Immersions of real projective spaces into complex projective spaces

Dedicated to Professor Masahiro Sugawara on his 60th birthday

Tsutomu YASUI (Received April 13, 1987)

§1. Introduction

Given two differentiable manifolds M, N and a continuous map $f: M \rightarrow N$, we denote by $I[M, N]_f$ the set of regular homotopy classes of immersions of Minto N, which are homotopic to f, and by I[M, N] the set of all regular homotopy classes of immersions of M into N.

As for the set I[M, N], some results have so far been obtained when N is not Euclidean space. For example, for the existence of immersions of $P^n(Q)$ into $P^m(C)$ or $P^m(R)$, of $P^n(C)$ into $P^m(C)$, of $P^n(R)$ into $P^m(R)$, and of $L^n(p)$ into $L^m(p)$, see [1], [4] and [15], [8], and [5], respectively, and for the classification of immersions of $P^n(R)$ into $P^m(R)$, see [7]–[9], where $P^k(F)$ is the F-projective space of F-dimension k and $L^k(p)$ is the lens space mod p. But the above results are smaller in number than those when N is Euclidean space.

In this article we shall study the set $I[P^n(R), P^m(C)]$ and $I[P^n(R), P^m(C)]_f$ for any map $f: P^n(R) \to P^m(C)$ $(n \le 2m-1)$.

Here we note the fact that $[P^n(R), P^m(C)] = Z_2$ if $n \le 2m$ (see (2.5) below).

Let $i: P^n(R) \to P^n(C) \subset P^m(C)$ $(n \le m)$ be the natural embedding defined by regarding real numbers as complex numbers and let $c: P^n(R) \to P^m(C)$ be a constant map. Then we shall prove the following theorems:

THEOREM A. Assume that $n \ge 2$. Then

(i) for $n \leq m$, the natural embedding i is not null-homotopic,

(ii) for n > m, any immersion of $P^n(R)$ into $P^m(C)$, if any, is always null-homotopic.

THEOREM B. Assume that n > 2. Then (i) both for f = i and f = c,

$$I[P^{n}(R), P^{n}(C)]_{f} = \begin{cases} Z & n \equiv 0 \mod 2, \\ Z_{2} & n \equiv 1 \mod 2; \end{cases}$$

(ii) if m < n < 2m - 1, then

Tsutomu YASUI

$$I[P^{n}(R), P^{m}(C)] = I[P^{n}(R), P^{m}(C)]_{c} = I[P^{n}(R), R^{2m}].$$

REMARK. (i) According to Whitney [17], for $n \le m$ there exists a null-homotopic immersion of $P^n(R)$ into $P^m(C)$, and for m > n > 2 any two immersions of $P^n(R)$ into $P^m(C)$ which are homotopic are regularly homotopic.

(ii) According to Li [6, p. 257], there exists a null-homotopic immersion of $P^n(R)$ into $P^m(C)$ if and only if there exists an immersion of $P^n(R)$ into R^{2m} .

EXAMPLE. For $n \ge 4$ there exists an immersion of $P^n(R)$ into $P^{n-1}(C)$ if and only if n is not a power of two. If the same condition also holds for $n \ge 7$, then

$$I[P^{n}(R), P^{n-1}(C)] = I[P^{n}(R), R^{2n-2}] = \{0\} \qquad n \equiv 0 \mod 4,$$
$$= Z_{2} + Z_{2} \qquad n \equiv 1 \mod 4,$$
$$= Z_{2} \qquad n \equiv 2 \mod 4,$$
$$= Z_{4} + Z_{8} \qquad n \equiv 3 \mod 4,$$

according to the table in [14].

The proof of Theorem A is given in \$2. We shall prove Theorem B along the lines of Li and Habegger [11] (cf. [6]–[7]) in \$3.

§2. Proof of Theorem A

Let $x \in H^1(P^n(R); \mathbb{Z}_2)$ be the first Stiefel-Whitney class $w_1(\xi)$ of the canonical real line bundle ξ over $P^n(R)$, and $y \in H^2(P^m(C); \mathbb{Z})$ the first Chern class $c_1(\zeta)$ of the canonical complex line bundle ζ over $P^m(C)$. Then the following relations hold (see, e.g., [13]):

(2.1)
$$H^{*}(P^{n}(R); Z_{2}) = Z_{2}[x]/(x^{n+1}), \quad H^{*}(P^{m}(C); Z) = Z[y]/(y^{m+1}),$$

(2.2)
$$\sum_{i \ge 0} w_i(P^n(R)) = (1+x)^{n+1}, \quad \sum_{j \ge 0} c_j(P^m(C)) = (1-y)^{m+1}.$$

Further we know that

(2.3)
$$\rho_2 c_j(P^m(C)) = w_{2j}(P^m(C)) \text{ and } \rho_2 y = w_2(\zeta),$$

(see, e.g., [2, Theorem 1.4] or [3, (68)]), and hence

(2.4)
$$\sum_{i\geq 0} w_i(P^m(C)) = (1+\rho_2 y)^{m+1}.$$

It is also easily verified, e.g., by Feder [4], that for a CW-complex X of dimension less than 2m+1, the correspondence which associates f^*y with a homotopy class of a map $f: X \rightarrow P^m(C)$ leads to a bijection between the homotopy set $[X, P^m(C)]$ and the cohomology group $H^2(X; Z)$. In particular we get

(2.5)
$$[P^n(R), P^m(C)] = H^2(P^n(R); Z) = Z_2 = \{\beta_2 x, 0\}$$
 if $2 \le n \le 2m$.

To prove that the natural embedding *i* is not null-homotopic, it is sufficient to show that $i^*\rho_2 y = x^2$. Under the above notations, it is easily seen that the induced bundle $i^*\zeta$ over $P^n(R)$ is isomorphic to the complexification of ξ , i.e.,

$$i^*\zeta = \xi \otimes C.$$

As a real 2-plane bundle,

$$\xi \otimes C = \xi \oplus \xi$$

(see [13]). Hence, and because $w_2(\xi \oplus \xi) = x^2$ and $w_2(\zeta) = \rho_2 y$, we have $i^* \rho_2 y = x^2$, which establishes Theorem A(i).

Moreover this, together with (2.5) and Remark (i) above, implies that

(2.6)
$$[P^n(R), P^m(C)] = \{[i], [c]\} \text{ for } 2 \leq n \leq m,$$

where c is a null-homotopic immersion.

To prove (ii), assume that $n \ge 2$ and that there is an immersion $f: P^n(R) \rightarrow P^{n-1}(C)$ such that f is not null-homotopic. Then $f^*\rho_2 y = x^2$ by (2.5). Let $w_k(f)$ denote the k-th Stiefel-Whitney class of the normal bundle of this immersion f. Then by the relation $f^*\rho_2 y = x^2$ and both by (2.2) and (2.4), we have a relation

$$\sum_{k \ge 0} w_k(f) = (1+x^2)^n (1+x)^{-(n+1)} = \left(\sum_{i \ge 0} \binom{n}{i} x^{2i}\right) \left(\sum_{j \ge 0} \binom{n+j}{n} x^j\right)$$

and in particular

(2.7)
$$w_{n-1}(f) = Ax^{n-1}$$
, where $A = \sum_{i=0}^{\lfloor (n-1)/2 \rfloor} {n \choose i} {2n-1-2i \choose n}$

If $n = 2^r$ $(r \ge 1)$, then

$$\binom{n}{i} \equiv \begin{cases} 0 \mod 2 & \text{for } 0 < i \leq 2^{r-1} - 1 = [(n-1)/2], \\ 1 \mod 2 & \text{for } i = 0, \end{cases}$$

and

$$\binom{2n-1}{n} = \binom{2^{r+1}-1}{2^r} \equiv 1 \mod 2.$$

Hence we have

(2.8)
$$A \equiv 1 \mod 2$$
 if $n = 2^r \ (r \ge 1)$.

Consider, next, the case when $n \neq 2^r$. Then the diadic expansion of n is given by

$$n = \sum_{s \ge i \ge 1} 2^{r_i}, \quad 0 \le r_1 < r_2 < \dots < r_s, \quad 2 \le s.$$

Tsutomu YASUI

Under this expression of *n*, it is easily seen that $2^{r_{s-1}} \leq [(n-1)/2] < 2^{r_s}$ and that for $0 \leq i \leq [(n-1)/2], {n \choose i} \equiv 1 \mod 2$ if and only if either i=0 or $i = \sum_{j \in J} 2^{r_j}$, $J \subset \{1, 2, ..., s-1\}$, and hence

$$A \equiv \sum_{J \in \{1,2,...,s-1\}} \binom{2n - 2\sum_{j \in J} 2^{r_j} - 1}{n} + \binom{2n-1}{n} \mod 2.$$

Here

$$\binom{2n-1}{n} = \binom{\sum_{s \ge j \ge 3} 2^{r_j+1} + 2^{r_2+1} + 2^{r_1+1} - 1}{\sum_{s \ge j \ge 3} 2^{r_j} + 2^{r_2} + 2^{r_1}} \equiv 0 \mod 2.$$

If $J = \{1, 2, ..., s-1\}$, then $i = 2^{r_{s-1}} + \cdots + 2^{r_1}$ and

$$\binom{2n-2i-1}{n} = \binom{2^{r_s+1}-1}{n} \equiv 1 \mod 2.$$

If $J \neq \{1, 2, ..., s-1\}$, let $k = \min\{j | j \notin J\}$ $(1 \le k \le s-1)$. Then

$$\binom{2n-2i-1}{n} = \binom{\sum_{s \ge j > k, j \notin J} 2^{r_j+1} + 2^{r_k+1} - 1}{\sum_{s \ge j > k} 2^{r_j} + \sum_{k \ge j \ge 1} 2^{r_j}} \equiv 0 \mod 2.$$

Therefore

$$(2.9) A \equiv 1 \mod 2 \quad \text{if} \quad n \neq 2^r.$$

From (2.7)–(2.9), we have

$$w_{n-1}(f)\neq 0,$$

which is a contradiction because the normal bundle of this immersion f is an (n-2)-plane bundle. This implies that immersions of $P^n(R)$ into $P^{n-1}(C)$ are always null-homotopic, which is the case for any immersion of $P^n(R)$ into $P^m(C)$ for m < n.

§3. Proof of Theorem B

Let ξ and ζ be *m*- and *n*-dimensional real vector bundles (m < n) over the spaces X and Y, respectively, and let Mono (ξ, ζ) be the space of all vector bundle maps of ξ to ζ which are monomorphisms on each fiber. Moreover for a map $f: X \rightarrow Y$, let Mono_f (ξ, ζ) and Mono_[f] (ξ, ζ) be the subspaces of Mono (ξ, ζ) consisting of monomorphisms covering, respectively, f and maps homotopic to f. Then Li and Habegger [11, 3.1] have shown that there is a bijection

(3.1)
$$\pi_0(\text{Mono}_f(\xi, \zeta)) = \pi_0(\text{Mono}_{[f]}(\xi, \zeta)) \text{ if } \pi_1(Y^X, f) = 0.$$

For a manifold M, let τ_M denote its tangent bundle. The Smale-Hirsch theorem says that if dim $M < \dim N$, then there is a bijection between the sets I[M, N] and $\pi_0(\text{Mono}(\tau_M, \tau_N))$. In particular we get

(3.2)
$$I[M, N]_f = \pi_0(\text{Mono}_{[f]}(\tau_M, \tau_N)).$$

If $N = P^{m}(C)$ and dim M < 2m, then the Eilenberg classification theorem (see [16, p. 243]) says that

$$\pi_1(P^m(C)^M, f) = H^2(M \times (I, \dot{I}); \pi_2(P^m(C))) = H^1(M; Z).$$

Hence for any $f: P^n(R) \rightarrow P^m(C)$,

$$\pi_1(P^m(C)^{P^n(R)}, f) = 0$$
 if $n < 2m$.

Therefore for any $f: P^n(R) \rightarrow P^m(C)$, there is a bijection

(3.3)
$$I[P^n(R), P^m(C)]_f = \pi_0(\text{Mono}_f(\tau_{P^n(R)}, \tau_{P^m(C)}))$$
 if $n < 2m$.

If n = m, we have

$$\pi_{0}(\text{Mono}_{f}(\tau_{P^{n}(R)}, \tau_{P^{n}(C)}))$$

$$= \begin{cases} H^{n}(P^{n}(R); Z[f^{*}w_{1}(P^{n}(C)) - w_{1}(P^{n}(R))]) & \text{for even } n, \\ H^{n}(P^{n}(R); Z_{2}) & \text{for odd } n, \end{cases}$$

where Z[a] stands for the integers twisted by $a \in H^1(P^n(R); Z_2)$ (see, e.g., [11, Proposition 4.7.1]). Hence

$$\pi_0(\operatorname{Mono}_f(\tau_{P^n(R)}, \tau_{P^n(C)})) = \begin{cases} Z & \text{if } n \text{ is even,} \\ Z_2 & \text{if } n \text{ is odd.} \end{cases}$$

This, together with (3.3), leads to Theorem B(i).

For a constant map c of $P^n(R)$ to either $P^m(C)$ or R^{2m} , we have

$$\pi_0(\text{Mono}_c(\tau_{P^n(R)}, \tau_{P^m(C)})) = \pi_0(\text{Mono}_1(\tau_{P^n(R)}, P^n(R) \times R^{2m}))$$

= $\pi_0(\text{Mono}_c(\tau_{P^n(R)}, \tau_{R^{2m}})),$

because the space $Mono_f(\xi, \zeta)$ is isomorphic to $Mono_1(\xi, f^*\zeta)$. Hence using (3.1)-(3.3) and the fact that $\pi_1((R^{2m})^{P^n(R)}, c)=0$, we have

$$I[P^{n}(R), P^{m}(C)]_{c} = I[P^{n}(R), R^{2m}]_{c} = I[P^{n}(R), R^{2m}].$$

This, together with Theorem A(ii), completes the proof of Theorem B(ii).

Tsutomu YASUI

References

- [1] M. Adachi, A remark on submersions and immersions with codimension one or two, J. Math. Kyoto Univ., 9 (1969), 393-404.
- [2] E. H. Brown, JR, *The cohomology of BSO_n and BO_n with integer coefficients*, Proc. Amer. Math. Soc., **85** (1982), 283–288.
- [3] H. Cartan, Démonstration homologique des théorèmes de périodicité de Bott, II. Homologie et cohomologie des groupes classiques et de leurs espaces homogènes, Séminaire H. Cartan 12e, 1959/60. n°. 17.
- [4] S. Feder, Immersions and embeddings in complex projective spaces, Topology, 4 (1965), 143–158.
- [5] T. Kobayashi, Immersions and embeddings of lens spaces, Hiroshima Math. J., 2 (1972), 345–352.
- [6] Li Banghe, On immersions of manifolds in manifolds, Sci. Sinica (Ser. A), 25 (1982), 255-263.
- [7] Li Banghe, On classification of immersions of n-manifolds in (2n-1)-manifolds, Comment. Math. Helv., 57 (1982), 135-144.
- [8] Li Banghe, Immersions of m-manifolds in (m+1)-manifolds, Math. Z., 182 (1983), 311-320.
- [9] Li Banghe, Classification of immersions of m-manifolds in (2m-1)- and (2m-2)-manifolds, preprint.
- [10] Li Banghe, Existence of immersions of n-manifolds in manifolds of dimension 2n-2 or 2n-3, preprint.
- [11] Li Banghe and N. Habegger, A two stage procedure for the classification of vector bundle monomorphisms with application to the classification of immersions homotopic to a map, Algebraic Topology Aarhus 1982, Lecture Notes in Math., 1051, Springer, Berlin-New York, 1984, pp. 293-314.
- [12] Li Banghe and F. P. Peterson, On immersions of k-manifolds in (2k-1)-manifolds, Proc. Amer. Math. Soc., 83 (1981), 159–162.
- [13] J. W. Milnor and J. D. Stasheff, Characteristic Classes, Ann. of Math. Stud., 76, Princeton Univ. Press, 1974.
- [14] C. A. Robinson, Stable homotopy theory over a fixed base space, Bull. Amer. Math. Soc., 80 (1974), 248-252.
- [15] E. Thomas, On the existence of immersions and submersions, Trans. Amer. Math. Soc., 132 (1968), 387–394.
- [16] G. W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Math., 61, Springer-Verlag, New York, 1978.
- [17] H. Whitney, Differentiable manifolds, Ann. of Math., 37 (1936), 645-680.

Department of Mathematics, Faculty of Education, Yamagata University