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We denote an ordered field by (F, σ) or simply F, where σ is an ordering of a
field F. For ordered fields (F, σ) and (K, τ), we say that K/F is an extension of
ordered fields if K/F is an extension of fields and τ is an extension of σ. In this
paper, F(x) always means a simple transcendental extension of F. A pair (C, D)
of subsets of F is called a cut of F if C U D = F and c < d for any c e C and deD.
Let (F(x), τ)/(F, σ) be an extension of ordered fields. Then g(τ): = (C, D), where
C={αeF; a<x} and D = {αeF; a>x}9 is a cut of F. If F is a real closed
field, then g is a bijective map from the set of all orderings of F(x) to the set of
all cuts of F (Theorem 1.2). In [2], we defined the rank of an ordered field and
we said that an ordered field F is a maximal ordered field of rank n if rank F = n
and for any proper extension K/F of ordered fields, rank K>n.

Let F be a real closed field of finite rank n and let A± a• •• aAnciAn+ ί =F be
the compatible valuation rings of F. In this paper, we define the subsets Wh

i = l,..., n + 1, of the set of all cuts of F (Definition 3.4) and show that for an
ordering τ of F(x), the following statements are equivalent (Theorem 3.10):

(1) g(τ)eWt.
(2) There exist distinct convex valuation rings B and B' of F(x) with respect

to τ such that B Π F = B' n F = A^
As a corollary of the above assertion, we have the following statement:

rank(F(x), τ) = rankF+l if and only if g(τ)e WJfίί Wt. In particular, F is a
maximal ordered field if and only if any cut of F is contained in Wfί/ Wt.

§ 1. Real closed fields and cuts

Let F be an ordered field. If C and D are subsets of F, we write C<D if
c < d for all c e C, d e D. If a e F, then we write C < a or a < D instead of C < {a}
or {a} <D, respectively. A pair (C, D) of subsets of F is called a cut of F if F =
C U D and C<D. We regard (F, φ) and (</>, F) as cuts of F. Throughout this
paper, we denote by X the set of orderings σ of F(x) where (F(x), σ)/F is an
extension of ordered fields. Let CF be the set of all cuts of F. We define the map
gF: X^CFbygF(σ) = (C, D\ where C = {ceF; c<x(σ)} and D = {deF; x<d(σ)}\
here we write a < b(σ) if a < b with respect to the ordering σ. It is well known
that there is an ordering σεX such that F<x(σ) and it is uniquely determined
(cf. [1]). In this case, it is clear that gF(σ) = (F, φ).
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The following definition is stated in [2], Definition 2.1.

DEFINITION 1.1. Let (C, D) be a cut of an ordered field F.

(1) We say that (C, D) is proper if C and D are non-empty, C has no largest

element and D has no smallest element.

(2) We say that (C, D) is archimedean if for any eeF, e>0, there exist

elements c e C and d e D such that d — c<e.

Let K/F be an extension of ordered fields. We say that an element b e K

is infinitely large (with respect to F) if F < b. If there is no infinitely large element

in K, then we say that .F is cofinal in K.

The following Theorem 1.2 is stated in [1], Theorem 1, and we give a proof
as a preliminary step to §2 and §3.

THEOREM 1.2. If F is real closed, then the map gF: X^CF is bίjective.

PROOF. First we show that gF is injective. Let σ and τ be elements of X

such that gF(σ)=gF(τ). Let/(x)eF[x] be a polynomial over F. Since F is

real closed, we can write /(x) = 077(x —fty){(x —c^ + d?}. By the fact gF(σ) =

#F(τ), the signatures of x — bj with respect to σ and τ coincide. Hence it is clear

that σ = τ.

Next we show that gF is surjective. Let (C, D) be any cut of F. We must

show that there exists σeX such that </F(σ) = (C, D).

Case 1. Assume that (C, D) = (F, φ) (resp.(C, D) = (φ, F)). Let σ be the
ordering of F(x) where x (resp. — x) is infinitely large. Then it is clear that

gF(σ) = (C, D).
Case 2. Assume that there exists c0: = max C (resp. dQ: = min D). Put

y = (x — CoX^resp. y = (dQ — x)"1) and let σ be the ordering of F(x) = F(j/) for

which y is infinitely large. Then we can readily see that gF(σ) = (C, D).

Case 3. Assume that (C, D) is a proper cut. For any monic polynomial

/(x), we can write/(x) = /7(x-fey){(x-cί)
2 + ί/?} Let 5 be the set of all monic

polynomials f(x) = Π(x — ί?7 ){(x — C;)2 + d?} such that the number of elements

in the set {j; bjED} is even. We put S1 = {α/(x); α is a positive element of F

and/(x)eS} and S2 = {af(x); a is a negative element of F and/(x) is a monic

polynomial which is not contained in S}. Put F: = {/1(x)//2(x);/1(x),/2(x)e

Sx U S2} It is easy to show that P is a multiplicative subgroup of F(x) of index 2.

We remark that for a polynomial/(x), the following statements are equivalent:

(1) /(x^uS,.

(2) there exists an element ceC such that f(c')>0 for any c' e C, c<c'.

By the above remark, Sί U S2 is additively closed and so is P. Hence there is an

ordering σ e X such that the positive cone of σ is P. Now it is clear that gF(σ) =

(C, D). Q.E.D.
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REMARK 1.3. Even if F is not real closed, gF is surjective. In fact, let K
be a real closure of F. For any cut (C, D) of F, we put C' = {beK; b^c for
some ceC} and D' = K^ C. By Theorem 1.2, there exists an ordering σ of
K(x) such that gκ(σ) = (C, D')εCκ. It is clear that gF(σ \ F) = (C, D), where
σ IF is the restriction of σ to F, and so #F is surjective.

PROPOSITION 1.4. Let F be a real closed field. Then F is cofinal in (F(x), σ)
if and only if gF(σ) is a proper cut of F.

PROOF. First we assume, that gF(σ) is not a proper cut of F. By case 1 and
case 2 in the proof of Theorem 1.2, it is clear that F is not cofinal in (F(x), σ).
Next we assume that gF(σ): = (C, D) is a proper cut of F. First we show that for
any f(x)eSί U S2 (Sί9 S2 were defined in the proof of Theorem 1.2), there exist
elements a, bεF such that 0<α</(x)<fr. Let e be the absolute value of the
leading coefficient of f ( x ) . Then f(x)/e is a product of polynomials, x — c9 c e C,
d — x9deD9 and (x — c)2 + d2. So we may assume that f ( x ) = x — c9 ceC9 /(x) =

d-x9deD9 or/(x) = (*-<02 + d2.
Case 1. Suppose /(x) = x —c, ceC. Let cίeC with c<c^ and c2eD.

Then we have 0<cί— c<f(x) = x — c<c2 — c.
Case 2. Suppose f ( x ) = d — x9 deD. Let c1eC and c2eD with c2<d.

Then we have Q<d-c2<f(x) = d-x<d-cί.

Case 3. Suppose /(x) = (x —c)2 + d2. By case 1 and case 2, there exists an
element c3 with (x - c)2 < c3. Then 0 < d2 < (x - c)2 + d2 < c3 + d2.

Now we must show that F is cofinal in (F(x), σ). Let α be any positive
element of F(x). By the proof of Theorem 1.2, we can see that the positive cone

of σ is {/ι(x)//2(x) MX), /2 W e S1 U S2}. So we can write α =/ι(x)//2(x) for some
/x(x), f2(x)eSl U S2. Bv the above argument, there exist a9 beF such that
0<0</2(x) and 0</1(x)<fe and we have α=/1(x)//2(x)"<b/α. This shows
that F is cofinal in F(x). Q. E. D.

LEMMA 1.5. Let E and F be subfields of afield L. Let σ and τ be orderings
of the composite field EF. Suppose that E/(E fl F) is an algebraic extension and

σ\E = τ \ E 9 σ | F = τ |F. Then we have σ = τ.

PROOF. Suppose σ^τ. Then there exists an element αeEF such that
α>0(σ) and α<0(τ). We may assume that αeF(e1?..., en) for some el9...9 enεE.

We put JV = (E Π F)(eί9...9 en). Then N/(E n F) is a finite extension and NF con-

tains α. Let σί and τi be the restrictions of σ and τ to NF respectively. The

fact α e NF implies σx φτ±. These observations show that we may assume E/(E n

F) is a finite extension. We put E = (E n F) (0). Let/(x) and 0(x) be the minimal
polynomials fo θ over £ n F and F respectively. Let K be a real closure of the
ordered field (F, σ \ F) and let K' be the algebraic closure of E n F in K. It iw well
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known that Kf is a real closure of E Π F. Let ocί and α2 be the roots of g(x) in K

such that orderings σ and τ are canonically induced by injections/;: F(θ)-^F(oίi)

cK,f{θ) = ai9 ι = l, 2, respectively (cf. [3], Chapter 3, §2). Then the orderings
σ I E and τ | £ are canonically induced by the injections ht: £ = (£ n F) (#)->(£ n F)

(α^c^', /ιί(θ) = αί, ί = l,2, respectively. So the assumption σ\E = τ\E implies

α t =α2, and this shows σ = τ. Q. E. D.

Let F be an ordered field and F(x, y) be an extension field of F where x, >> are
variables. Let σ and τ be orderings of F(x, y) which are extensions of the ordering
of F such that F < x(σ), F(x) < y(σ), F < XT) and F(y) < x(τ). Then F < x(σ \ F(x))

and F < x(τ I F(x)). So we have σ \ F(x) = τ | F(x) and similarly we have σ | F(y) =
τ \ F ( y ) . From the fact that x<y(σ) and y<x(τ\ it follows that σ^τ. So in

Lemma 1.5, the assumption that E/(E Π F) is an algebraic extension is essential.

THEOREM 1.6. Let K be a real closure of an ordered field F and Y be the
set of all orderings of K(x). For τ e 7, we let \j/(τ) be the restriction of τ to F(x).

Then the map φ: Y-*X is bijective.

PROOF. First we show that ψ is surjective. Let σ be any element of X and

L be a real closure of (F(x), σ). The algebraic closure of F in L is a real closure of
F, and so we can identify it with K. It is clear that x e L is transcendental over K.

Let τ be the restriction of the ordering of L to K(x). Then it is easily shown that

^(τ) = σ) and so ψ is surjective. By Lemma 1.5, it is clear that ψ is injective.

Q.E.D.

As a corollary of Theorem 1.2 and Theorem 1.6, we have Theorem 5 in [1].

We also have the following corollary.

COROLLARY 1.7. Let F be a real closed field. Then the following statements

hold:
(1) Let (F(x), σ) and (F(y), τ) be ordered fields where x and y are variables.

If {aeF; a<x(σ)} = {aeF; a<y(τ)}9 then the isomorphism h: F(x)->F(y),
defined by h(x) = y, is an order preserving isomorphism.

(2) Let σ and τ be orderings of F(x). // there exist elements y, z of F(x)

so that F(x) = F(>>) = F(z) and {αeF; a<y(σ)} = {aeF', α<z(τ)}, then (F(x), σ)
and (F(x), τ) are isomorphic as ordered fields.

§ 2. Ordered fields of finite rank

In this section, we assume that F is a real closed field of finite rank (cf. [2],
Definition 1.1). Take an ordering σ e X and suppose that F is cofinal in (F(x), σ)
and rank (F(x), σ) = rank F +1 (as for the existence of such an ordering, see
Remark 2.1). We fix this ordering σeX. Since rank(F(x), σ) = rankF+l,
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there exist convex valuation rings Bl9 B2 of F(x) such that Bί^B2 and B^ |F =
B2 I F and the valuation rings Bt and B2 are overrings of A(F(x)> Q) (cf. [2]).
So we may assume that B{c:B2. We put A: = Bί \F = B2 \F. We denote the
maximal ideals, the groups of units, the valuations and the value groups of A9

B, and B2 by (A, M, C7, υ, G), (Bi9 Ml9 Ul9 vί9 Gx) and (B2, M2, I/2, ι;2, G2)
respectively. We denote by h: Gί-+G2 the canonical surjection. Jf: = Ker/ι is
the convex subgroup tfι(t/2) of Gί corresponding to the prime ideal M2 of Bίf

There are canonical injections /ιλ : G->GX and fι2 : G->G2. It is clear that hh± = h2,
and we identify /^(G) and /ι2(G) with G.

REMARK 2.1. Let J?(x, y) be an extension field of /?, the field of real numbers,
where x, ^ are variables. Let τ be an ordering of /?(x, y) such that R<x(τ) and
/?(x)<Xτ). Let L be a real closure of (R(x9 y), τ), K be the algebraic closure of
R(y) in L and σ: = τ | K(x). Then for any element z of K(x)9 we have z<>>n for
some positive integer n, since the set {yn n = 1 , 2, . . . } is cofinal in L. This implies
K is cofinal in K(x). Next we show that rank J£(x) = rank K+ 1. In general, for
an ordered field N of finite rank, the following assertions hold (cf. [2], Propo-
sition 1.2):

(1) Let NίIN be an algebraic extension of ordered fields. Then rank N^ =
rank N.

(2) rank N(x) = rank N +1, where N(x)/N is a simple transcendental
extension of ordered fields such that x is infinitely large.

By the above assertions, we have rankL=2 and rankK=l. Since L/K(x)
is an algebraic extension, rankK(x) = 2 =

LEMMA 2.2. There exists an element b e F such that v^x — b) is not
contained in G.

PROOF. Suppose to the contrary that v^x — b)eG for any beF. Let/(x)
be any monic irreducible polynomial of F[x]. Since F is real closed, deg/(x)^2.
If deg/(x) = 2, then we can write /(x) = (x + cz)2 + ft2, fc^O. If v^x + a^υ^b),
then t;1(/(x)) = min(t;1((x + α)2), υ^b2)). If ι;1(x + fl) = ϋ1(6), then ι;1(/(x)) =
v^x + α)2) = Vι(b2) since B1/Ml is formally real. So we have vi(f(x)) e G. This
shows that the value of any irreducible polynomial of F[x] is contained in G.
This contradicts the fact G Φ G t . Q. E. D.

LEMMA 2.3, Take an element beF so that e\ = v^(x-b)^G. Then G! =

G®Ze.

PROOF. Since G is divisible ([2], Proposition 1.7), it is clear that Zeί]G =
{0}. Let α be any polynomial of F[x]. We can write α = an(x - b)n + + a^(x —

fe) + 00 Since Z<?nG = {0}, the values Ό^afa-b)*), ί = 0,...,n, are different
from each other. So t;1(α) = t;1(αί(x — b)*) for some i and we have vL(a)eG+Ze.
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This implies G t = G0 Ze. Q. E. D.

PROPOSITION 2.4. G2 = G, H^Z and G± = G@H (the ordering of G®H

is lexicographic).

PROOF. By Lemma 2.3, G1/G is isomorphic to Z. Since H n G = {0},

H is isomorphic to (G-f H)/G which is a subgroup of G1/G. Hence we have

H^Z. The fact GJG^Z also shows that G^G + ff^Z/nZ for some π>0.

Since G2/G is isomorphic to G1l(G-\-H)9 G2/G is a torsion group. On the other

hand, by [2], Proposition 1.7, G is divisible, and so G2/G is torsion free. This

implies n = l, and G2 = G. Now it is clear that Gί = G®H and the ordering of

G®H is lexicographic. Q. E. D.

The proof of the following Proposition 2.5 is similar to that of Proposition 2.4
and we omit it.

PROPOSITION 2.5. Let τ be an element of X. Suppose that F is not cofinal

in (F(x), τ). Then B: = {b eF(x); b<a(τ) for some aeF} is a non-trivial

valuation ring of F(x) and B is compatible with respect to τ.

Let VB be the valuation of B. Then VB is trivial on F and the value group

of VB is isomorphic to Z. Moreover there exists beF such that vB(x — b) is

a generator of this value group.

In the situation of Proposition 2.5, there exists an element y of F(x) such that

y is a change of variable (i.e. F(x) = F(yJ) and vB(y)= — 1, y>0(τ). Then it is

clear that F<Xτ).

Let τί and τ2 be elements of X and suppose that F is not cofinal in F(x) with

repect to τ^ and τ2. Then by the above argument, there exist yί and y2 such that

F(*) = F(yi) = F(y2) and F<y, (TI), F<y2 (τ2). So (F(x), τ x) and (F(x), τ2)
are isomorphic as ordered fields by Corollary 1.7.

PROPOSITION 2.6. For τeX, if g(τ) is proper archimedean, then rank(F(x),

τ) = rank F.

PROOF. Let Fc be the completion of F (cf. [2], Definition 2.5). By [2]

Proposition 1.3, rank F = rank Fc. Since F is real closed, y: = g(τ)εFc is trans-

cendental over F. Let μ be the ordering of F(y) induced by the ordering of Fc.

Then {aeF; a<y(μ)} = C where (C, D) = g(τ). By Cororally 1.7, (F(x), τ) and

(F(y), μ) are isomorphic as ordered fields. So we have rank (F(x), τ) = rank (F(y),

μ) = rankF. Q.E.D.

§ 3. Maximal ordered fields and cuts

In this section, we assume that F is a real closed field of rank/i. Let
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A(F, Q) = Aί<= c:AnczAn+ί=F be the convex valuation rings of F and vt be
the valuations of Ai9 i = l,..., n.

DEFINITION 3.1. For a cut (C, D) of F, we put M(C, D): = {xeF; + x e C o r
±xel>} and M(C, D): = M(C, D)^{0}.

If c = F-: = {aeF; α<0}, then M(C, D) = {0}. For any cut (C, D), it is
clear that 0 e M(C, D).

PROPOSITION 3.2. Let (C, D) foe α cut of F and v be a compatible valuation
of F. Then g'^g for any *g ev(M(C, D)) and g' εv(F^M(C, D)). In par-
ticular, the set v(M(C, DJ) n v(F^M(C, D)) consists of at most one element.

PROOF. First we remark that if a e M(C, D) and 0 < b < a then - a e M(C, D)
and beM(C, D). There exist elements α e M(C, D) and bef^M(C,D) such
that ι;(α) = # and υ(b) = g'. By the above remark, we may assume 0<α^b.

Since i? is compatible, v(b)^v(a) and so g'rgg. Q. E. D.

DEFINITION 3.3. For ί = 1 , . . . , n we put 7] = {(C, D) a proper cut of F ι;,( M(C,

D))n^(F\M(C, D)) = φ and min t ^MίC, D)) or max^(F\M(C, D)) exists}.

If (C, Z))eη, then we denote min^MίC, D)) or max^/^MίC, D)) by φί?

(C, D)).

If (C, D)e7;., then it is clear that υ^(υ^M(C, D))) = M(C, D), and we can
show that M(C, D) is a fractional ideal of At. For a cut (C, D) and an element
αeF, we put C + α = {c + α, ce C} and D + a = {d + a, deD}. It is clear that

α, D + α) is a cut of F.

DEFINITION 3.4. For i = l,..., n, we put :̂ = {(C + α, D + α); (C, D)e 7],
α e F} and we let PΓn+ ! be the set of all non-proper cuts of F.

PROPOSITION 3.5. Let (C, D) be a cut of F which belongs to some 7]. For
an element yeF, the following statements are equivalent:

(1) yeM(C,D).

(2) (C,D)

PROOF. (1)=>(2): Let y be any element of M(C, D). First we assume

that O e C ; in this case M(C, D)c=C. Suppose C + y^C. There are two cases

C-\-y^>C and C + ycC. Replacing y by — y if necessary, we may assume

that C + y^>C. Then there exists an element c e C such that 0<c and c + yeD.

Since ceM(C, D) and M(C, D) is additively closed, c + y^D, a contradiction.

As for the case 0 e D, the assertion can be proved similarly.
(2)=>(1): Suppose C + y = C. If OeC, then y and — y are contained inC.

So yeM(C, D). If OφC, then Oe£>, and the fact D + y = D also implies >>e

M(C, D). Q. E. D.
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PROPOSITION 3.6. W?=i Wi is a disjoint union.

PROOF. Suppose to the contrary that there exists a cut (C, D)eWi^\ Wj

for some i Φ). We may assume i <j. There exist cuts (Ch Dt) e Tt and (CJ9 Dj) e

Tj such that (C, D) = (Ct + ci9 Dί + cί) = (C7. + c7 , DJ + CJ) for some c i 9 C j E F . It

is clear that {aeF; Ci-\-a = Ci} = {aeF; C + a = C} and so we have {aeF;

Ci + a = Cί} = {aeF; Cj + a = Cj}. Let H be the kernel of the canonical surjection

G^Gj (cf. §2). We fix an element Q<βeH. There exist elements s and s'

such that 0<s, 0<s' and ι;ί(s) = φί, (C£, DJ)-β9 v£s') = <x(υi9 (Cf, Dt)) + β. Since

v£s)eυJ(f^tif(Ci9Dd) and υ£s')ev£tif(Ci9 DJ), we have 5φM(Q,/)f) and
s'eM(Cj, D;). By Proposition 3.5, C, + s' = C, and Q + s^C, and so by the
fact{αeF; Cf-f α = Cf} = {αeF; Cj + a = Cj}9 we have Cj + sf = Cj and Cj + s^Cj.
On the other hand, since f/s) = ί;y(s'), we can see that seM(CJ9 Dj) if and only

if s' e M(C7, DJ). Hence by Proposition 3.5, C, + s' = C, if and only if C, + s = Cj.
This is a contradiction. Q. E. D.

For σ,τeX, we write σ~τ if (F(x), σ) is F-isomorphic to (F(x), τ) as ordered
fields. We can easily show that ~ is an equivalence relation in X. We put

X1 = {σeX; rank(F(x), σ) = n + l}. Then X^ is a union of equivalence classes.

We can define the equivalence relation in CF which is canonically induced by

the bijection g: X^CF. We denote it by the same symbol ~. By Proposition 1.4

and the argument after Proposition 2.5, Wn+ί is an equivalence class of CF.

PROPOSITION 3.7. Let (C, D) and (C, D') be any cuts of F wihch belong

to the set WJor some i = l,..., n. Then (C, D)~(C'9 D').

PROOF. Let σ be the element of X such that g(σ) = (C, D). By Corollary 1.7,
it is sufficient to show that there exists an element y of F(x) such that F(x) = F(y)
and {dεF; d<y(σ)} = C f . If C' = C + a for some α, then we put y = x + a.
It is clear that y satisfies the desired condition. So we may assume that (C, D)
and (C', D') are contained in 7]. We suppose, for example, that M(C, D)<=C,

M(C', D') c C' and φf, (C, D)) = min v£tif(C, D))9 φ,, (C', Dr)) = max vt(F^
M(C, D)) (in the other cases, the assertions can be proved similarly). Let a

and b be elements of F such that α>0, ί»0, v£a) = a,(υi9 (C, D)) and v£b) =
φ;, (C', D')). We put y = ab/x. Let d be a positive element of F and suppose

d<y(σ). Then ab/d>x, and so vί(ab/d)«x(υi, (C, D)). This implies ι;ί(ί/)>

Φί, (C', D')), hence deM(C'9 D')aC'. These observations show that {deF;
d < y(σ)} c C'. The converse inclusion is proved similarly. Q. E. D.

DEFINITION 3.8. For σeXl9 let BίcB2<= -^Bn+2 = F(x) be the convex

valuation rings of F(x) (with respect to σ). Then there exists a unique number
j (j = 1,..., n +1) such that Bj n F = Bj+i n F = ̂  . We put N(σ)=j. It is clear
that for σ9τeXl9ifσ~τ, then N(σ) = N(τ).
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THEOREM 3.9. The map N: X!/~->{l,..., n+1} is bijective, \vhereXtl~
means the set of equivalence classes in Xv.

PROOF. First we show that N is surjective. We fix a number j, j = 1,..., n +1.
Let C = F~ \jAj and D = F^C. Then, since Aj is convex, (C, D) is a cut of
F. Let σ be the ordering of F(x) such that g(σ) = (C, D) and let kj be a maximal
subfield of Aj. We put B = A((F(x)9 σ), fcy). It is clear that B is a convex valu-
ation ring of F(x) with respect to σ. By [2], Proposition 1.5, A(F, kj) = Aj.
This implies that B n F = A,. We put B' = {a e F(x); \a\ <xn(σ) for some positive
integer n}. From the facts kj<^AjaC<x(σ}, and xeB'^B, it follows that
£ c £' and B^B'. We show that B' is a convex valuation ring of F(x) with respect

to σ and B' n F = Aj. By the definition of B', it is clear that B' is a convex subset
of F(x) with respect to σ and B' is multiplicatively closed. Let c and d be any
elements of B'. Then there exist positive integers s arid t such that |c|<x5 and

|d|<xί. We may assume sg f . We have \c + d\£\c\ + \d\<x* + xt^2xt<xt+ί.
This shows that c + deB'. Thus B' is additively closed and so B' is a subring of
F(x). Since B' is an overring of B, B' is a valuation ring. Let b be a positive
element of B' n F. Then b<xn for some n and so Q<bl/n<x (note that F is
real closed). This implies bί/neF+ n C = AJ9 where F+ is the set of all positive
elements of F. Thus beAj9 and we have B' n F = Aj. This shows that σeXί9

N(σ)=j and therefore N is surjective.
Next we show that N is injective. Let σ, τ be elements of Xl such that

N(σ) = N(τ)—j. Let B1cB2c: c:Bll+2 = F(x) be the convex valuation rings

of F(x) with respect to σ. By Definition 3.8, Bjffl F = BJ+ί Π F = Ajf Let t;y,

t?} and t;}+1 be the valuations of 4,-, B7 and Bj+ί respectively, and GJ9 G} and

G'j+i be the value groups of vj9 v'j and v'j+i respectively. By Proposition 2.4,
Gj+ί = Gy and Gj ̂  G^ θ ^ (the ordering of G7 ® Z is lexicographic). By Lemma
2.2 and Lemma 2.3, there exists an element b of F such that v'j(x — b) = (g, ±1),

geGj. By a suitable change of variable, xί = a/(x-b) or x1=α(x-b), we can

find an element xί of F(x) such that x^O^r), ι;}(x!) = (0, -1) and F(x) = F(Xί).
Let a be an element of F such that \a\<xί(σ). Then Vj(a)>v'j(x1) (note that
i;} is compatible with respect to σ and t;}(x1) = (0, — 1)^G7). This shows that
t>/έi)^0, and so aeAj. Conversely we can prove {αeF; lα^x^σ)}^^,
and so we have {αeF; \a\<xί(σ)} = AJ. Similarly there exists an element x2

of F(x) such that x2>0(τ), F(x) = F(x2) and {α eF; \a\<x2(τ)} = Aj. By
Corollary 1.7, this shows that the isomorphism/: F(x)-»F(x), defined by/(x!) =
/(x2), gives an order preserving isomorphism between (F(x), σ) and (F(x), τ).
Thus we have σ ~ τ. Q. E. D.

For 7 = 1,..., n+1, let Ύj be the equivalence class of Xί such that N(Yj)=j.

It is clear that Yn+ί is the set of orderings τ e X such that F is not cofinal in F(x)
with respect to τ and g(Yn+ί)=Wn+ί.
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THEOREM 3. 10. For any j, 7 = !,..., n, g(Yj) = Wj. In particular, Wp 7 =
1,..., n, is an equivalence class of CF.

PROOF. We fix a number j9 7 = !,..., n. By Proposition 3.7, it is sufficient

to show that g(Yj)<=.Wj. Let σ be any element of Y,-. We use the notation in

the proof of Theorem 3.9, and we put C = F~ U AJ9 D = F^C. ThenC = {ceF;
C<XI(G)}\ here the element x t satisfies the conditions that x1>0(σ), ι?y(x1) = (0,
-1) and F(x) = F(x1). It is clear that M(C,D) = Ap and so ι;/M(C, /))) =

{0 e Gy; 0^0} and t;/F^M(C, D)) = {g e G,; 0>0}.
We can write xi = a/(x — b) or x^^x — b) (see the proof of Theorem 3.9).

Hence x = α/x1-h6 or x = x1/a-\-b. We put y = x — fo (y = a/xί or y = x1/a)9 and
C' = {ceF; c<Xσ)}, D'^F\C'. Then we can easily show that if y = χ1/a,

then ϋXΛΪ(C',D')) = {^eG^Pf<fl)^^ "/F^M(C', D')) = ί0e G, ; -ι
and if y = alxl9 then ί;/M(C, D')) = {geGj\ v(a)<g}, t;/F

{flf eCy; Φ0^0}. This shows (C, D')e Tp and so ^(σ) = (C' + ft,

Q.E.D.

By Proposition 2.6, any proper archimedean cut is not contained in VJ"ί} Wj.

THEOREM 3.11. For a real closed field F of rank n, the following statements
are equivalent:

(1) F is a maximal ordered field of rank n.

(2) CF=\jn±\Wj.

PROOF. (1)=>(2): Let (C, D) be any proper cut of F and σe X be an

ordering such that #(σ) = (C, D). Since F is a maximal ordered field of rankn,

we have rank(F(x), σ) = n+l. So by Theorem 3.10, g(σ)eWj for some j =

l,...,n.
(2)=>(1): By [2], Proposition 2.10, it is sufficient to show that rank(F(x),

σ) = n + l for any σeX. If g(σ) is not proper, then F is not cofinal in (F(x), σ)

by Proposition 1.4. This shows that A(F(x), F) is a proper valuation ring of F(x),

and so rank(F(x), σ) = n + l. If g(σ) is proper, then g(σ)eWj9 for some j =

1,..., n. By Theorem 3.10, σe YycA^andsorankίFίx), σ) = π + l. Q.E.D.

EXAMPLE 3.12. Let (R(x), σ) be the ordered field such that R<x. Let F

be a real closure of (/?(x), σ). Since rank /?(x) = l and F/R(x) is an algebraic
extension, we have rankF=l. Therefore there exists a unique compatible
valuation v of F. Let v' be the restriction of v to R(x) and G, G' be the value
groups of v and t/ respectively. By Proposition 2.5, G' is isomorphic to Z.
Since F/R(x) is an algebraic extension, G/G' is a torsion group and by [2], Propo-
sition 1.7, G is divisible. So G is isomorphic to β, the field of rational numbers.
Let C = F- U {aeF; t;(α)>21/2} and D = F^C. Then (C, D) is a cut of F and

ι<M(C, D)) = {reβ;21/2<r}, v(F^M(C, D))={reβ; 21/2>r}. Choose ee
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F, e > 0 such that v(e) = 2. Then for any d e D and c e C, c> 0, we have v(d — c) =

v(d) < v(e) = 2 (note that c e M(C, D) and so v(c) > υ(d)\ This shows that d-oe;
therefore (C, D) is not archimedean. We show that (C, D) is not contained in
W1\JW2. It is clear that (C, D) is proper, and so (C, D)^W2. It is sufficient
to show that (C + fr, D + b) is not contained in 7\ for any beF. If t;(6)>21/2,
then for any deD, v(d-\-b) = v(d)<2^2 and for any 0<ceC, v(c + b)>21/2.

This shows that (C + b, D + 6) = (C, D)^^, since neither minz;(M(C, D)) nor
maxu(F\M(C, D)) exists. If υ(6)<21/2, then we can easily show that min

v(M(C + fc, D + £?)) = max v(F^M(C + 6, D + 6)) = ι (fc). This shows that (C + fo,

D + 6) φ Tx . Hence in general, there exists a proper cut of a real closed field F

which is not archimedean and not contained in W j 9 j = l,...,n + } .
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