HIROSHIMA MATH. J. 17 (1987), 337–347

Cuts of ordered fields

Daiji Кілма

(Received November 5, 1986)

We denote an ordered field by (F, σ) or simply F, where σ is an ordering of a field F. For ordered fields (F, σ) and (K, τ) , we say that K/F is an extension of ordered fields if K/F is an extension of fields and τ is an extension of σ . In this paper, F(x) always means a simple transcendental extension of F. A pair (C, D)of subsets of F is called a cut of F if $C \cup D = F$ and c < d for any $c \in C$ and $d \in D$. Let $(F(x), \tau)/(F, \sigma)$ be an extension of ordered fields. Then $g(\tau) := (C, D)$, where $C = \{a \in F; a < x\}$ and $D = \{a \in F; a > x\}$, is a cut of F. If F is a real closed field, then g is a bijective map from the set of all orderings of F(x) to the set of all cuts of F (Theorem 1.2). In [2], we defined the rank of an ordered field and we said that an ordered field F is a maximal ordered field of rank n if rank F = nand for any proper extension K/F of ordered fields, rank K > n.

Let F be a real closed field of finite rank n and let $A_1 \subset \cdots \subset A_n \subset A_{n+1} = F$ be the compatible valuation rings of F. In this paper, we define the subsets W_i , $i=1,\ldots, n+1$, of the set of all cuts of F (Definition 3.4) and show that for an ordering τ of F(x), the following statements are equivalent (Theorem 3.10):

(1) $g(\tau) \in W_i$.

(2) There exist distinct convex valuation rings B and B' of F(x) with respect to τ such that $B \cap F = B' \cap F = A_i$.

As a corollary of the above assertion, we have the following statement: rank $(F(x), \tau)$ = rank F+1 if and only if $g(\tau) \in \bigcup_{i=1}^{n+1} W_i$. In particular, F is a maximal ordered field if and only if any cut of F is contained in $\bigcup_{i=1}^{n+1} W_i$.

§1. Real closed fields and cuts

Let F be an ordered field. If C and D are subsets of F, we write C < D if c < d for all $c \in C$, $d \in D$. If $a \in F$, then we write C < a or a < D instead of $C < \{a\}$ or $\{a\} < D$, respectively. A pair (C, D) of subsets of F is called a cut of F if $F = C \cup D$ and C < D. We regard (F, ϕ) and (ϕ, F) as cuts of F. Throughout this paper, we denote by X the set of orderings σ of F(x) where $(F(x), \sigma)/F$ is an extension of ordered fields. Let C_F be the set of all cuts of F. We define the map $g_F: X \to C_F$ by $g_F(\sigma) = (C, D)$, where $C = \{c \in F; c < x(\sigma)\}$ and $D = \{d \in F; x < d(\sigma)\}$; here we write $a < b(\sigma)$ if a < b with respect to the ordering σ . It is well known that there is an ordering $\sigma \in X$ such that $F < x(\sigma)$ and it is uniquely determined (cf. [1]). In this case, it is clear that $g_F(\sigma) = (F, \phi)$.

Daiji Кілма

The following definition is stated in [2], Definition 2.1.

DEFINITION 1.1. Let (C, D) be a cut of an ordered field F.

(1) We say that (C, D) is proper if C and D are non-empty, C has no largest element and D has no smallest element.

(2) We say that (C, D) is archimedean if for any $e \in F$, e > 0, there exist elements $c \in C$ and $d \in D$ such that d-c < e.

Let K/F be an extension of ordered fields. We say that an element $b \in K$ is infinitely large (with respect to F) if F < b. If there is no infinitely large element in K, then we say that F is cofinal in K.

The following Theorem 1.2 is stated in [1], Theorem 1, and we give a proof as a preliminary step to $\S2$ and $\S3$.

THEOREM 1.2. If F is real closed, then the map $g_F: X \rightarrow C_F$ is bijective.

PROOF. First we show that g_F is injective. Let σ and τ be elements of X such that $g_F(\sigma) = g_F(\tau)$. Let $f(x) \in F[x]$ be a polynomial over F. Since F is real closed, we can write $f(x) = a\Pi(x-b_j)\{(x-c_i)^2 + d_i^2\}$. By the fact $g_F(\sigma) = g_F(\tau)$, the signatures of $x - b_j$ with respect to σ and τ coincide. Hence it is clear that $\sigma = \tau$.

Next we show that g_F is surjective. Let (C, D) be any cut of F. We must show that there exists $\sigma \in X$ such that $g_F(\sigma) = (C, D)$.

Case 1. Assume that $(C, D) = (F, \phi)$ (resp. $(C, D) = (\phi, F)$). Let σ be the ordering of F(x) where x (resp. -x) is infinitely large. Then it is clear that $g_F(\sigma) = (C, D)$.

Case 2. Assume that there exists $c_0 := \max C$ (resp. $d_0 := \min D$). Put $y = (x - c_0)^{-1}$ (resp. $y = (d_0 - x)^{-1}$) and let σ be the ordering of F(x) = F(y) for which y is infinitely large. Then we can readily see that $g_F(\sigma) = (C, D)$.

Case 3. Assume that (C, D) is a proper cut. For any monic polynomial f(x), we can write $f(x) = \Pi(x-b_j)\{(x-c_i)^2 + d_i^2\}$. Let S be the set of all monic polynomials $f(x) = \Pi(x-b_j)\{(x-c_i)^2 + d_i^2\}$ such that the number of elements in the set $\{j; b_j \in D\}$ is even. We put $S_1 = \{af(x); a \text{ is a positive element of } F$ and $f(x) \in S\}$ and $S_2 = \{af(x); a \text{ is a negative element of } F$ and f(x) is a monic polynomial which is not contained in $S\}$. Put $P := \{f_1(x)/f_2(x); f_1(x), f_2(x) \in S_1 \cup S_2\}$. It is easy to show that P is a multiplicative subgroup of $\dot{F}(x)$ of index 2. We remark that for a polynomial f(x), the following statements are equivalent:

(1) $f(x) \in S_1 \cup S_2.$

(2) there exists an element $c \in C$ such that f(c') > 0 for any $c' \in C$, c < c'. By the above remark, $S_1 \cup S_2$ is additively closed and so is P. Hence there is an ordering $\sigma \in X$ such that the positive cone of σ is P. Now it is clear that $g_F(\sigma) = (C, D)$. Q. E. D.

338

REMARK 1.3. Even if F is not real closed, g_F is surjective. In fact, let K be a real closure of F. For any cut (C, D) of F, we put $C' = \{b \in K; b \leq c \text{ for some } c \in C\}$ and $D' = K \setminus C'$. By Theorem 1.2, there exists an ordering σ of K(x) such that $g_K(\sigma) = (C', D') \in C_K$. It is clear that $g_F(\sigma | F) = (C, D)$, where $\sigma | F$ is the restriction of σ to F, and so g_F is surjective.

PROPOSITION 1.4. Let F be a real closed field. Then F is cofinal in $(F(x), \sigma)$ if and only if $g_F(\sigma)$ is a proper cut of F.

PROOF. First we assume that $g_F(\sigma)$ is not a proper cut of F. By case 1 and case 2 in the proof of Theorem 1.2, it is clear that F is not cofinal in $(F(x), \sigma)$. Next we assume that $g_F(\sigma):=(C, D)$ is a proper cut of F. First we show that for any $f(x) \in S_1 \cup S_2$ (S_1, S_2 were defined in the proof of Theorem 1.2), there exist elements $a, b \in F$ such that 0 < a < f(x) < b. Let e be the absolute value of the leading coefficient of f(x). Then f(x)/e is a product of polynomials, $x-c, c \in C$, $d-x, d \in D$, and $(x-c)^2 + d^2$. So we may assume that $f(x) = x-c, c \in C, f(x) = d-x, d \in D$, or $f(x) = (x-c)^2 + d^2$.

Case 1. Suppose f(x)=x-c, $c \in C$. Let $c_1 \in C$ with $c < c_1$ and $c_2 \in D$. Then we have $0 < c_1 - c < f(x) = x - c < c_2 - c$.

Case 2. Suppose f(x)=d-x, $d \in D$. Let $c_1 \in C$ and $c_2 \in D$ with $c_2 < d$. Then we have $0 < d - c_2 < f(x) = d - x < d - c_1$.

Case 3. Suppose $f(x)=(x-c)^2+d^2$. By case 1 and case 2, there exists an element c_3 with $(x-c)^2 < c_3$. Then $0 < d^2 < (x-c)^2 + d^2 < c_3 + d^2$.

Now we must show that F is cofinal in $(F(x), \sigma)$. Let α be any positive element of F(x). By the proof of Theorem 1.2, we can see that the positive cone of σ is $\{f_1(x)/f_2(x); f_1(x), f_2(x) \in S_1 \cup S_2\}$. So we can write $\alpha = f_1(x)/f_2(x)$ for some $f_1(x), f_2(x) \in S_1 \cup S_2$. By the above argument, there exist $a, b \in F$ such that $0 < a < f_2(x)$ and $0 < f_1(x) < b$ and we have $\alpha = f_1(x)/f_2(x) < b/a$. This shows that F is cofinal in F(x).

LEMMA 1.5. Let E and F be subfields of a field L. Let σ and τ be orderings of the composite field EF. Suppose that $E/(E \cap F)$ is an algebraic extension and $\sigma | E = \tau | E, \sigma | F = \tau | F$. Then we have $\sigma = \tau$.

PROOF. Suppose $\sigma \neq \tau$. Then there exists an element $\alpha \in EF$ such that $\alpha > 0(\sigma)$ and $\alpha < 0(\tau)$. We may assume that $\alpha \in F(e_1, ..., e_n)$ for some $e_1, ..., e_n \in E$. We put $N = (E \cap F)(e_1, ..., e_n)$. Then $N/(E \cap F)$ is a finite extension and NF contains α . Let σ_1 and τ_1 be the restrictions of σ and τ to NF respectively. The fact $\alpha \in NF$ implies $\sigma_1 \neq \tau_1$. These observations show that we may assume $E/(E \cap F)$ is a finite extension. We put $E = (E \cap F)(\theta)$. Let f(x) and g(x) be the minimal polynomials fo θ over $E \cap F$ and F respectively. Let K be a real closure of the ordered field $(F, \sigma | F)$ and let K' be the algebraic closure of $E \cap F$ in K. It is well

known that K' is a real closure of $E \cap F$. Let α_1 and α_2 be the roots of g(x) in K such that orderings σ and τ are canonically induced by injections $f_i: F(\theta) \to F(\alpha_i)$ $\subset K, f_i(\theta) = \alpha_i, i = 1, 2$, respectively (cf. [3], Chapter 3, §2). Then the orderings $\sigma \mid E$ and $\tau \mid E$ are canonically induced by the injections $h_i: E = (E \cap F) (\theta) \to (E \cap F)$ $(\alpha_i) \subset K', h_i(\theta) = \alpha_i, i = 1, 2$, respectively. So the assumption $\sigma \mid E = \tau \mid E$ implies $\alpha_1 = \alpha_2$, and this shows $\sigma = \tau$. Q. E. D.

Let F be an ordered field and F(x, y) be an extension field of F where x, y are variables. Let σ and τ be orderings of F(x, y) which are extensions of the ordering of F such that $F < x(\sigma)$, $F(x) < y(\sigma)$, $F < y(\tau)$ and $F(y) < x(\tau)$. Then $F < x(\sigma | F(x))$ and $F < x(\tau | F(x))$. So we have $\sigma | F(x) = \tau | F(x)$ and similarly we have $\sigma | F(y) =$ $\tau | F(y)$. From the fact that $x < y(\sigma)$ and $y < x(\tau)$, it follows that $\sigma \neq \tau$. So in Lemma 1.5, the assumption that $E/(E \cap F)$ is an algebraic extension is essential.

THEOREM 1.6. Let K be a real closure of an ordered field F and Y be the set of all orderings of K(x). For $\tau \in Y$, we let $\psi(\tau)$ be the restriction of τ to F(x). Then the map $\psi: Y \rightarrow X$ is bijective.

PROOF. First we show that ψ is surjective. Let σ be any element of X and L be a real closure of $(F(x), \sigma)$. The algebraic closure of F in L is a real closure of F, and so we can identify it with K. It is clear that $x \in L$ is transcendental over K. Let τ be the restriction of the ordering of L to K(x). Then it is easily shown that $\psi(\tau) = \sigma$, and so ψ is surjective. By Lemma 1.5, it is clear that ψ is injective.

Q. E. D.

As a corollary of Theorem 1.2 and Theorem 1.6, we have Theorem 5 in [1]. We also have the following corollary.

COROLLARY 1.7. Let F be a real closed field. Then the following statements hold:

(1) Let $(F(x), \sigma)$ and $(F(y), \tau)$ be ordered fields where x and y are variables. If $\{a \in F; a < x(\sigma)\} = \{a \in F; a < y(\tau)\}$, then the isomorphism $h: F(x) \rightarrow F(y)$, defined by h(x) = y, is an order preserving isomorphism.

(2) Let σ and τ be orderings of F(x). If there exist elements y, z of F(x) so that F(x) = F(y) = F(z) and $\{a \in F; a < y(\sigma)\} = \{a \in F; a < z(\tau)\}$, then $(F(x), \sigma)$ and $(F(x), \tau)$ are isomorphic as ordered fields.

§2. Ordered fields of finite rank

In this section, we assume that F is a real closed field of finite rank (cf. [2], Definition 1.1). Take an ordering $\sigma \in X$ and suppose that F is cofinal in $(F(x), \sigma)$ and rank $(F(x), \sigma) = \operatorname{rank} F + 1$ (as for the existence of such an ordering, see Remark 2.1). We fix this ordering $\sigma \in X$. Since rank $(F(x), \sigma) = \operatorname{rank} F + 1$,

Cuts of ordered fields

there exist convex valuation rings B_1 , B_2 of F(x) such that $B_1 \neq B_2$ and $B_1 | F = B_2 | F$ and the valuation rings B_1 and B_2 are overrings of A(F(x), Q) (cf. [2]). So we may assume that $B_1 \subset B_2$. We put $A := B_1 | F = B_2 | F$. We denote the maximal ideals, the groups of units, the valuations and the value groups of A, B_1 and B_2 by (A, M, U, v, G), $(B_1, M_1, U_1, v_1, G_1)$ and $(B_2, M_2, U_2, v_2, G_2)$ respectively. We denote by $h: G_1 \rightarrow G_2$ the canonical surjection. H := Ker h is the convex subgroup $v_1(U_2)$ of G_1 corresponding to the prime ideal M_2 of B_1 . There are canonical injections $h_1: G \rightarrow G_1$ and $h_2: G \rightarrow G_2$. It is clear that $hh_1 = h_2$, and we identify $h_1(G)$ and $h_2(G)$ with G.

REMARK 2.1. Let R(x, y) be an extension field of R, the field of real numbers, where x, y are variables. Let τ be an ordering of R(x, y) such that $R < x(\tau)$ and $R(x) < y(\tau)$. Let L be a real closure of $(R(x, y), \tau)$, K be the algebraic closure of R(y) in L and $\sigma := \tau | K(x)$. Then for any element z of K(x), we have $z < y^n$ for some positive integer n, since the set $\{y^n; n=1, 2,...\}$ is cofinal in L. This implies K is cofinal in K(x). Next we show that rank $K(x) = \operatorname{rank} K + 1$. In general, for an ordered field N of finite rank, the following assertions hold (cf. [2], Proposition 1.2):

(1) Let N_1/N be an algebraic extension of ordered fields. Then rank $N_1 = \operatorname{rank} N$.

(2) rank $N(x) = \operatorname{rank} N + 1$, where N(x)/N is a simple transcendental extension of ordered fields such that x is infinitely large.

By the above assertions, we have rank L=2 and rank K=1. Since L/K(x) is an algebraic extension, rank $K(x)=2=\operatorname{rank} K+1$.

LEMMA 2.2. There exists an element $b \in F$ such that $v_1(x-b)$ is not contained in G.

PROOF. Suppose to the contrary that $v_1(x-b) \in G$ for any $b \in F$. Let f(x) be any monic irreducible polynomial of F[x]. Since F is real closed, deg $f(x) \leq 2$. If deg f(x) = 2, then we can write $f(x) = (x+a)^2 + b^2$, $b \neq 0$. If $v_1(x+a) \neq v_1(b)$, then $v_1(f(x)) = \min(v_1((x+a)^2), v_1(b^2))$. If $v_1(x+a) = v_1(b)$, then $v_1(f(x)) = v_1((x+a)^2) = v_1(b^2)$ since B_1/M_1 is formally real. So we have $v_1(f(x)) \in G$. This shows that the value of any irreducible polynomial of F[x] is contained in G. This contradicts the fact $G \neq G_1$. Q. E. D.

LEMMA 2.3. Take an element $b \in F$ so that $e := v_1(x-b) \oplus G$. Then $G_1 = G \oplus \mathbb{Z}e$.

PROOF. Since G is divisible ([2], Proposition 1.7), it is clear that $\mathbb{Z}e \cap G = \{0\}$. Let α be any polynomial of F[x]. We can write $\alpha = a_n(x-b)^n + \cdots + a_1(x-b) + a_0$. Since $\mathbb{Z}e \cap G = \{0\}$, the values $v_1(a_i(x-b)^i)$, $i=0,\ldots,n$, are different from each other. So $v_1(\alpha) = v_1(a_i(x-b)^i)$ for some i and we have $v_1(\alpha) \in G + \mathbb{Z}e$.

Daiji Кіліма

This implies $G_1 = G \oplus Ze$.

PROPOSITION 2.4. $G_2 = G$, $H \cong \mathbb{Z}$ and $G_1 = G \oplus H$ (the ordering of $G \oplus H$ is lexicographic).

PROOF. By Lemma 2.3, G_1/G is isomorphic to Z. Since $H \cap G = \{0\}$, H is isomorphic to (G+H)/G which is a subgroup of G_1/G . Hence we have $H \cong Z$. The fact $G_1/G \cong Z$ also shows that $G_1/(G+H) \cong Z/nZ$ for some n > 0. Since G_2/G is isomorphic to $G_1/(G+H)$, G_2/G is a torsion group. On the other hand, by [2], Proposition 1.7, G is divisible, and so G_2/G is torsion free. This implies n=1, and $G_2=G$. Now it is clear that $G_1=G \oplus H$ and the ordering of $G \oplus H$ is lexicographic. Q. E. D.

The proof of the following Proposition 2.5 is similar to that of Proposition 2.4 and we omit it.

PROPOSITION 2.5. Let τ be an element of X. Suppose that F is not cofinal in $(F(x), \tau)$. Then $B := \{b \in F(x); b < a(\tau) \text{ for some } a \in F\}$ is a non-trivial valuation ring of F(x) and B is compatible with respect to τ .

Let v_B be the valuation of B. Then v_B is trivial on F and the value group of v_B is isomorphic to Z. Moreover there exists $b \in F$ such that $v_B(x-b)$ is a generator of this value group.

In the situation of Proposition 2.5, there exists an element y of F(x) such that y is a change of variable (i.e. F(x)=F(y)) and $v_B(y)=-1$, $y>0(\tau)$. Then it is clear that $F < y(\tau)$.

Let τ_1 and τ_2 be elements of X and suppose that F is not cofinal in F(x) with repect to τ_1 and τ_2 . Then by the above argument, there exist y_1 and y_2 such that $F(x)=F(y_1)=F(y_2)$ and $F < y_1$ (τ_1), $F < y_2$ (τ_2). So $(F(x), \tau_1)$ and $(F(x), \tau_2)$ are isomorphic as ordered fields by Corollary 1.7.

PROPOSITION 2.6. For $\tau \in X$, if $g(\tau)$ is proper archimedean, then rank $(F(x), \tau)$ = rank F.

PROOF. Let F_c be the completion of F (cf. [2], Definition 2.5). By [2] Proposition 1.3, rank $F = \operatorname{rank} F_c$. Since F is real closed, $y := g(\tau) \in F_c$ is transcendental over F. Let μ be the ordering of F(y) induced by the ordering of F_c . Then $\{a \in F; a < y(\mu)\} = C$ where $(C, D) = g(\tau)$. By Cororally 1.7, $(F(x), \tau)$ and $(F(y), \mu)$ are isomorphic as ordered fields. So we have rank $(F(x), \tau) = \operatorname{rank} (F(y), \mu) = \operatorname{rank} F$. Q. E. D.

§3. Maximal ordered fields and cuts

In this section, we assume that F is a real closed field of rank n. Let

342

Q. E. D.

 $A(F, Q) = A_1 \subset \cdots \subset A_n \subset A_{n+1} = F$ be the convex valuation rings of F and v_i be the valuations of A_i , i = 1, ..., n.

DEFINITION 3.1. For a cut (C, D) of F, we put $M(C, D) := \{x \in F; \pm x \in C \text{ or } \pm x \in D\}$ and $\dot{M}(C, D) := M(C, D) \setminus \{0\}$.

If $C = F^- := \{a \in F; a < 0\}$, then $M(C, D) = \{0\}$. For any cut (C, D), it is clear that $0 \in M(C, D)$.

PROPOSITION 3.2. Let (C, D) be a cut of F and v be a compatible valuation of F. Then $g' \leq g$ for any $g \in v(\dot{M}(C, D))$ and $g' \in v(\dot{F} \setminus \dot{M}(C, D))$. In particular, the set $v(\dot{M}(C, D)) \cap v(\dot{F} \setminus \dot{M}(C, D))$ consists of at most one element.

PROOF. First we remark that if $a \in \dot{M}(C, D)$ and 0 < b < a then $-a \in \dot{M}(C, D)$ and $b \in \dot{M}(C, D)$. There exist elements $a \in \dot{M}(C, D)$ and $b \in \dot{F} \setminus \dot{M}(C, D)$ such that v(a)=g and v(b)=g'. By the above remark, we may assume $0 < a \le b$. Since v is compatible, $v(b) \le v(a)$ and so $g' \le g$. Q. E. D.

DEFINITION 3.3. For i = 1, ..., n we put $T_i = \{(C, D) \text{ a proper cut of } F; v_i(\dot{M}(C, D)) \cap v_i(\dot{F} \setminus \dot{M}(C, D)) = \phi$ and $\min v_i(\dot{M}(C, D))$ or $\max v_i(\dot{F} \setminus \dot{M}(C, D))$ exists}. If $(C, D) \in T_i$, then we denote $\min v_i(\dot{M}(C, D))$ or $\max v_i(\dot{F} \setminus \dot{M}(C, D))$ by $\alpha(v_i, (C, D))$.

If $(C, D) \in T_i$, then it is clear that $v_i^{-1}(v_i(\dot{M}(C, D))) = \dot{M}(C, D)$, and we can show that M(C, D) is a fractional ideal of A_i . For a cut (C, D) and an element $a \in F$, we put $C + a = \{c + a, c \in C\}$ and $D + a = \{d + a, d \in D\}$. It is clear that (C + a, D + a) is a cut of F.

DEFINITION 3.4. For i=1,...,n, we put $W_i := \{(C+a, D+a); (C, D) \in T_i, a \in F\}$ and we let W_{n+1} be the set of all non-proper cuts of F.

PROPOSITION 3.5. Let (C, D) be a cut of F which belongs to some T_i . For an element $y \in F$, the following statements are equivalent:

- (1) $y \in M(C, D)$.
- (2) (C, D) = (C + y, D + y).

PROOF. (1) \Rightarrow (2): Let y be any element of M(C, D). First we assume that $0 \in C$; in this case $M(C, D) \subset C$. Suppose $C+y \neq C$. There are two cases $C+y \supset C$ and $C+y \subset C$. Replacing y by -y if necessary, we may assume that $C+y \supset C$. Then there exists an element $c \in C$ such that 0 < c and $c+y \in D$. Since $c \in M(C, D)$ and M(C, D) is additively closed, $c+y \notin D$, a contradiction. As for the case $0 \in D$, the assertion can be proved similarly.

(2) \Rightarrow (1): Suppose C+y=C. If $0 \in C$, then y and -y are contained in C. So $y \in M(C, D)$. If $0 \notin C$, then $0 \in D$, and the fact D+y=D also implies $y \in M(C, D)$. Q. E. D.

Daiji Кілма

PROPOSITION 3.6. $\bigcup_{i=1}^{n} W_i$ is a disjoint union.

PROOF. Suppose to the contrary that there exists a cut $(C, D) \in W_i \cap W_j$ for some $i \neq j$. We may assume i < j. There exist cuts $(C_i, D_i) \in T_i$ and $(C_j, D_j) \in T_j$ such that $(C, D) = (C_i + c_i, D_i + c_i) = (C_j + c_j, D_j + c_j)$ for some $c_i, c_j \in F$. It is clear that $\{a \in F; C_i + a = C_i\} = \{a \in F; C + a = C\}$ and so we have $\{a \in F; C_i + a = C_i\} = \{a \in F; C_j + a = C_j\}$. Let H be the kernel of the canonical surjection $G_i \rightarrow G_j$ (cf. §2). We fix an element $0 < \beta \in H$. There exist elements s and s'such that 0 < s, 0 < s' and $v_i(s) = \alpha(v_i, (C_i, D_i)) - \beta, v_i(s') = \alpha(v_i, (C_i, D_i)) + \beta$. Since $v_i(s) \in v_i(F \land \dot{M}(C_i, D_i))$ and $v_i(s') \in v_i(\dot{M}(C_i, D_i))$, we have $s \notin M(C_i, D_i)$ and $s' \in M(C_i, D_i)$. By Proposition 3.5, $C_i + s' = C_i$ and $C_i + s \neq C_i$ and so by the fact $\{a \in F; C_i + a = C_i\} = \{a \in F; C_j + a = C_j\}$, we have $C_j + s' = C_j$ and $C_j + s \neq C_j$. On the other hand, since $v_j(s) = v_j(s')$, we can see that $s \in M(C_j, D_j)$ if and only if $s' \in M(C_j, D_j)$. Hence by Proposition 3.5, $C_j + s' = C_j$ if and only if $C_j + s = C_j$. This is a contradiction. Q. E. D.

For σ , $\tau \in X$, we write $\sigma \sim \tau$ if $(F(x), \sigma)$ is F-isomorphic to $(F(x), \tau)$ as ordered fields. We can easily show that \sim is an equivalence relation in X. We put $X_1 = \{\sigma \in X; \operatorname{rank} (F(x), \sigma) = n+1\}$. Then X_1 is a union of equivalence classes. We can define the equivalence relation in C_F which is canonically induced by the bijection $g: X \rightarrow C_F$. We denote it by the same symbol \sim . By Proposition 1.4 and the argument after Proposition 2.5, W_{n+1} is an equivalence class of C_F .

PROPOSITION 3.7. Let (C, D) and (C', D') be any cuts of F with belong to the set W_i for some i=1,...,n. Then $(C, D) \sim (C', D')$.

PROOF. Let σ be the element of X such that $g(\sigma) = (C, D)$. By Corollary 1.7, it is sufficient to show that there exists an element y of F(x) such that F(x) = F(y)and $\{d \in F; d < y(\sigma)\} = C'$. If C' = C + a for some a, then we put y = x + a. It is clear that y satisfies the desired condition. So we may assume that (C, D)and (C', D') are contained in T_i . We suppose, for example, that $M(C, D) \subset C$, $M(C', D') \subset C'$ and $\alpha(v_i, (C, D)) = \min v_i(\dot{M}(C, D))$, $\alpha(v_i, (C', D')) = \max v_i(\dot{F} \land \dot{M}(C, D))$ (in the other cases, the assertions can be proved similarly). Let a and b be elements of F such that a > 0, b > 0, $v_i(a) = \alpha(v_i, (C, D))$ and $v_i(b) = \alpha(v_i, (C', D'))$. We put y = ab/x. Let d be a positive element of F and suppose $d < y(\sigma)$. Then ab/d > x, and so $v_i(ab/d) < \alpha(v_i, (C, D))$. This implies $v_i(d) > \alpha(v_i, (C', D'))$, hence $d \in M(C', D') \subset C'$. These observations show that $\{d \in F; d < y(\sigma)\} \subset C'$. The converse inclusion is proved similarly. Q. E. D.

DEFINITION 3.8. For $\sigma \in X_1$, let $B_1 \subset B_2 \subset \cdots \subset B_{n+2} = F(x)$ be the convex valuation rings of F(x) (with respect to σ). Then there exists a unique number j $(j=1,\ldots, n+1)$ such that $B_j \cap F = B_{j+1} \cap F = A_j$. We put $N(\sigma) = j$. It is clear that for $\sigma, \tau \in X_1$, if $\sigma \sim \tau$, then $N(\sigma) = N(\tau)$.

THEOREM 3.9. The map $N: X_1/\sim \rightarrow \{1, ..., n+1\}$ is bijective, where X_1/\sim means the set of equivalence classes in X_1 .

PROOF. First we show that N is surjective. We fix a number j, j = 1, ..., n + 1. Let $C = F^- \cup A_i$ and $D = F \setminus C$. Then, since A_i is convex, (C, D) is a cut of F. Let σ be the ordering of F(x) such that $g(\sigma) = (C, D)$ and let k_i be a maximal subfield of A_i . We put $B = A((F(x), \sigma), k_i)$. It is clear that B is a convex valuation ring of F(x) with respect to σ . By [2], Proposition 1.5, $A(F, k_i) = A_i$. This implies that $B \cap F = A_j$. We put $B' = \{a \in F(x); |a| < x^n(\sigma) \text{ for some positive} \}$ integer n}. From the facts $k_i \subset A_i \subset C < x(\sigma)$, and $x \in B' \setminus B$, it follows that $B \subset B'$ and $B \neq B'$. We show that B' is a convex valuation ring of F(x) with respect to σ and $B' \cap F = A_i$. By the definition of B', it is clear that B' is a convex subset of F(x) with respect to σ and B' is multiplicatively closed. Let c and d be any elements of B'. Then there exist positive integers s and t such that $|c| < x^s$ and We may assume $s \leq t$. We have $|c+d| \leq |c|+|d| < x^s + x^t \leq 2x^t < x^{t+1}$. $|d| < x^t$. This shows that $c + d \in B'$. Thus B' is additively closed and so B' is a subring of F(x). Since B' is an overring of B, B' is a valuation ring. Let b be a positive element of $B' \cap F$. Then $b < x^n$ for some *n* and so $0 < b^{1/n} < x$ (note that *F* is real closed). This implies $b^{1/n} \in F^+ \cap C = A_i$, where F^+ is the set of all positive elements of F. Thus $b \in A_j$, and we have $B' \cap F = A_j$. This shows that $\sigma \in X_1$, $N(\sigma) = j$ and therefore N is surjective.

Next we show that N is injective. Let σ , τ be elements of X_1 such that $N(\sigma) = N(\tau) = j$. Let $B_1 \subset B_2 \subset \cdots \subset B_{n+2} = F(x)$ be the convex valuation rings of F(x) with respect to σ . By Definition 3.8, $B_i \cap F = B_{i+1} \cap F = A_i$. Let v_i , v'_{j} and v'_{j+1} be the valuations of A_{j} , B_{j} and B_{j+1} respectively, and G_{j} , G'_{j} and G'_{j+1} be the value groups of v_j , v'_j and v'_{j+1} respectively. By Proposition 2.4, $G'_{i+1} = G_i$ and $G'_i \cong G_i \oplus Z$ (the ordering of $G_i \oplus Z$ is lexicographic). By Lemma 2.2 and Lemma 2.3, there exists an element b of F such that $v'_i(x-b) = (g, \pm 1)$, $g \in G_j$. By a suitable change of variable, $x_1 = a/(x-b)$ or $x_1 = a(x-b)$, we can find an element x_1 of F(x) such that $x_1 > 0(\sigma)$, $v'_i(x_1) = (0, -1)$ and $F(x) = F(x_1)$. Let a be an element of F such that $|a| < x_1(\sigma)$. Then $v'_i(a) > v'_i(x_1)$ (note that v'_j is compatible with respect to σ and $v'_j(x_1) = (0, -1) \oplus G_j$). This shows that $v_j(a) \ge 0$, and so $a \in A_j$. Conversely we can prove $\{a \in F; |a| < x_1(\sigma)\} \supset A_j$, and so we have $\{a \in F; |a| < x_1(\sigma)\} = A_i$. Similarly there exists an element x_2 of F(x) such that $x_2 > 0(\tau)$, $F(x) = F(x_2)$ and $\{a \in F; |a| < x_2(\tau)\} = A_j$. By Corollary 1.7, this shows that the isomorphism $f: F(x) \rightarrow F(x)$, defined by $f(x_1) =$ $f(x_2)$, gives an order preserving isomorphism between $(F(x), \sigma)$ and $(F(x), \tau)$. Thus we have $\sigma \sim \tau$. Q. E. D.

For j=1,..., n+1, let Y_j be the equivalence class of X_1 such that $N(Y_j)=j$. It is clear that Y_{n+1} is the set of orderings $\tau \in X$ such that F is not cofinal in F(x) with respect to τ and $g(Y_{n+1})=W_{n+1}$.

Diaji Кілма

THEOREM 3.10. For any j, j=1,...,n, $g(Y_j)=W_j$. In particular, W_j , j=1,...,n, is an equivalence class of C_F .

PROOF. We fix a number j, j=1,...,n. By Proposition 3.7, it is sufficient to show that $g(Y_j) \subset W_j$. Let σ be any element of Y_j . We use the notation in the proof of Theorem 3.9, and we put $C = F^- \cup A_j$, $D = F \frown C$. Then $C = \{c \in F; c < x_1(\sigma)\}$; here the element x_1 satisfies the conditions that $x_1 > 0(\sigma), v'_j(x_1) = (0, -1)$ and $F(x) = F(x_1)$. It is clear that $M(C, D) = A_j$, and so $v_j(\dot{M}(C, D)) = \{g \in G_j; 0 \le g\}$ and $v_j(\dot{F} \frown \dot{M}(C, D)) = \{g \in G_j; 0 > g\}$.

We can write $x_1 = a/(x-b)$ or $x_1 = a(x-b)$ (see the proof of Theorem 3.9). Hence $x = a/x_1 + b$ or $x = x_1/a + b$. We put y = x - b ($y = a/x_1$ or $y = x_1/a$), and $C' = \{c \in F; c < y(\sigma)\}, D' = F \\ C'$. Then we can easily show that if $y = x_1/a$, then $v_j(\dot{M}(C', D')) = \{g \in G_j; -v(a) \le g\}, v_j(\dot{F} \\ \dot{M}(C', D')) = \{g \in G_j; -v(a) > g\},$ and if $y = a/x_1$, then $v_j(\dot{M}(C', D')) = \{g \in G_j; v(a) < g\}, v_j(\dot{F} \\ \dot{M}(C', D')) = \{g \in G_j; v(a) \ge g\}.$ This shows $(C', D') \in T_j$, and so $g(\sigma) = (C' + b, D' + b) \in W_j$. Q. E. D.

By Proposition 2.6, any proper archimedean cut is not contained in $\bigcup_{i=1}^{n+1} W_i$.

THEOREM 3.11. For a real closed field F of rank n, the following statements are equivalent:

- (1) F is a maximal ordered field of rank n.
- (2) $C_F = \bigcup_{j=1}^{n+1} W_j$.

PROOF. (1) \Rightarrow (2): Let (C, D) be any proper cut of F and $\sigma \in X$ be an ordering such that $g(\sigma) = (C, D)$. Since F is a maximal ordered field of rank n, we have rank $(F(x), \sigma) = n+1$. So by Theorem 3.10, $g(\sigma) \in W_j$ for some j = 1, ..., n.

(2) \Rightarrow (1): By [2], Proposition 2.10, it is sufficient to show that rank (F(x), σ) = n+1 for any $\sigma \in X$. If $g(\sigma)$ is not proper, then F is not cofinal in (F(x), σ) by Proposition 1.4. This shows that A(F(x), F) is a proper valuation ring of F(x), and so rank ($F(x), \sigma$) = n+1. If $g(\sigma)$ is proper, then $g(\sigma) \in W_j$, for some j = 1, ..., n. By Theorem 3.10, $\sigma \in Y_j \subset X_1$, and so rank ($F(x), \sigma$) = n+1. Q. E. D.

EXAMPLE 3.12. Let $(\mathbf{R}(x), \sigma)$ be the ordered field such that $\mathbf{R} < x$. Let F be a real closure of $(\mathbf{R}(x), \sigma)$. Since rank $\mathbf{R}(x) = 1$ and $F/\mathbf{R}(x)$ is an algebraic extension, we have rank F = 1. Therefore there exists a unique compatible valuation v of F. Let v' be the restriction of v to $\mathbf{R}(x)$ and G, G' be the value groups of v and v' respectively. By Proposition 2.5, G' is isomorphic to Z. Since $F/\mathbf{R}(x)$ is an algebraic extension, G/G' is a torsion group and by [2], Proposition 1.7, G is divisible. So G is isomorphic to Q, the field of rational numbers. Let $C = F^- \cup \{a \in F; v(a) > 2^{1/2}\}$ and $D = F \sim C$. Then (C, D) is a cut of F and $v(\dot{M}(C, D)) = \{r \in Q; 2^{1/2} < r\}$. Choose $e \in C$

F, e > 0 such that v(e) = 2. Then for any $d \in D$ and $c \in C$, c > 0, we have v(d-c) = v(d) < v(e) = 2 (note that $c \in M(C, D)$ and so v(c) > v(d)). This shows that d-c > e; therefore (*C*, *D*) is not archimedean. We show that (*C*, *D*) is not contained in $W_1 \cup W_2$. It is clear that (*C*, *D*) is proper, and so (*C*, $D) \notin W_2$. It is sufficient to show that (C+b, D+b) is not contained in T_1 for any $b \in F$. If $v(b) > 2^{1/2}$, then for any $d \in D$, $v(d+b) = v(d) < 2^{1/2}$ and for any $0 < c \in C$, $v(c+b) > 2^{1/2}$. This shows that $(C+b, D+b) = (C, D) \notin T_1$, since neither min $v(\dot{M}(C, D))$ nor max $v(\dot{F} \setminus \dot{M}(C, D))$ exists. If $v(b) < 2^{1/2}$, then we can easily show that min $v(\dot{M}(C+b, D+b)) = \max v(\dot{F} \setminus \dot{M}(C+b, D+b)) = v(b)$. This shows that $(C+b, D+b) = \exp(i(C+b, D+b)) = v(b)$. This shows that $(C+b, D+b) = \exp(i(C+b, D+b)) = v(b)$. This shows that (C+b, D+b) = i(C+b, D+b) = v(b). This shows that (C+b, D+b) = i(C+b, D+b) = v(b). This shows that (C+b, D+b) = i(C+b, D+b) = v(b). This shows that (C+b, D+b) = i(C+b, D+b) = i(C+b, D+b) = v(b). This shows that (C+b, D+b) = i(C+b, D+b) = i(C+b, D+b) = v(b). This shows that (C+b, D+b) = i(C+b, D+b) = i(C+b

References

- R. Gilmer, Extension of an order to a simple transcendental extension, Contemporary Math. 8 (1982), 113-118.
- [2] D. Kijima and M. Nishi, Maximal ordered fields of rank n, Hiroshima Math. J. 17 (1987), 157–167.
- [3] W. Scharlau, Quadratic and hermitian forms, Grundlehren der mathematischen Wissenschaften 270, Springer-Verlag, 1985.

Faculty of Engineering, Kinki University (Kure)