 3.10. For any $j, j=1, \ldots, n, g\left(Y_{j}\right)=W_{j}$. In particular, $W_{j}, j=$ $1, \ldots, n$, is an equivalence class of $C_{F}$.

Proof. We fix a number $j, j=1, \ldots, n$. By Proposition 3.7, it is sufficient to show that $g\left(Y_{j}\right) \subset W_{j}$. Let $\sigma$ be any element of $Y_{j}$. We use the notation in the proof of Theorem 3.9, and we put $C=F^{-} \cup A_{j}, D=F \backslash C$. Then $C=\{c \in F$; $\left.c<x_{1}(\sigma)\right\}$; here the element $x_{1}$ satisfies the conditions that $x_{1}>0(\sigma), v_{j}^{\prime}\left(x_{1}\right)=(0$, $-1)$ and $F(x)=F\left(x_{1}\right)$. It is clear that $M(C, D)=A_{j}$, and so $v_{j}(\dot{M}(C, D))=$ $\left\{g \in G_{j} ; 0 \leqq g\right\}$ and $v_{j}(\dot{F} \backslash \dot{M}(C, D))=\left\{g \in G_{j} ; 0>g\right\}$.

We can write $x_{1}=a /(x-b)$ or $x_{1}=a(x-b)$ (see the proof of Theorem 3.9). Hence $x=a / x_{1}+b$ or $x=x_{1} / a+b$. We put $y=x-b\left(y=a / x_{1}\right.$ or $\left.y=x_{1} / a\right)$, and $C^{\prime}=\{c \in F ; c<y(\sigma)\}, D^{\prime}=F \backslash C^{\prime}$. Then we can easily show that if $y=x_{1} / a$, then $v_{j}\left(\dot{M}\left(C^{\prime}, D^{\prime}\right)\right)=\left\{g \in G_{j} ;-v(a) \leqq g\right\}, v_{j}\left(\dot{F} \backslash \dot{M}\left(C^{\prime}, D^{\prime}\right)\right)=\left\{g \in G_{j} ;-v(a)>g\right\}$, and if $y=a / x_{1}$, then $v_{j}\left(\dot{M}\left(C^{\prime}, D^{\prime}\right)\right)=\left\{g \in G_{j} ; v(a)<g\right\}, \quad v_{j}\left(\dot{F} \backslash \dot{M}\left(C^{\prime}, D^{\prime}\right)\right)=$ $\left\{g \in G_{j} ; v(a) \geqq g\right\}$. This shows $\left(C^{\prime}, D^{\prime}\right) \in T_{j}$, and so $g(\sigma)=\left(C^{\prime}+b, D^{\prime}+b\right) \in W_{j}$.
Q.E.D.

By Proposition 2.6, any proper archimedean cut is not contained in $\cup_{j=1}^{n+1} W_{j}$.
Theorem 3.11. For a real closed field $F$ of rank n, the following statements are equivalent:
(1) $F$ is a maximal ordered field of rank $n$.
(2) $C_{F}=\cup_{j=1}^{n+1} W_{j}$.

Proof. (1) $\Rightarrow(2)$ : Let $(C, D)$ be any proper cut of $F$ and $\sigma \in X$ be an ordering such that $g(\sigma)=(C, D)$. Since $F$ is a maximal ordered field of rank $n$, we have $\operatorname{rank}(F(x), \sigma)=n+1$. So by Theorem 3.10, $g(\sigma) \in W_{j}$ for some $j=$ $1, \ldots, n$.
$(2) \Rightarrow(1)$ : By [2], Proposition 2.10, it is sufficient to show that $\operatorname{rank}(F(x)$, $\sigma)=n+1$ for any $\sigma \in X$. If $g(\sigma)$ is not proper, then $F$ is not cofinal in $(F(x), \sigma)$ by Proposition 1.4. This shows that $A(F(x), F)$ is a proper valuation ring of $F(x)$, and so $\operatorname{rank}(F(x), \sigma)=n+1$. If $g(\sigma)$ is proper, then $g(\sigma) \in W_{j}$, for some $j=$ $1, \ldots, n$. By Theorem 3.10, $\sigma \in Y_{j} \subset X_{1}$, and so $\operatorname{rank}(F(x), \sigma)=n+1$. Q. E. D.

Example 3.12. Let $(\boldsymbol{R}(x), \sigma)$ be the ordered field such that $\boldsymbol{R}<x$. Let $F$ be a real closure of $(\boldsymbol{R}(x), \sigma)$. Since rank $\boldsymbol{R}(x)=1$ and $F / \boldsymbol{R}(x)$ is an algebraic extension, we have $\operatorname{rank} F=1$. Therefore there exists a unique compatible valuation $v$ of $F$. Let $v^{\prime}$ be the restriction of $v$ to $\boldsymbol{R}(x)$ and $G, G^{\prime}$ be the value groups of $v$ and $v^{\prime}$ respectively. By Proposition $2.5, G^{\prime}$ is isomorphic to $\boldsymbol{Z}$. Since $F / \boldsymbol{R}(x)$ is an algebraic extension, $G / G^{\prime}$ is a torsion group and by [2], Proposition 1.7, $G$ is divisible. So $G$ is isomorphic to $\boldsymbol{Q}$, the field of rational numbers. Let $C=F^{-} \cup\left\{a \in F ; v(a)>2^{1 / 2}\right\}$ and $D=F \backslash C$. Then $(C, D)$ is a cut of $F$ and $v(\dot{M}(C, D))=\left\{r \in \boldsymbol{Q} ; 2^{1 / 2}<r\right\}, \quad v(\dot{F} \backslash \dot{M}(C, D))=\left\{r \in \boldsymbol{Q} ; 2^{1 / 2}>r\right\}$. Choose $e \in$
$F, e>0$ such that $v(e)=2$. Then for any $d \in D$ and $c \in C, c>0$, we have $v(d-c)=$ $v^{\prime}(d)<v(e)=2$ (note that $c \in M(C, D)$ and so $v(c)>v(d)$ ). This shows that $d-c>e$; therefore $(C, D)$ is not archimedean. We show that $(C, D)$ is not contained in $W_{1} \cup W_{2}$. It is clear that $(C, D)$ is proper, and so $(C, D) \notin W_{2}$. It is sufficient to show that $(C+b, D+b)$ is not contained in $T_{1}$ for any $b \in F$. If $v(b)>2^{1 / 2}$, then for any $d \in D, v(d+b)=v(d)<2^{1 / 2}$ and for any $0<c \in C, v(c+b)>2^{1 / 2}$. This shows that $(C+b, D+b)=(C, D) \notin T_{1}$, since neither $\min v(\dot{M}(C, D))$ nor $\max v(\dot{F} \backslash \dot{M}(C, D))$ exists. If $v(b)<2^{1 / 2}$, then we can easily show that min $v(\dot{M}(C+b, D+b))=\max v(\dot{F} \backslash \dot{M}(C+b, D+b))=v(b)$. This shows that $(C+b$, $D+b) \notin T_{1}$. Hence in general, there exists a proper cut of a real closed field $F$ which is not archimedean and not contained in $W_{j}, j=1, \ldots, n+1$.

## References

[1] R. Gilmer, Extension of an order to a simple transcendental extension, Contemporary Math. 8 (1982), 113-118.
[2] D. Kijima and M. Nishi, Maximal ordered fields of rank n, Hiroshima Math. J. 17 (1987), 157-167.
[3] W. Scharlau, Quadratic and hermitian forms, Grundlehren der mathematischen Wissenschaften 270, Springer-Verlag, 1985.

Faculty of Engineering, Kinki University (Kure)

