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1. Introduction

Let ΩcR 3 be a bounded domain in R3 with a smooth boundary dΩ; ΘΩ is

of class C°°. We consider the equations of Navier-Stokes

(1.1) u' - Δu -f U'Vu + Fπ = /, divw = 0, u \0Ω = 0, w(0) = u0

on the cylindrical domain Ωx(0, Γ)cR4 with some T>0, and we investigate

strong solutions u of (1.1); these are solutions with u e Lp(0, T; H2>P(Ω)3 n

Hl>p(ΩY) and κ'eL*(0, T; L*(Ω)3) for some p with 2^/?<oo.

Using the projection Pp: LP(Ω)3-> H p(Ω) from L*(Ω)3 onto the subspace

Hp(Ω) a LP(Ω)3 of divergence free functions with zero normal component on dΩ

(in the sense of [3]), we can write (1.1) in the following equivalent form as an

evolution equation in Hp(Ω):

(1.2) u' + Apu + Pp(u Γii) = Pp/, ιι(0) = «0, 0 £ / ^ Γ.

Here Ap: υ->Apv: = — PpΔv denotes the Stokes operator with domain

D(Ap): = H2>p(Ω)3{}H}>p(Ω)3ί}Hp(Ω). We can define the fractional powers

A*p of Ap with O^α^l and domain D(At

ρ)^D(Ap) as in [6]. Let/eL"(0, T;

LP(ΩY) and u0eD(Ap~w+*) with some δ, 0<δ<l/p (take u0eD(Ap) for

example). Then a strong solution u of (1.1) or (1.2) is defined by the conditions

ii e L*(0, T; D(Ap)\ u' e L^(0, T; L^(Ω)3) and (1.2).

The existence of strong solutions of (1.1) for arbitrary T>0 is an important

unsolved problem up to now. Therefore it is interesting to know properties of

the set

R(u0): = {/eLp(0, T; L*(Ω)3)|(1.2) has a unique strong solution u

with data/, u0}

for a fixed initial value u0 E D(Ap~
(l/p)+δ). It is not known whether or not R(u0) =

Lp(0, T; Lp(ί2)3); however we can prove some density properties of this set.

This gives us some information how many/do exist such that (1.1) is strongly

solvable.

Solonnikov's theory of local solvability [10; §10] tells us that Λ(ιι0)c

Lp(0, T; LP(Ω)3) is an open subset. In case p — 2 it has been shown that R(u0)
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is dense in the space Ls(0, T; //-'^(Ω)3) with 1 ̂ s<4/3, where H~l 2(Ω)3 is the

dual space of Hl>2(Ω)3 ([4,12]). The aim of the present paper is to prove the
following general density property.

1.3. THEOREM. Let2^p<oo and UOG D ( A }

p - ( l / p ) + d ) with 0<<5<; 1/p. Then
the set /?(w0)cL^(0, Γ; ί/(Ω)3) is dense in the norm of Ls(0, T; L<*(Ω)3) for all s,
<?e( l ,oo) w/ί/z 4<2/s + 3/<?. Therefore, for every fε L^(0, Γ; L*(Ω)3)

ei ery ε>0 i/?ere ex/sfs some # e Lp(0, T; LP(Ω)3) with \\g\\ L*(o,τ;L«(Ω)
such that

uf + Apu + Pp(ιι - Γii) = Pp/ + Pp<?, ιι(0) = MO

0 unique strong solution u.

REMARKS, a) The quantity 2/s + 3/q plays an important role in Serrin's
regularity theory for the equation (1.1) ([8, 16]); a weak solution u is regular if
weL s(0, T; L«(ί2)3) holds for somes, qe(l, oo) with 2/s + 3 / ^ f ^ l .

b) It can be shown that Theorem 1.3 also holds for <5 = 0. This extension
is not difficult to prove for p = 2; it would require the theory of Besov spaces
for 2< p<oo; however this detail does not seem to be very important.

c) Let u0 be as in Theorem 1.3 and let /eLp(0, T; L*(β)3). Then from
1.3 it follows in particular that for every ε>0 we can always find an additional
external force g e L*(0, T; Z/(Ω)3) with

Γ Γ \9(x, t)\dxdt ^
J 0 J Ω

such that the Navier-Stokes equation u'— Au + u - Pu + Fπ=f+g has a unique
strong solution u with ι/(0) = w0.

Our method to prove 1.3 rests on a regularization procedure for (1.1) using
the Yosida approximation (given in [8, 9] in principle) and on an estimate of
the nonlinear term u Vu using the exponent p = 5/4 (given in [14, 15] in principle).

NOTATIONS. For l<p<oo and fc=l, 2,... we need the usual spaces LP(Ω),

Hk>p(Ω), Hk<P(Ω\ Ck(Ω) and Ck(Ω). For a Banach space //, L*(0, Γ; H) isa T \ l / p
\\v\\p

Hdt} , and C(0, T; //)
o /

is the space of continuous functions υ: [0, T]->// with norm \ \ v \ \ C ( Q j T . H ) =

supo^r^T I I K O I I / / - In our proofs it is convenient to use the notations iM|Lp(Ω) =
blip or IMlL/»(β) = Nl ι/p Similarly, we use the notations \\v\\LP(0tT.Lq(Ω)} =
\\v\\q,p=\\v\\ι/qtί/p and \\v\\qt00 = sup0^t^τ\\v(t)\\q. The corresponding spaces of
vector functions v = (vl, υ2 > v3) are denoted by LP(Ω)3, // fc'p(Ω)3,..., respectively.

We set Di'.^d/dXi (/= 1, 2, 3, x = (x l 5 x2, x3)eΩ), u f : = d/dt, F: = (D,,D 2,
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D3), divi;:=^D 1i

(u F)u = ( U ' ( P u ι ) , w (Fw2)» w (Fw3)) and <ι/, u>: = I u(x) - v(x) dx.
JΩ

Let Hp(Ω) be the closure of {u \ u eC°°(ί2)3, d i v w = 0} with respect to the
Lί7(Ω)3-norm. There exists a bounded linear projection operator Pp: Lp(Ω)3->
Hp(Ω), and every veLp(Ω)3 possesses a decomposition v = Ppv+Pπ with πe

Let Ap: D(Ap)-+LP(Ω)3 be the usual Laplace operator in L"(Ω)3 with D(Ap) =

//2 *(β)3 Π H1-^)3 and Apu = D*u + D2

2u + Dlu. PpAp: D(P pA p) -> H p(Ω) is
the usual Stokes operator with D(P pA p) = D(A p) Π Hp(Ω). We set

Ap:= -PPAP and Bp: = -

In our proofs we need some well known embedding properties which follow
from the ellipticity of the Laplace operator ([13]):

Suppose 1 <p^q<co, 0^/?<;αgl, 2a-3lp^2β-3/q. Then we have

(1.4) \\Bβ

qv\\q£c\\B v\\p9 vεD(B )9

where c = c(p, q, α, β, Ω)>0 does not depend on υ.
Using Giga's characterization D(A<

p) = D(B«) n Hp(Ω) ([6]), we see that the
following holds too:

(1.5) \\Aβυ\\q£ c\\A υ\\p for all vεD(A )9

where q, p, β, α, c are as above.
In case β = 0, 4 = 00, 2α —3/p> —3/^ = 0, these estimates remain valid; we

get in particular l l i l l ^^c l l / l^ i l l p in this case.
The operator —Ap generates for p, l<p<oo, an analytic semigroup e~tA**9

ί^O, in //P(Ω) ([14, 5]). Therefore, we get for every υ ε L f ( Q , T; D(Ap)) with
v' ε L"(0, T; L"(Ω)3) the representation

(1.6) φ) = e-tA'v(Q) + Γ e-('-*Mp(
J o

for almost all ίe[0, T]. Using (1.5) and the well known property \\Λ]
cΓ* ([2]), we can derive from (1.6) the following imbedding properties:

Suppose z;eL"(0, T; D(AP))9 ί?'eL"(0, T; L^(Ω)3), ι;(0)e D(/l^1/p),
q<cc. Then we have (after redefinition on a set of measure zero)

(1.7) D6C(0, T;

for 2 - 5/p > -

and moreover

(1.8) D (pe C(0, T; L«(Ω)3),
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for 2 - 5/p > I - 3/4, i = 1, 2, 3,

where c = c(p, q< Ώ)doesnot depend on Γ since Ω is bounded and |k~Mp|| decays
exponentially. In case p = 2, it can be shown by using the scalar product that
(1.8) also holds in case 2 — 5/p=l—3/q, i.e. q = 2. The continuity assertion on v
and D f u follows from the continuity of Jkυ resp. D/J^tf by letting fc->αo and using
the estimates above with /ky instead of v, Jkv is the Yosida approximation to be
introduced later.

The linearized equation for (1.2) is given by

u' + Apu = /%/, u(Q) = MO, 0 g ί g Γ

in the space //,(Ω). Let /e L'(0, Γ; L'(β)3) and ι?(f): = f e~^-s}Arp fds.
J o

Then the estimate

with c = c(p, Ω)>Q has been developed by Solonnikov ([10]). Using the property

ar \ I / P
\\Ape-tA"u0\\*dt}

^ c \ \ A l

p - ^ / P ) + δ u 0 \ \ p with 0<^^ 1/p.
Therefore, for all /eL^(0, T; L*(Ω)3) and M 0 eD(>l p -< 1 /' '> + ί ) with 0<c5^ I//?,

we obtain a unique solution

M : ί -- > M(ί) = e-'A"u0 + Γ e-(t-s)A'PDfds
J o ^

of u' + Apu = Ppf, w(0) = M 0, and it holds

(1.9) l l w ' H p , p + MpM| |p.p^c( | |>l

with c = c(p, Ω)>0.
In fact, (1.9) holds for 2^p<oo also with (5 = 0. This follows for p = 2

rather elementary using the scalar product and the self-adjointness of /42, and for
2<p<co it follows from the imbedding property D(A*p~

l/p)cιBl~l/p'p where
j g i - i / p . p is a certain Besov space (a similar argument has been used in [8; p. 362]).
However, we omit the details.

For /? = 2, we get instead of (1.8) the estimate

( 1 - 1 0 ) Mi/2M(0||2 ^ ^ ( M i / 2 W o l l 2 + l | M ' H 2 , 2 + N 2 M | l 2 . 2 )

with some c>0.
In the following c, c t , c2,.. are always positive constants whose values

may change.
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2. Proof of the main theorem

The proof of Theorem 1.3 rests on the regularization of (1.1) by the Yosida

approximation similar as in [8] and [9]. From well known semigroup properties

of e~tAp (ί^O) we get easily that the operators

fulf i l l the following conditions: ||JJ:gc where c = c(p, Ω)>0 does not depend on

/c, and Y\mk^(X) Jkv = v for all veHp(Ω). Jk approximates the identity operator /

in the strong sense.

An important property is the estimate

(2.1) μμj ̂  cfc

where c = c(p, Ω)>0 and O^α^ 1 ([2, 17]).

The idea of the proof is to solve in the strong sense the regularized Navier-

Stokes equation

(2.2) M' + Apu + PJi(Jku) Γii] = Ppf, ιι(0) = MO

instead of (1.2). Then we write (2.2) in the form

ιι' + Λpu + Pp[u - Γii] = Ppf + Pp\_(l-Jk)u Fιι]

and show that the term Pp[(/ — JΛ)M FM] tends to zero as /c->oo in the space

Ls(0, T; L^(ί2)3) with 4<2/5 + 3/^; this will prove the theorem.

The next lemma yields the solvability of (2.2) in the strong sense for each

fe=l,2,....

2.3. LEMMA. Let 2^/><oo,/e L*(0, T; L"(Ω)3), and w0

\/p. Then for each fixed /c=l ,2 , . . . , ί/i^re exists a unique weLp(0, T;

which fulfills u' e L"(0, T; L^(Ω)3) and (2.2). 7r ήoWs r/?^ energy equality

(2.4) ||ιι(r)||i + 2 Γ ||Fiι(τ)||idτ = ||ιι0||i + 2 Γ </(τ), w(τ)>Jτ
J o J o

and therefore the inequality

(2.5) ||«(0||1 + C i H Γ M l l l . 2 ^ U u o l l i + c2 | |/||i>2

where cl=cί(Ω)>0 and c2 = c2(Ω)>0 depend only on Ω.

PROOF. We solve (2.2) by Banach's fixed point theorem; however for

technical reasons we start with regularized initial values Jmu0 instead of w0.
Thus we solve the equations
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(2.6) ιι' + Apu + Ppl(Jku) - Γii] = Ppf, ιι(0) = Jmu0

for fixed k, m= 1, 2,... in the strong sense (i.e. u eL"(0, T; D(Λp)) and w',eD>(0,
T; Lp(ί2)3)). The solution M depends on /c, m; later on we get the desired solution
of (2.2) by letting m -» oo .

Instead of (2.6) we can solve the equivalent integral equation

(2.7) ιι(ί) = e-'A>Jmu0 + j^ e-wA>(Ppf-Ppl(Jku) - Fκ])</τ, 0 ̂  f ^ T.

This equation can be solved using Banach's fixed point theorem. To show
this, we have first to estimate the nonlinear term Pp\_(Jku) FM]; in particular
from this estimate it will follow that Pp[(Jku) - Fw] e LP(Q, Γ; L*(Ω)3) is well
defined for strong solutions u.

For 2<p<oo we can choose some r with 2 — 5/p> 1— 3/r and 2</?<r<oo,
and for p = 2 we choose r = 2. Then we obtain from (1.5), (1.7), (1.8), and (2.1) the
following estimates for the nonlinear term:

^ c2μ f cιι | | 1 / p_ 1 / Γ | |rιι | | 1 / r,

α^Γ \ 1 / P

IIΛ«l l f/p- ι/ ,II0

^ c7T'/' | |H||p i a ) | |FH|| r >

Thus we obtain

(2.8) ||(Λw) F w | l L P ( 0 , Γ ; L P ( β ) 3 ) ^

where c = c(p, /c, Ω)>0 still depends on k but not on T.

In particular we get Pp[(Jkw) - FM] e L^(0, T; L*(Ω)3) whenever MeL*(0, T;

p)), w'eLp(0, T; LP(Ω)3).
At first we solve (2.7) with p = 2 and fixed m, /c by Banachfs fixed point theo-

rem. For this purpose we set

(Fu)(t): = e~tA2Jmu0 + |β-^-τ)/l2(P2/-P2[(Λw) Fw])ί/τ,
J o

write (2.7) in the form u=Fu, and we apply the fixed point theorem to the mapping

F: u-+Fu defined on the set
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«(«o. Tj): = {« e L2(0, Γ, D(A2)) \ u' e L2(0, Γ, LW), w(0) = Jmw0 ,

We show that the conditions of this theorem are fulfil led for some R>0 and
some sufficiently small Γ,>0 with Tt^T; the metric on ^R(u0, Tj) is given by

The applicability of the fixed point theorem can be derived from the following
inequalities

IIFwII* = HFM-OII*

(2.9)

where cv = cv(/c, in, Ω)>0 (v= 1, 2, 3) depends on k and m.
We obtain (2.9) by applying (1.9) and (2.8) to (2.7) in the following way

(<5=0forp=2):

IIFii l l* ^ c5(μi/2JmMo||2+||/||2>2+||(Λ«) Fu||2,2)

||F«-Ffi||* ^

The last term can be estimated in the same way as in (2.8); we get

IKΛ(«-β)).pu||2>2

^cuTi/2(||M '-«'i|2,2+||/l2 M-/l2M||2,2)-(|Ml/2Jm M o | |2+||«'| |2,2+||/l2 M | |2,2),

||(Λw) F(W-M)||2,2

Thus we get the inequalities (2.9).
From (2.9) we conclude the applicability of the fixed point theorem with

R: = 2cί(\\Al

2/
2Jmu0\\2 + \\f\\2,2) an<l some sufficiently small T!>O; we obtain a

unique strong solu'ion u of (2.7) on the interval [0, TJ. In order to repeat this
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procedure on a second interval etc., we need the energy inequality which prevents

the blow up of the solution before it reaches the point T.

Taking the scalar product of (2.6) with w, we obtain

NOIIi + 2 Γ | |Γιι| |l£/τ = ||JMii0||i + 2 Γ </, uydτ
Jo Jo

= c ' ι l l w o l ! 2 + 2 I II / ' !Nl w l !2^ τ

J o '

g ^ H i / o i l 2 -f r2ε~2 Γ | ί/ ! 2 c/τ -f c 3ε
2 Γ \\u\\\dτ

Jo Jo

Γ' Γr

~ J o ' 2 J o

for arbitrary ε>0. For some appropriate ε>0 we obtain

(2.10) | |«(0lli + c, Γ I I Γ H l H r f τ ^ < 6||«0||i + CΊ Γ ||/| |irfτ,
J o Jo

where c5, c 6, c 7>0 depend only on Ω.

Using this energy inequality and (1.10) we obtain

\\f\\ldτ

αΓi \ l / 2 / ΓTi

| |Λ" l l l , l lF« l l i r f t ) ^ c7(suPo<,<Γ, NOIIi) 1 / 2( \\ru\\\d-
0 / ~ ~ \J 0 * ^'21τ

Thus it follows

(2.Π) |μ2/
2H(T,)||2 g c 9( | |M 0 l l2+( Γ' ll/lli^)'/ 2 +| |«oll i+ Γ'

\ \ J o / J o

Now we can repeat the above construction of the strong solution for the

next interval [7^, T2] with the in i t ia l value u(Tλ) instead of Jmu0, and so forth.

This is possible because the right hand side of (2.10) depends only on the data

/, uQ. Therefore in (2.9) we may insert u(T{) instead of Jmt/0, and we see the
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following: T l9 T2,... may be chosen so that all the intervals [Tv_1 ? Tv] have the
same length. In this way, we get a unique strong solution of (2.7) on the whole

interval [0, T]. Let um be this solution for m=\9 2,... and fixed k.
In the next step we show w^eL'ίO, T; D(Ap)) and w^eL^O, T; L*(Ω)3).

For this purpose we have only to give a bound for ||t/J|ptp-f M^wJUp on [0, T].
Moreover, we show that this bound is independent of m. This enables us to let
w->oo, and in this way we obtain a strong solution of (2.2).

To find such a bound, we give another estimate of \\(Jkum) - Fum\\p,p> We can
choose r and a with p<r<oo, \/2<a<\ and with a(\/p — 2/3) + (1 — 0)/2= 1/r —
1/3, and we get from Sobolev's embedding theorem [4; p. 24] the estimate ||FwJ|r

^JJwJ|S||ιιm||i-«. Using (2/3)(3/2)(l/2-(l/p- 1/r))- 1/2= -(\/p- 1/r) and

(3/2)(l/2-(l/p-l/r))gl, we get from (1.5) the inequality | |Λ««ll ι/p-ι/r^
C 2 |μ^/2)(i/2-(i/p-ι/r))y k l / f ί i | | 2^C 3 | |W w | | 2 where Cz = c3(p, r, Ω)>0. Thereforewe

obtain

\\(Jk» J rujp ^ c4\\Jkum\\l/p-1/r\\rum\\ί/f

and for any ε>0 it follows

\\(JιPm) rum\\> ^ c6εV \\Apum\\p + cΊe-w-°>\\ uj?

Applying (1.9) to (2.6) and using the last estimate, we obtain for some suffi-
ciently small ε>0 the inequalities

IKIIp., + IIVJU ^ cι(MΓ<1/p)+ί '««ollp+ll/l lp.p+ll(Λ«J fw«llp,p)

and

. . >

where c2 = c2(p, /c, ί2, T)>0 is independent of m. Together with (2.10), we get
from the last inequality a bound for ||wj|p>p-f Mpwm | |p ,p which does not depend
on m.

We can now choose a subsequence (M ) of (um) such that

u'mj - *u' in

ApUm. Apu in Z,p(0, T; ̂  ̂ ύj ,.

As for the nonlinear term we get (Jkum) Fum.--v in L"(0, T; L"(£2)3). If φ e
q?((0, T) x ί2)3, we have

Γ Γ ((Jkumj) rumj)φdxdt > Γ Γ ((Jku) Γu)φdxdt
J θ J β J 0 J Ω
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since Γumj-*ru in L2(0, Γ; L2(Ω)3) and Jkum.-+Jku in L2(0, T; L2(Ω)3) by

Rellich's theorem. Thus v = Jku-Fu and, in particular, Pp(Jkumj'^um)-^
Pp(Jku ί7u) in L*(0, T; I/(ί2)3). Finally we arrive at u' + Apu + Pp(Jku Fu)=f,
u' e ί/(0, T L^(ί2)3), Apu e L*(0, T; L*(Ω)3), u(0) = MO. The ι/ of course obeys the
same bound as the um. Let us remark that without loss of generality we have
always chosen the same subsequence of (MOT).

To show the uniqueness, we consider two strong solutions u and u with the
same data u0,f. Then we get

(u-ay + AP(U-U) = pp[(Λ(fi-κ)

Using (1.9), it follows

for O^ί^T, where ct is independent of t.

We set y(t): = | | t t ' - f i 'H£p ( o. f ;Lp) +

The same estimates which we have used for (2.8) yield the inequality y(t)^c I
J o

y(τ)dτ. In order to show this we use the same notation as in the proof of (2.8)
and obtain :

(0ι(>:ί.P) ^ c2 Γ ||Λ(ΰ-U)||?/p_1
\) 0

o

Using (1.7) and (1.8), the last expression is

ί c6 f y(τ)dτ.
J 0

In the same way it follows

||(Λΰ) F(M-u)| |^ ( 0 >, ; Lp )^c 7 Γ y(τ)dτ
J 0

and thus we obtain the inequality y(t)^c \ y(τ)dτ. Together with j'(0) = 0
J o

we
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get that XO — 0 for all t e [0, T]; it follows M = M by GronwalΓs inequality.
The energy equality (2.4) follows by taking the scalar product of (2.1) with u.

Lemma 2.3 is proved.

Let us make two remarks: First we want to explain why we have used regu-
larized initial values Jmu0. The reason is simply that in the second part of the
preceding proof we need an initial value in D(A^~(l/p)+δ), whereas in the first part

it is sufficient to have MO e D(A\I2\ Secondly, it follows from the linear theory
that the solution in Lemma 2.3 is in C°((0, T), D(A\'2)).

PROOF OF THEOREM 1.3. Let/, u0 and 5, q be as in 1.3, and let uk be the strong

solution of (2.2) for fc= 1, 2,... . We write (2.2) in the form

iij + Apuk + Pp[ttfc- FtiJ = Ppf+ Pp[(/- J>k FiiJ

and show that 9^ = Pk{.(ί-Jk)^k'^uk} belongs to L*(0, T; L"(ί2)3) and tends
to zero in Ls(0, T; Lq(Ω)3) as fc-»oo. Then we have proved the last assertion of
1.3. However, because 2/s + 3/g>4, we see that s<2 and q<2\ it follows that

s^p, q^p and therefore, that L*(0, T; L"(Ω)3) is contained in Ls(0, T; L«(Ω)3)
as a dense subset. Thus we obtain the first assertion of 1.3 too.

As for the main part we show first that gk e Lp(0, T; LP(Ω)3). To prove
this we choose r = 2 in case p = 2 and r>p with 2 — 5/p> 1 — 3/r in case 2<p.
Then from (1.8) we obtain

| |Fιιk | | r i α o £ c 1 (M>- 1 /" i io l l p +| |Mi l l p . p +M p M k | | p f p )

and using 2/3 — 1 /p > — ( 1 jp — \ /r) and (1.5), we arrive at

Therefore we get

Because w f c is a strong solution of (2.2) it follows gke LP(Q, T;

In order to show that gk-*ΰ in Ls(0, T; L^(Ω)3), we take an r>q with 4 =
2/5 + 3/r; this is possible because 4<2/s + 3/q. Then we can choose αe(0, 1)

with (3/2)(1-l/r)-α^.(3/2)(l-l/ήf)and we get

(2/3)((3/2X1-l/r)-α) - 1/2 ^ (2/3)(3/2)(l-l/^f) - 1/2 - -
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Using l — Jk = (\lk)ApJk, (2.1) and (1.5), we obtain the following estimates:

Here we have used that Aβ

pv = Aβ

2v holds for ve D(A"p) Π £>(/4£), Og/?^ 1.
Using 2 = s(l+3(l-l/r)) (because 4 = 2/s + 3/r) and s(l+3(l-l/r)) = 2s-2

we obtain

«( Γ i
\ J 0

_ „ Lr-x\\ Λ l / 2 , . | |2/s | | | , \\2-2ls
— C6K \\Ά2 uk\\2,2\\Uk\\2,π '

The energy inequality (2.5) shows that

has a bound which is independent of k. Thus we see that ||0*||9>s->0 as /C-»GO,

and Theorem 1.3 is proved.
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