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1. Introduction

Let Q<R3 be a bounded domain in R3 with a smooth boundary 0Q; dQ is
of class C*. We consider the equations of Navier-Stokes

(1.1) uw —Adu+u-Fu+¥Vrn=f divu=0, ulp=0, u0)=u,

on the cylindrical domain Qx (0, T)=R* with some T>0, and we investigate
strong solutions u of (1.1); these are solutions with ue L?(0, T; H%P(Q)3> n
Ifl"P(Q)3) and u’ € LP(0, T; LP(2)3) for some p with 2< p< 0.

Using the projection P,: LP(Q)3—H ,(Q) from LP(Q)® onto the subspace
H ()= LP(Q)* of divergence free functions with zero normal component on 0Q
(in the sense of [3]), we can write (1.1) in the following equivalent form as an
evolution equation in H,(Q):

(1.2) w + Ay + Pu-Tu)=P,f, u®) =uy, C=Zt=T

Here A,: v—A,v: =—P,Av denotes the Stokes operator with domain
D(A,):=H?>?(Q)3n ﬁ’vP(QP NH, Q). We can define the fractional powers
A% of A, with 0=«<1 and domain D(A%)>D(A,) as in [6]. Let feL?0, T;
Lr(2)%) and uge D(A)-(1/P*3) with some 6, 0<d<1/p (take u,eD(A,) for
example). Then a strong solution u of (1.1) or (1.2) is defined by the conditions
ue L»0, T; D(A,)), u’ e L?(0, T; LP()*) and (1.2).

The existence of strong solutions of (1.1) for arbitrary T>0 is an important
unsolved problem up to now. Therefore it is interesting to know properties of
the set

R(up): = {fe L?(0, T; L7(22)3)|(1.2) has a unique strong solution u
with data f, u,}

for a fixed initial value uy € D(A}~1/P*%) 1t is not known whether or not R(u,)=
L?(0, T; L?(2)3); however we can prove some density properties of this set.
This gives us some information how many f do exist such that (1.1) is strongly
solvable.

Solonnikov’s theory of local solvability [10; §10] tells us that R(ug)c<
Lr(0, T; LP(Q)3) is an open subset. In case p=2 it has been shown that R(u)
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is dense in the space L0, T; H'-3(Q)3) with 1<s<4/3, where H-"%(Q)3 is the
dual space of H'»2(Q)3 ([4,12]). The aim of the present paper is to prove the
following general density property.

1.3. THEOREM. Let 2<p<oo and uge D(AL~(1/P*+3) with 0<§=<1/p. Then
the set R(uy)= LP(0, T; LP(Q)3) is dense in the norm of L0, T; L4(Q)3) for all s,
qge(l, o0) with 4<2/s+3/q. Therefore, for every feLr0, T; LP(Q)%) and
every ¢>0 there exists some geLr(0, T; LP(Q)%) with |gllpso.1:L00)) =€
such that

u' + Apu + Pu-Vu)=P,f+ P,g, u(0)=u,
has a unique strong solution u.

ReEMARKS. a) The quantity 2/s+3/q plays an important réle in Serrin’s
regularity theory for the equation (1.1) ([8, 16]); a weak solution u is regular if
u e L0, T; L1(2)3) holds for some s, g (1, c0) with 2/s+3/g=1.

b) It can be shown that Theorem 1.3 also holds for §=0. This extension
is not difficult to prove for p=2; it would require the theory of Besov spaces
for 2< p<oo; however this detail does not seem to be very important.

¢) Let uy be as in Theorem 1.3 and let fe I?(0, T; L?(Q)3). Then from
1.3 it follows in particular that for every ¢>0 we can always find an additional
external force g € LP(0, T; L?(Q)3) with

ff lg(x, Dldxdt < ¢
0 0

such that the Navier-Stokes equation u'—Au+u-Fu+Vn=f+g has a unique
strong solution u with u(0)=u,.

Our method to prove 1.3 rests on a regularization procedure for (1.1) using
the Yosida approximation (given in [8, 9] in principle) and on an estimate of
the nonlinear term u - Fu using the exponent p=>5/4 (given in [14, 15] in principle).

NoTATIONS. For l<p<oo and k=1, 2,... we need the usual spaces L?(Q),
Hkp(Q), H*P(Q), C¥Q) and C¥). For a Banach space H, L?(0, T; H) is
T 1
the usual space with the norm (o]l 1.1, = (f ||u||r;,dt> " and €O, T: H)
0

is the space of continuous functions v: [0, T]->H with norm |vlco.r.n)=
supo<,<r lv(t)llg- In our proofs it is convenient to use the notations ||[v]|.»n,=
v, or lvlLey=Ivlli,,- Similarly, we use the notations [v(.s0,7;L4(2))=
lollgp=1vll1/0.1 and [vll, ,=supo<,<r ()], The corresponding spaces of
vector functions v=(v,, v,, v;) are denoted by LP(Q)3, H*-P(Q)3,..., respectively.

We set D;:=0/0x; (i=1, 2, 3, x=(x,, X5, Xx3)€Q), u':=7d/0t, V:=(D,, D,,
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D,), div v:=D,v; +D,v,+ D303 (v=(vy, 05, 03)), U-V=U;0;+ U0, + U303, U-Fu=
- Pu=(u-(Puy), u-(Fuy), u-(Fuy)) and u, u>:=f u(x) - v(x)dx.
o

Let H,(Q) be the closure of {u|ueC>(Q)3, divu=0} with respect to the
Lr(Q)3-norm. There exists a bounded linear projection operator P,: LP(Q)3—
H,(Q), and every ve LP(Q)* possesses a decomposition v=P,p+Fn with ne
H'-#(Q) ([3D-

Let 4,: D(4,)— Lr(Q)? be the usual Laplace operator in LP(Q2)3 with D(4,)=
H27(Q)3 n H'»(Q)* and A,u=D}u+D3u+D3u. P,A,: D(P,4,)->H/(Q) is
the usual Stokes operator with D(P,4,)=D(4,) n H,(Q). We set

A,=—P,4, and B,:= —4,.

In our proofs we need soime well known embedding properties which follow
from the ellipticity of the Laplace operator ([13]):

Suppose | <p=g< o, 0=f=<a=<1,2a—3/p=2p—3/q. Then we have

(1.4) IBGolly < cllBgoll,, veD(B3),

where c=c¢(p, q, «, B, 2)>0 does not depend on v.
Using Giga’s characterization D(A%)=D(B%) n H () ([6]), we see that the
following holds too:

(1.5) 4%, < cllAzv],  forall veD(AZ),

where ¢, p, B, a, ¢ are as above.

In case =0, g=o00, 2a—3/p> —3/q=0, these estimates remain valid; we
get in particular ||v||, S cl|A%v]|, in this case.

The operator — A, generates for p, 1 <p<oo, an analytic semigroup e~4»,
t=0, in H,(Q) ([14, 5]). Therefore, we get for every ve I’ (0, T; D(A,)) with
v’ € LP(0, T; LP(Q)3) the representation

(L.6) o(1) = e~ 4ru(0) + f e~ =941 + A v)ds
0

for almost all te [0, T]. Using (1.5) and the well known property ||A%e™'4r| <
ct™* ([2]), we can derive from (1.6) the following imbedding properties:
Suppose ve L0, T, D(A,)), v' € L?(0, T; LP(Q)3), v(0)e D(A}"'/7), 1<p=
q<o. Then we have (after redefinition on a set of measure zero)
(1.7) veCO, T; LYQ)*), lvllg. = cllAp~"P0(0)],+ 16710+ 14,01 5.p)
for 2 —-5/p> — 3q,

and moreover

(1.8) DweC(O, T; LYL)%), [IDwlye = Ay P00+ 1[I+ 14,005,
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for 2-S5/p>1-3/q, i=1,2,3,

where ¢=c¢(p, q, 2)does not depend on T since Q is bounded and ||e~ 47| decays
exponentially. In case p=2, it can be shown by using the scalar product that
(1.8) also holds in case 2—5/p=1-3/q, i.e. ¢=2. The continuity assertion on v
and D, follows from the continuity of J,v resp. D,J,v by letting k— oo and using
the estimates above with J,v instead of v; J,v is the Yosida approximation to be
introduced later.

The linearized equation for (1.2) is given by

u' + A =P, f, u0)=uy, 0=Zt=T

in the space H,(Q). Let felLr(0, T; Ln(Q)%) and u(t):= f; e~ 4P fs.
Then the estimate

10'llp.p + A0, < <l fll,,
with ¢=c¢(p, ) >0 has been developed by Solonnikov ([10]). Using the property
| AL W/p*demtdn|| < e 1= (1P*o) we get easily the estimate(f:IlA,,e‘“‘Puolll’jdt>]/p

SclAymtoyg|, with 0<d < 1 p.
Therefore, for all fe L?(0, T; L?(Q)3) and u, € D(A}~1/P)*%) with 0<d=1/p,
we obtain a unique solution

t
u:t——u(t) = e "ruy + fo e~ 1=4nP fds

of u'+A,u=P,f, u(0)=u,, and it holds
(1.9) lu'llpp + 1Al , < el ougll,+ 1 f1,.,)

with ¢=c(p, 2)>0.

In fact, (1.9) holds for 2<p<oo also with 6=0. This follows for p=2
rather elementary using the scalar product and the self-adjointness of A4,, and for
2<p<oo it follows from the imbedding property D(A}~'/P)c B!~!/r-r where
B!~1/r-p is a certain Besov space (a similar argument has been used in [8; p. 362]).
However, we omit the details.

For p=2, we get instead of (1.8) the estimate

(1.10) [A432u(l; = (A 2ol + [u'll2+ 1 Aull; )

with some ¢>0.
In the following ¢, ¢, ¢,,... are always positive constants whose values
may change.
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2. Proof of the main theorem

The proof of Theorem 1.3 rests on the regularization of (1.1) by the Yosida
approximation similar as in [8] and [9]. From well known semigroup properties
of e7'4r (t=0) we get easily that the operators

Jy = (1+k—lAp)—” k=1,2,...

fulfill the following conditions: ||J,|| £ ¢ where c=c(p, 2)>0 does not depend on
k, and lim,_, J,o=v for all ve H,(Q). J, approximates the identity operator I
in the strong sense.

An important property is the estimate

2. | AzJ,l < cke

where c=c(p, Q)>0and 0Za<1 ([2, 17]).
The idea of the proof is to solve in the strong sense the regularized Navier-
Stokes equation

(2.2) u + Au + P[(Jyu)-Ful = P,f, u(0) = u,
instead of (1.2). Then we write (2.2) in the form
u' + Ayu + Plu-Tul = P,f+ P,[(I—J)u-Vu]

and show that the term P, [(I—J)u-Fu] tends to zero as k—cc in the space
Ls(0, T; L9(Q)3) with 4<2/s+3/q; this will prove the theorem.

The next lemma yields the solvability of (2.2) in the strong sense for each
k=1,2,....

2.3. LEMMA. Let2<p<oo, fe LP(0, T; L?()3), and uoe D(AL~1/P)*%) with
0<6<Z1/p. Then for each fixed k=1, 2,..., there exists a unique ue L?(0, T,
D(A,)) which fulfills u’ € LP(0, T; LP(Q)3) and (2.2). It holds the energy equality

@4 QB + 2 [ Ipu@i3d = fuol + 2 [ <), u(ds
and therefore the inequality

(2.5) lu(OlI3 + c,llFul3, = luol3 + call f113,2

where ¢y =¢,(2)>0 and c,=c,(2)>0 depend only on Q.

Proor. We solve (2.2) by Banach’s fixed point theorem; however for
technical reasons we start with regularized initial values J,u, instead of u,.
Thus we solve the equations
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(2.6) u' + Ayu + P[(Ju)-Ful = P,f, u(0)=J,u,

for fixed k, m=1, 2,... in the strong sense (i.e. u € L?(0, T; D(A,)) and u'.e L(0,
T; LP(£2)3)). The solution u depends on k, m; later on we get the desired solution
of (2.2) by letting m— co.

Instead of (2.6) we can solve the equivalent integral equation

Q7)) u(t) = e e uy + f’ e=t=04n(P f—P [(Jou)-Ful)dr, 0<t<T
0

This equation can be solved using Banach’s fixed point theorem. To show
this, we have first to estimate the nonlinear term P,[(J,u)-Fu]; in particular
from this estimate it will follow that P,[(J,u)-Fu]e L»(0, T; LP(Q)3) is well
defined for strong solutions u.

For 2<p< oo we can choose some r with 2—5/p>1—3/r and 2<p<r< oo,
and for p=2 we choose r=2. Then we obtain from (1.5), (1.7), (1.8), and (2.1) the
following estimates for the nonlinear term:

”Pp[(‘]ku)‘ru]“p =< Cl”(-]ku)'pu“p = CZ”']ku“1/p—1/r”ru”1/ra
”Vu”r,ov: é CS(”A;_UPJmMOHp-*'“ul||p.p+ HApu”p,p)n

(el 1)p—17r S call 32Tty < esk32 ully ),

6l S collAS P itolly+ 1 p+ [ Al
1P, L0 Pullly < e (| 1l Pulldn)
< & Telul ol ull.
< ¢ TR 20 ttgly 4 10y | At )2
Thus we obtain

(2.8) () -Fullpoo,r;1r@)3) S TP AT uol + '], + 1 Apull,p) »

where c=c(p, k, 2)>0 still depends on k but not on T.

In particular we get P,[(J,u)-Fu]e L?(0, T; LP(2)?) whenever ue L?(0, T;
D(A,)), u’ € L?(0, T; L7(2)3).

At first we solve (2.7) with p=2 and fixed m, k by Banach’s fixed point theo-
rem. For this purpose we set

(Fu)(t): = e7"42J u, +f;e‘(’""‘l(sz—Pz[(Jku)-Vu])dr,

write (2.7) in the form u = Fu, and we apply the fixed point theorem to the mapping
F: u—Fu defined on the set
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Fr(ug, Ty): = {ue LX0, T,; D(A,))|u" e L%0, T,; LAQ)*), u(0) = J,u,,
u'll 2+ Aull, 2 =R} .

We show that the conditiors of this theorem are fulfilled for some R>0 and
some sufficiently small T, >0 with T; < T; the metric on %g(u,, T,) is given by
lu—d||*:=llu"—d'|;,+ | Au— Ayl ,.

The applicability of the fixed point theorem can be derived from the following
inequalities
| Ful* = ||[Fu—0f*

< (| AY 2 ol 2+ 1f112.0) + €, TY/2
(2.9) (1A 2T ol + 'l 2,2 + 1 A5ull2 2)%
|Fu—Fil|*

s o(flu' —i'llz  + | Au— Ayidlll2,5)
(A2 ol + Nz 2+ 10122+ [ Aully 2+ | A2, T
where ¢,=c(k, m, 2)>0 (v=1, 2, 3) depends on k and m.
We obtain (2.9) by applying (1.9) and (2.8) to (2.7) in the following way
(0=0 for p=2):
[Ful* = cs(1 432 mttoll 2+ 1 f 12,2+ 1(Jew) - Pull2,)
= co(1 A3 2T ol 2+ 11112,2)
+ ;T2 AV uoll 2+ [l 2+ 1 A2ull2,5)%
[Fu—Fill* = cgl(Jew) - Pu—(Jd)-Vii|l,,,
S co(IUu—a)-Fully , + 1(J4l) - F(u—i)ll2) -
The last term can be estimated in the same way as in (2.8); we get
I(J(u—1))-Full,,,
S croTH(iw — @'\l 5,2+ 1 Ayu — Ayl 5) - (1 AY 2T ol + [u'll 2,2+ | A2ull )
S e TP =@l 5,2+ 1 Agu — Ayl ) - (TAY 2T ol + 'l 2+ 1 Aull 2),
1(Jd)- P (u—i),,,
S e THAAY ol + a2 2+ Al 2) (lu' —d'fl2 2+ | Aqu — Azl 5 5) -

Thus we get the inequalities (2.9).

From (2.9) we conclude the applicability of the fixed point theorem with
R:=2c¢,(||AY/2J quoll 2+ 1 fll2.2) and some sufficiently small T, >0; we obtain a
unique strong solution u of (2.7) on the interval [0, T;]. In order to repeat this
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procedure on a second interval etc., we need the energy inequality which prevents
the blow up of the solution before it reaches the point T.
Taking the scalar product of (2.6) with u, we obtain

a3 + 2 [ iruliade = 10003 + 2 <fudde

IIA

e luol3 + 2J0 1f 1 lulld

IIA

eiluol3 + e [ i 13de + e [ julzae

< eiluoll3 + oo [ 1f13de + e [ jruizde
for arbitrary e>0. For some appropriate ¢>0 we obtain
(2.10) o3 + e [ Irulide < eluold + ¢, [ 1713

where ¢s, ¢, ¢;>0 depend only on Q.
Using this energy inequality and (1.10) we obtain

143 2u(T)]; = |AY2(FuXT)ll, < ¢ A3 w0l

T,
([ AT+ 100 Fulgdo

T, 1/2
< Yol + o [ 1/130r)

1/

(T 5 2
e [ Mz wigac )",
Il < esllAxdiully = collull,,

(T 1/2 T, 1/2
(f 1 1anzivunzac)” < cxtsupos o, w0 [ IPulde)

, .
cs<lluollﬁ+fo I f||gdf).

IIA

A

Thus it follows
" (T 2 T
@0 14yl = co huol+( [ 1713d7) " + ol + | 151341 ).

Now we can repeat the above construction of the strong solution for the
next interval [T;, T,] with the initial value u(T;) instead of J,u,, and so forth.
This is possible because the right hand side of (2.10) depends only on the data
f, ug. Therefore in (2.9) we may insert u(T,) instead of J,u,, and we see the
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following: T, T5,... may be chosen so that all the intervals [T,_,, T,] have the
same length. In this way, we get a unique strong solution of (2.7) on the whole
interval [0, T]. Let u,, be this solution for m=1, 2,... and fixed k.

In the next step we show u,eL?(0, T; D(A,)) and u,eL?(0, T; L7(Q)3).
For this purpose we have only to give a bound for |lu,,|, ,+ |4,upl,, on [0, T].
Moreover, we show that this bound is independent of m. This enables us to let
m—oc, and in this way we obtain a strong solution of (2.2).

To find such a bound, we give another estimate of ||(J,u,,)-Fu,ll,,. We can
choose r and a with p<r<oo, 1/2<a<1 and with a(l/p—2/3)+(1—a)/2=1/r—
1/3, and we get from Sobolev’s embedding theorem [4; p. 24] the estimate ||[Fu,,|,
scllduylglluali=e. Using (2/3)3/2)(1/2—(1/p—1/r))—1/2=—(1/p—1/r) and
3/2)(12=(1/p—1/r)=1, we get from (1.5) the inequality ||Ju,ll;/,—1,=
e, || AR/ 2=Aip=1 ]y N, <cyllu,ll, where c3=c5(p, r, Q)>0. Therefore we
obtain

”(Jk“m)‘Vum”p = c4”Jkum”1/p—l/r”Vumnllr
S csllunll3lAumlly
and for any >0 it follows

I(Jettm) - Punlly < cot'/@Apunlly + cze7 =] u,, | Fmap/ 0o,

Applying (1.9) to (2.6) and using the last estimate, we obtain for some suffi-
ciently small ¢>0 the inequalities

lumllpp + Apumllpp < (AL~ 20T gl 1 f 1l o+ 1 ith) - P il 5,
and
Nl pp + 1Al < LA VP oug |l + 1 f 1, + ]l 522270 -9)

where ¢, =c,(p, k, Q, T)>0 is independent of m. Together with (2.10), we get
from the last inequality a bound for |lu,|l, ,+ | 4,u,ll,, which does not depend
on m.

We can now choose a subsequence (u,,,) of (u,,) such that

’ ’

my U in Lr(0, T; LP(Q)3),
Apu,,, — Au in LP(0, T; LP(Q)3).

u

As for the nonlinear term we get (Jyu,,) - Fu,, —v in LP0, T; Lr(Q)*). If ¢ €
CZ((0, T)x Q)3, we have

fz fﬂ ((Jxtt)-V 1, ) dxdt — f: frz ((Jou) - V u)pdxdt
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since Fu,, —Fu in L0, T; LA(Q)%) and Ju, —Ju in LX0, T; L¥Q)%) by
Rellich’s theorem. Thus v=Jiu-Fu and, in particular, P (Jil,, -Fu,)—
P,(Jyu-Vu)in LP(0, T; LP(Q2)3). Finally we arrive at u’'+Au+P,(Jyu-Fu)=f,
u'e Lr0, T; LP(Q)3), Aue LP(0, T; L7(Q)%), u(0)=u,. The u of course obeys the
same bound as the u,. Let us remark that without loss of generality we have

always chosen the same subsequence of (u,,).
To show the uniqueness, we consider two strong solutions u and & with the

same data u,, f. Then we get
(u—i) + Au—i) = P,[(J(d—u))-Fu] + P,[(J,id)-F(i—u)].
Using (1.9), it follows

"“l—al”iuo,r;u») + ”Ap(U—ﬁ)”'ip(o,r;LP) < (I ii —u))- V““iﬂ(o,r;u’)

+ (i) - V(@ —u)lLrc0,1:1r))
for 0<t< T, where c, is independent of ¢.

We set y(1): = ”“"‘a/”ip(o,r;u’) + ||Ap(u_'7)“'ip(o,r;m)-

The same estimates which we have used for (2.8) yield the inequality y(1)<c fl
0

y(t)dz. 1In order to show this we use the same notation as in the proof of (2.8)
and obtain:

I =) - PullEro,i0m S €2 [ 1U@= 8-yl Fullf e
<o [ la—ullpulzde
Using (1.7) and (1.8), the last expression is
ze. [ y@rulzds
< e[y @ar) (1431 wollg+ [ Qi+ 14 ulpdr)

< o [y,
0

In the same way it follows
t
IU0)- P @ =)lrg, i S €5 [ piode

and thus we obtain the inequality y(t)éc’ft y(t)dr. Together with 3(0)=0 we
0
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get that y(t)=0 for all t € [0, T7; it follows u =4 by Gronwall’s inequality.
The energy equality (2.4) follows by taking the scalar product of (2.1) with u.
Lemma 2.3 is proved.

Let us make two remarks: First we want to explain why we have used regu-
larized initial values J,u,. The reason is simply that in the second part of the
preceding proof we need an initial value in D(4}~(1/P*?%) whereas in the first part
it is sufficient to have u, € D(A}/?). Secondly, it follows from the linear theory
that the solution in Lemma 2.3 is in C°((0, T), D(A}/?)).

PROOF OF THEOREM 1.3. Let f, uy and s, g be asin 1.3, and let u, be the strong
'solution of (2.2) for k=1, 2,.... We write (2.2) in the form

u, + A + Plug-Pud = P,f + P,IUT=J)uy-Vuy]

and show that g,:=P,J[(I—J)u,-Vu,] belongs to LP(0, T; LP(2)3) and tends
to zero in L0, T; L9(Q2)3) as k—oo. Then we have proved the last assertion of
1.3. However, because 2/s+3/q>4, we see that s<2 and g<2; it follows that
s£p, g<p and therefore, that L?(0, T; LP(Q)3) is contained in Ls(0, T; L(Q)3)
as a dense subset. Thus we obtain the first assertion of 1.3 too.

As for the main part we show first that g, e L?(0, T; LP(Q2)3). To prove
this we choose r=2 in case p=2 and r>p with 2—5/p>1—3/r in case 2<p.
Then from (1.8) we obtain

IFuglly, o = (A~ Puol ,+ llugllp p+ 1A pudl )
and using 2/3—1/p> —(1/p—1/r) and (1.5), we arrive at
Nl srp—1/r = 2l AUl -
Therefore we get
sl < cs( [ | 1=y Puglzar) "

' (T » p 1/p
= C4< o ”uk”l/p—l/‘r"V“k”l/rdt>

, T '/p
< sy 2ol + g+ 1Ayl ) [ | 140050) "

Because u, is a strong solution of (2.2) it follows g, € L?(0, T; LP(Q)3).

In order to show that g,—0 in Ls(0, T; L4(Q)3), we take an r>q with 4=
2/s+3/r; this is possible because 4<2/s+3/q. Then we can choose ae(0, 1)
with (3/2)(1 —1/r)—a=(3/2)(1 —1/q) and we get

@RG2N=1r)—a) = 1/2 2 (2/3)(3/2)(1-1/q) — 1]2 = = (1/q—1/2)



624 Hermann SoHR and Wolf von WAHL

Using I —J,=(1/k)A,J,, (2.1) and (1.5), we obtain the following estimates:

”gk"q = ”Pp[((I_Jk)uk'Vuk]”q £ o T --Juy) - V“k”q

e R A A Agu) - Fuglly = e I((1/K) A== Agu) - Fugll,
cZ”(]/k)A;—aJkAzuk”l/q»]/l'qukll1/2

esllR)AL TN N Aguill s jq— 172117 will 12

cak™ | Asuill 1 jg- 1,20 uill 12

sk | AR Agu || AY 2uill,

= sk | APID V0|, | AY U,

k™[ AY 2w, 307D 57310 A5 2wy |

= ek AY 50D 5200,

A IA A

A

IIA

Here we have used that A5v= A%y holds for ve D(A45) n D(A%), 0<B<1.
Using 2=s(1+3(1—1/r)) (because 4=2/s+3/r) and s(14+3(1—1/r))=2s-2
we obtain

T s r 1/2 (1+3(1—-1/r)) 1-1 s
loelos = (| Hgulzae) "™ < colo (| 1ay2u 20t pugso—so-umar)

T \1/§ )
< ok ([ nAY3de) " g2

= cok 2 AY 2w, )13/ lu 13721
The energy inequality (2.5) shows that
supy (143 2u 1331 uell3727%) = sup (1P uell 351wl 37279

has a bound which is independent of k. Thus we see that |g,[|, ,—0 as k— oo,
and Theorem 1.3 is proved.
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