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1. Introduction

Let X be a Banach space with norm || - 1| and we denote by B(X) the set of all

bounded linear operators on X to X. A one-parameter family C = {C(t)\ teR =

(— oo, oo)} in B(X) is called a cosine family on X if it satisfies the following three

conditions :

(1.1) C(ί + s) + C(f-s) = 2C(t)C(s) for all ί, seR;

(1.2) C(0) = / (the identity operator)

(1.3) C(i) is strongly continuous in t.

The associated sine family S = {S(t); t eR} is the one-parameter family given by

S(t) = Γ C(s)ds.
J o

The (infinitesimal) generator A of a cosine family C is defined by

(1.4) Ax = limΛ_0 2h~2(C(h)-I)x

whenever the limit exists. Hence the set of elements x for which HmΛ^0 2/ι"2

(C(/ι) — 7)x exists is the domain of A and is denoted by D(A).

The following theorem was established by Sova [12], Da Prato-Giusti [1]

and Fattorini [2], It is analogous to the Hille-Yosida theorem on the generation

of semigroups of class (C0).

THEOREM 1.1. Let A be a closed and densely defined linear operator in X.

Then A is the generator of a cosine family C satisfying

for f e R ,

if and only if for all λ with λ>ω,

(1.5) λ2 6 ρ(A) (the resolvent set of A) ,

(1.6) \\(dJdλ)"lλR(λ2; Am ^ Mn\(λ-ωTn~l
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for π e N = {0, 1, 2,...}, where R(λ2', A) = (λ2-A)~l (the resolvent of A).

Let A be a linear operator in X and consider the Cauchy problem for the
evolution equation of second order in time

(1.7) u"(t) = Au(t)9 w(0) = x, w'(0) = y.

The problem (1.7) is uniformly well-posed (see [2] and [13]) if and only if A
generates a cosine family C; in this case the unique solution of (1.7) is given by

u(t\ x, y) = C(t)x + S(f)y. For first order evolution equations of the form

(1.8) u'(t) = Λιι(ί), n(0) = x,

several authors have treated the case where p(A) = 0 (see e.g. [7], [8], [9] and [10]).
However, it seems that there has been no attempt to consider the corresponding
problems in the second order case.

In this paper we make an attempt to treat the Cauchy problem (1.7) in the

case in which p(A} = 0. We proceed with our argument as follows: Let A be a
closed linear operator in X and let y be a linear manifold of X. We then impose
on them the following conditions:

(a) y is a normed space under a certain norm ||| ||| which is stronger than
the original norm || || of X\

(b) there exists a real ω such that for each λ > ω, the range R(λ2 — A) contains
y, R(λ2) = (λ2-AΓl exists, and such that y is invariant under R(λ2)',

(c) there exists a constant M > 0 such that

"[n/2] ( H \ J n-k(
-Λ=0 I 2k ) λ ^

for xe y, λ>ω and neN, where Jλ = λ2R(λ2).
Under these conditions and an assumption on the denseness of Y2 in Y

(see §3), there is a one-parameter family {C(ί); ίeR} of linear operators defined
on y such that C(t)x is a solution of (1.7) with xe yand y = Q.

In addition, we give another proof for the "if" part of Theorem 1.1. It
should be noted that we do not make use of the Laplace transform in this proof.
In §4 we shall construct approximation schemes for a cosine family C in terms of
the resolvent of its generator.

2. Preliminaries

Let C be a cosine family on X and S the associated sine family. Then by
condition (1.1), we have

(2.1)
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Let A be the generator of C. Then we have for x e D(A) and t e R,

(2.2) AC(t)x = C(i)Ax, C'(i)x = AS(t)x = S(t)Ax.

Moreover, under the assumpition of Theorem 1.1, we have

(2.3) ||C(OII ^ M<*Ί'l, ίeR,

(2.4) λR(λ2; A) = Γ e-λtC(i)dt, λ > ω;
J o

and hence

(2.5) ||5(OII g M\t\e»\'\, ίeR,

(2.6) R(λ2; A) = f °° e-λtS(t)dt, λ > ω.
J o

Now let A be a closed linear operator in X and let Y be a linear manifold of
X. We impose the following conditions on A and Y:

(a) Y is a normed space under a certain norm ||| ||| which is stronger than

the original norm || || of X
(b) there exists a real ω such that for each λ>ω, R(λ2 — A) contains Y,

2) = (λ2 — A)~i exists, and such that Y i s invariant under R(λ2)\
(c) there exists a constant M>0 such that

I I I v l l l\\\x\\\

for x e 7, λ>ω and n e N, where Jλ = ΛAR(Λ,2).
Now for the problem (1.7) with y = 0 and the problem (1.7) with x = 0 and y = x

we consider the following two approximate schemes:

( λ2(un+1 — 2un + un-1) = Aun+ΐ, neN,

MO = x, u1 = (/ — λ 2A) Ix9 λ > ω,

and

(2.8)

where xey . For λ>ω, we put Jλ = (I — λ~2A)~~l. Then we can rewrite (2.7)
and (2.8) as follows:

(2.9) M Π + I = 2JAMn - /A.!, vn+1 = 2Jλι;rt - JΛ_ I ? neN.

LEMMA 2.1. For A>ω and x e Y the following equalities hold:



594 Tosiharu TAKENAKA and Noboru OKAZAWA

(2.10)

(2.11) vm = ΣE(=

PROOF. It is clear that (2.10) and (2.11) hold for n = 2. Assume that (2.10)

holds for n^2m. Then the application of (2.9) implies

m T 2m+l-k( T _ T\kγ _ ^m~l *-m ~ I 2m-k( T _ T\k y=ol 2k ) λ ^ λ ' 2^k=o ( 2k / λ ^ λ '

»"—
m (2m \ j 2m+l-k( T _ T\kY _ ^m-lf 2m — 1 λ r 2m~k( J _ T\kγ
k=0\2k J λ ^ λ 2' x 2-fc=ol 2k ) λ ^ λ '

— V»ι-l ( ^m~ ̂ \ J 2m+l-k( T _ ΓUV _|_ V w ί^m— 1 λ r 2m+\-k( T _ / \ f c v— 2 ^ f c = o i 2A: y Λ ^ λ ^ 2-k=ι I 2fc— 1 y A ^ λ '

7" 2m-k( T _ 7U+1 v — V w m 7 2m+l-k ( J _ Ί\k

λ ^ ' ^=l λ ^λ J'
Hence we obtain

(
l 2A:

/ 2m+l-k( T _ 7\fc v ι V m ί I 7 2m+l-k( T _ 7\Λ vA ^ λ ' 2-Λ=ι I 2A: — I / A ^ λ '

i ( AWT 1 λ T 2m+l-k( T _ T\kγ
=θl 2k ) λ ^ λ ' '

Next assume that (2.10) holds for n^2m+l. Then we can derive (2.10) with n

replaced by 2m 4-2 in the same manner as above.

Next assume that (2.11) holds for n^2m. In a way similar to the proof of

(2.10) we have

J f , _ 7 ym-l f 2fH \ J 2m+l-k( T _ T\k
/~v2m+l — Z Z-Jt = 0 I 2/C-f 1 / ' λ

— ymΓJ (2m~~ ^\J 2m~k(J — I)kX = Y™- (^m~^ ^\J 2m+l-kίJ __ l\kχ

We may omit the proof of the rest part. q. e. d.

LEMMA 2.2. Let A be a closed linear operator in X and let Ύ be a linear



Abstract Cauchy problems 595

manifold of X. Assume that conditions (a)-(c) are satisfied. Then we have

(2.12)

that is

(2.13)

PROOF. First we note that u1=Jλx. Furthermore, we see from Lemma 2.1

that

Let α π _y be the coefficient of Jλ

n~jx, namely

Using a well known formula, we see that an-j can be written as

But since

we have

»(»-J-l\=«(«-J-JV< nl = (n\
"j\ J~l ) yf(ιι-2y)! = jl(n-j)! \jj'

It then follows that

Noting that

«Λ = Σfc/o2](2fc

we obtain

2" t/Λ"x — un— 2-y=ι an-jJj? Jx.

We now assume that (2.12) with n replaced by k holds for l^/c^/7 —1. Then

we have
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II 2"- '7A"|| 5Ξ

and hence

117/11 ί£ 2<«-2>2

— CO — CO

111*111

III x III .

q.e. d.

For λ, μ>ω and xe V, we have

Therefore, R(λ2)x is continuous in λ with respect to the norm
is continuously diίferentiable with respect to λ.

In what follows we shall make use of the notations:

Hence R(λ2)x

Fix = (d/dλ)"R(λ2)x, G"λx = (dldλ)n[λR(λ2)x'\ .

To see that Fn

λx and Glx are well-defined for x e 7, we prepare the next
lemmas.

LEMMA 2.3. Assume that R(λ2)x is n times continuously differentiable with
respect to the norm || - 1|. Then the following relations hold:

(2.14)

(2.15)

(2.16)

(2.17)

λFn

λx + nFl~λx = Gjx,

λGn

λx + πGj-1^ - v4Fjx

Fix + + n(n-\)Fn

λ~
2R(λ2)x = 0,

Gjx + 2λnGΓlR(λ2)x + «(«-

PROOF. First, we note that (λ2-A)R(λ2)x =
times in λ we have (2.14), (2.15) and

(2.1.8) λ2F«λx +

From (2.14) we have

(2.19) λ2G"λx + 2λnG"λ~
lx

x = 0.

Differentiate both sides n

= AF"λx.

nAFn

λ~
lx = AG"λx.

Therefore, (2.16) and (2.17) are direct consequences of (2.18) and (2.19). q. e. d.

LEMMA 2.4. Let R(λ2)x be as in Lemma 2.3. Then we have for λ>ω and
x e Y
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(2.20) Gjx = (-l)-nU---1 Σ^

(2.21) Fix = (- \

PROOF. By virtue of Lemma 2.1 it is enough to prove that for x e Ύ we have

Gjx = (-l)nn\λ-a-lun+ί and Fpc = (- l)"nlλ-"-lvn+i.

We shall prove them by induction. Using (2.9) and (2.17), we have

Gn

λx = - 2λnGΓlR(λ2)x - n(n-l)Gn

λ~
2R(λ2)x

= (-l)"nU--1(2JΛ-JA_1) = (-\Yn\λ~^un+,.

Relation (2.21) can be derived in a way similar to the proof of (2.20). q. e. d.

Lemmas 2.3 and 2.4 together imply that Fn

λx is differentiable. Therefore,
Fix and Gn

λx are well-defined for x e Ύ. Let A be a closed linear operator in X
and consider the differential equation in X

(2.22) (d2/dt2)u(t) = Au(t\ t<=R.

By an abstract Cauchy problem for A we mean the following:
AC P. Given an element xeX, find an X-valued function u(t) = u(t\ x, 0)

defined on R such that

( i ) u(i) is twice continuously differentiable in f,
(ii) for each f eR, u(t)eD(A) and u(f) satisfies (2.22), and

(iii) w(0) = x, H'(0) = 0.
A function u(f) satisfying (i)-(iii) is called a solution of ACP.

DEFINITION 2.5. Let D be a linear manifold in X such that

(2.23) there is a norm ||| ||| under which D is a normed space,

(2.24) there are seminorms p( ) and q( -) on D.

Let {ί/(0; teR} be a family of operators on D into D(A) satisfying

(2.25) for every x e D, u(t)= U(t)x is a solution of ACP,

(2.26) there exists a positive constant M such that

||£/(ί)x|| ^ Me»IΊ|||x|||, ||£/'(0*ll ^ M\t\e»\'\p(x)9

and Ml/(0x|| ^ M^I'l^x) for xeD, ίeR.

We call {£/(0; ίeR} a, family of solution operators of ACP on D with type
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ω. It follows from condition (ii) that D^D(A). Also, by (2.25), the norm ||| |||
is stronger than the original norm || || on D.

3. Construction of solution operators

Let A be a closed linear operator in a Banach space and Ybe a linear manifold
in X satisfying conditions (a)-(c) which have been introduced in the preceding
section. We further introduce two linear subspaces of Y:

Y, = {x e y; Ax e Y } ,

Y2 = {xeY^AxeYJ.

From the relation

R(λ2)x - R(μ2)x = - (λ2-μ2)R(λ2)R(μ2)x for λ, μ > ω and x e y,

we see that

(3.1) λ2R(λ2)x - x = R(λ2)Ax (e y) for x e Yΐ and λ > ω.

We need the following lemmas:

LEMMA 3.1. Let A be a closed linear operator in X and let Y be a linear

manifold of X satisfying (a)-(c). Then we have for λ>ω and x e y,

(3.2) I I G j x I l £Λfιι!(λ-ω)-»-'|NII,

(3.3) | |FJJC|| ^

PROOF. By Lemma 2.4, it is clear that (3.2) follows from (c). From this and

(2.14), we obtain (3.3) by induction. q.e. d.

LEMMA 3.2. Let A and Y be as in Lemma 3.1. Moreover we assume

that Yl is dense in Ywith respect to the norm\\\ - \\\. Then we have for xe y

(3.4) lim^oo i~ 1-λ n + lF n

λx = 0,
n\

(3.5) lirn^oo -> ~-/— λn+}G"λx = x.
n\

PROOF. We prove the above formulae by induction with respect to n.
From (3.1) and (3.2), we have
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Since Yl is dense in 7, we obtain (3.4) and (3.5) in the case of /7 = 0. Assume
then that (3.4) and (3.5) are valid for n^fc-1. By (2.15) we have

(-!.)*
~k\~~

[-I)"'1

k'l"

The first term on the right side is convergent to x as λ-+co by the induction hypo-
theses. For x e Yί9 we have

(-1)*
k\

λkF\Ax < M ( ' III Av\\\= m Ύ: ^\k+2 H I Λ X H I -(λ-ω)

Therefore the second term is covergent to 0. Since Yl is dense in Y by assumption,
(3.5) is obtained for any x e Y. Next, (2.14) yields

fcΓ~Λ

The first term on the right side is convergent to 0 by the assumption of induction.
For x e 7, we have

1' — \Y
~k\~

From this (3.4) follows.

For x e Y and f 3:0, we set

(3.6) C,,(ί)x = - ( - - ( ι ι /

Mλk

x

q. e. d.

for t > 0, Cn(0)x = x,

(3.7) for , Sπ(0)x = 0,

(3.8) for o 0, Wn(0)x = x.

By virtue of Lemma 3.2, Cn(ί)x, S,,(t)x and WB(ί)x are continuous in f ϊ O. From
(3.2) and (3.3), we have for n^2ωt, f ^ O and xe Y,

(3.9) \\CH(t)χ\\

(3.10) \\Sn(t)x\\ :

(3.11) 11^(0* II ^4M^MIIχ|l |.

Differentiating Cn(t)x and Sn(t)x in ί, we see from (2.14) and (2.15) that for
xe Y,
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(3.12) (d/dt)C,,(t)x = ~n

= ASn(t)x = Sn(t)Ax,

(3.13) (dldt)SΛ(t)x= "+1 ( , (n/t)"+2GWx= "+1 Wn(t)x .

Noting that

Wa(t)x - C,,(t)x = (-V"+

\n ~r I ) '. ft :

= v"];̂ ,1 (n/t)"+}AF"n^x + l

n ASn(t)x,

we have

(3.14) || WH(t)x-Ca(t)x\\ ^ 32^ Me2"' \\\Ax\\\ for x e Y, .

LEMMA 3.3. Let A be a closed linear operator in X and let Y be a linear
manifold of X satisfying (a)-(c). Moreover we assume that Y2 is dense in Ywith
respect to ||| - |||. Then for any x e Y, Cn(t}x and Sn(t)x defined respectively by
(3.6) and (3.7) both converge as n-»oo with respect to \\-\\. In each case the
convergence is uniform with respect to t on bounded intervals o/[0, oo).

PROOF. Let ε>0 and xe Yλ. It follows from (3.12) and (3.13) that

Cm(ε)Cn(t~ε)x - Cm(t-e)CH(ε)x

+ Sm(ε)Sn(t-ε)x - Sm(t-ε)Sn(e)Ax

= ΓF [_CJ,t-s)ASn(s)x-Sm(t-s)ACn(s)xlds
J ε

Γ"1 n+lSm(t-s)AWa(s)x- Wm(t-s)ASn(s)x ds,
J ε L n m

and hence

Cn(t)x - Cm(i)x = Γ lCm(t-s)-W
J o

+ (' Sm(t-s)lWa(s)-Ca(s) ]Axds
J o

m
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Therefore (3.14) implies that for each xe Y2

\\CH(t)x-Cm(t)x\\ ^ 6* (-l

n + ^M2t*e2«<\\\A>x\\\

2»< \\\Ax\\\.

Since Y2 is dense in Y, Cn(t)x converges uniformly for bounded t for each x e Y.
Moreover we see from (3.14) that Wn(i)x converges too. Since

Sn(t)x = Γ -̂  Wn(s)xds9J o n

Sn(t)x also converges uniformly for bounded t. q.e. d.

For xe Y and ί^O we define C(t)x and S(t)x as the || || -limit of Cn(t)x and
Sn(t)x9 respectively :

(3.15) C(t)x = lim^m Cn(t)x = lim^ Wn(t)x,

(3.16) S(t)x = lim^ £„(/)* = Γ C(s)xds.
J o

We can extend C(t)x and S(t)x for ί<0 as follows. For f^O, we set C( — t)x =
C(i)x and S( - t)x = - S(t)x. We denote the extensions again by {C(t)x; ίeR}
and {S(t)x; reR}. Then C(t)x and S(i)x satisfy

(3.17) \\C(t)x\\ ̂

(3.18) ||S(Ox|| ^

From (3.12) and (3.13) we have for x e Yt

(3.19) Cn(t)x = x + --- (t-s)Wn(s)Axds.
J o n

Passing to the limit as H-»OO, we obtain

(3.20) C(t)x = x + Γ (t-s)C(s)Axds
J o

and we infer that C(t)x is twice continuously differentiable in t for x e Yλ. Noting
that ACn(t)x = Cn(ί)Ax for x e Y j and A is closed, we see that C(t)Y1^D(A).
Moreover, we obtain

(3.21) (d/dt)C(t)x = AS(t)x, (d2/dt2)C(t)x = AC(t)x = C(t)Ax,

for x e 7X and
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(3.22) C(0)x = x, x e y, C'(0)x = 0, x e Yί.

We are now in a position to state the main result of this section.

THEOREM 3.4. Let A be a closed linear operator in X and let Ύ be a linear

manifold of X satisfying (a)-(c). Furthermore we assume that Y2 is dense in Y
with respect to the norm \\\ |||. Then {C(i)\ ίeR} has the following properties'.

(i) \\C(t)x\\^Me(l)\^\\\x\\\ for x e Y and f e R ,

( i i ) for each xe y, C(i)x is \\ \\-continuous in f eR,

(iii) C(t)x - x = Γ S(s)Axds for xeYί and ίeR,
J o

(iv) λR(λ2)x = Γ°° e~λtC(t)xdt for λ> ω and x e Y,
J o

(v) R(λ2)x = Γ e~λtS(t)xdt for λ>ω and x e Y .
J o

PROOF. It remains to prove (iii)-(v). For x e 7 j , we obtain (d/ds)C(s)x =
AS(s)x = S(s)Ax. Integrating both sides of this equality from 5 = 0 to s = ί, we

get (iii). For x e Y1

(d/ds)e~λsS(s)x = - λe~λsS(s)x + e~λsC(s)x.

Integrating both sides of this identity from s = 0 to s = t, we have

e~λtS(t)x = - λ Γ e~λsS(s)xds + Γ e~λsC(s)xds.
Jo Jo

Since ||S(ί)^II^Λfίeωί | | |x|||, letting f-»oo gives

(3.23) Γ°° e~λsS(s)xds = \ Γ e~λsC(s)xds.
Jo * J 0

Similarly, for x e Y1 and λ > ω

(d/ds)eλsC(s)R(λ2)x = - λe-λsC(s)R(λ2)x + e~λsS(s)AR(λ2)x

= - je~λsC(s)x - J- e~λsC(s)R(λ2)Ax + e~λsS(s)AR(λ2)x.

Hence integrating this from 5 = 0 to 5 = / yields

e~λtC(t)R(λ2)x - R(λ2)x = - J Γ e~λsC(s)xdsA J o

- \ Γ e~λsC(s)R(λ2)Axds + Γ e~λsS(s)R(λ2)Axds.A J o J o
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Assertion (iv) follows from (i) and assertion (v) is deduced from (iv) and (3.23).
q.e.d.

THEOREM 3.5. Let A, Y, Yί and Y2 be as in Theorem 3.4. Then {C(ί);
ίeR} is a unique family of solution operators of ACP on Y{ with type ω.

PROOF. We have already proved the assertion except the claim for the
uniqueness. Let (U(t)} be a family of solution operators of ACP on Yί with type
ω. Then for x e Y ί 9 we have

[έΓλsl/'(s)jc] = - λe~λsU'(s)x + e~λsAυ(s)x

and hence

e-λtU'(t)x = - λ Γ e~λsU'(s)xds + A Γ e~λsU(s)xds.
Jo J o

Letting /->oo, we have

λ Γ° e~λsU'(s)xds = A f°° e-λsU(s)xds.
Jo Jo

Since the left-hand side can be written as

- λx + λ2 Γ°° e~λsU(s)xds
J o

and R(λ2-A)=> Y, we have

λR(λ2)x = Γ°° e~λsU(s)xds.
J o

By Theorem 3.4 (iv) there can not exist more than one family of solution operators
satisfying conditions (2.25) and (2.26) stated in Definition 2.5. q. e. d.

In the remainder of this section we consider a particular case and establish
a second-order analogue of the first order case which was treated by Oharu [9].

Let A be a densely defined and closed linear operator in X and let k be a
positive integer. Then we may regard D(Ak) as a Banach space with respect

to the norm

ιwι* = MI + MXII +•••+ \\A*X\\.
We write [D(/4fc)] for this Banach space.

We consider the following conditions :

(1) there is ωeR such that {λ2; λ > ω} c p(A),
(2) there exists a constant M>0 such that

|| Gjjcj ^ Mn l(λ - ω)-w- J || x ||λ for λ > ω and x e D(Ak) .
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Then the pair of A and [D(Ak)~] satisfies the conditions (a)-(c). Furthermore,
D(A") is dense in [D(Ak)] for n^k (see Oharu [9; Lemma 2.7]). Consequently,
there is a family {C(0; teR} of solution operators of ACP on [D(Ak)~] with type
ω:

\\C(t)x\\ ^ Me<°W\\x\\k for xeD(Ak) and / e R .

THEOREM 3.6. Let A be a densely defined and closed linear operator in X.
Assume that the above conditions (1) and (2) are satisfied. Then for each xe
D(/4*+1), C(t)x becomes a unique solution of ACP. Moreover, for x e D(A2k),
(C(t)} has the cosine property

C(ί + s)x + C(t-s)x = 2C(ί)C(s)x.

PROOF. Let u(t) be any solution of ΛlCP with the same initial value x.
Putting

v(t) = C(t)x - u(ί), ίeR,

we see that ι;(0) = 0, ι;'(0) = 0 and v"(t) = Av(t). Now, let λ0ep(A). Then
A)kv(t)eD(Ak+l)and

; A)kv(s) = C(t-s)R(λ0

2; A)kAv(s).

By integration by parts we have

Γ AC(t-s)R(λ0

2; A)kv(s)ds = Γ C"(ί
J o J o

= Γ C'(r-J o

and

Γ C(r-5),R(/l0

2; A)kAv(s)ds = Γ C(ί-
J o J o

= Λ(/0

2; X)*ι?'(ί) + Γ C'(t-s)R(λ0

2; A)kvf(s)ds.
J o

Therefore, ι;'(0 = 0 for r e R and v(t) must be constant. But ι;(0) = 0, and v(t) = Q.
Next, let xeD(A2k+l). Then C(t)xeD(Ak+l). We set for x e D(A2k+ί)

-f C(ί-s)x - 2C(OC(s)x.

Then, in a way similar to the above argument, we can show that w(f) = 0, i.e.,

C(f-s)x + C(r-s)x = 2C(t)C(s)x for xeD(A2k+l).
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Here C(t)C(s) is a bounded linear operator on [D(A2k)~] to X and so are C(t + s)

and C(ί-s). Noting that D(A2k+l) is dense in [D(A2k)~] (see Oharu [9; Lemma

2.7]), we obtain the desired assertion. q.e. d.

4. Approximation of cosine families

Let A be a closed and densely defined linear operator in X satisfying

(4.1) λ*εp(A), A > ω ,

(4.2) \\(dldλ)n[_λR(λ2\ A)~\\\ ^

We write s-lim^^ Cn = C, if {Cn} converges to some CεB(X) in the sense of the

strong operator topology. We set for λ>ω

(4.3) GM

(4.4) FM

By Lemma 2.4, we obtain

GΛ-ltλx = (-ί)"-i(n-l)lλ-»un for xeX.

Therefore, we have

(Λ ζ\ (~1) Π InΓL _ V[«/2][ W \ T n-k( T J\k
tΛ ^ TλΓ^T)! /|-1'A ~" ^-Λ=O \2k ) λ {•'λ"1' '

J n+l-k( T _ f\kA ( λ } '
We then set for n/t>ω

T n+i-kί τ r\k
n/t \Jn/t~1) '

Then, in view of the argument developed in Section 3, one finds two families

{C(t)} and {5(0} obtained by

(4.7) C(0 = s-lim^ CB(ί) = s-lim^, ~ i y Γ • " "

(4.8) 5(0 = 5-lim^α, 5B(ί) = s-lim^^ 1~|>

According to Theorem 3.6 (see also [5]; Lemma 2.4), (C(t)} has the cosine
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property. Furthermore, it satisfies the following growth condition :

The generator of {C(t)} is precisely equal to A. This is seen by employing the
method which was established by Kisynski [4] or Sova [12]. Moreover, (C(t)}
is uniquely determined by A; this is easily seen from the next lemma.

LEMMA 4.1. Let CΛ(t) and C2(t) be cosine families with generators Al

and A2, respectively. Assume that D(Al)aD(A2). Then we have for xeD(A1)

~ C2(t)x = Γ S2(t-s)(Aί-A2)Cί(s)xds.
J o

PROOF. For x e D(Aί)9 we have

= Γ ίC2(t-s)Sl(s)Alx-S2(t-s)A2Cί(s)x']ds
J o

Jί

0

= Γ S2(ί-5)(A1-^2)C1(5)xJ5. q.e.d.
J 0

Consequently, we have obtained another proof for the "if" part of Theorem

1.1. Namely ,we have

THEOREM 4.2. Let C be a cosine family and let S be the associated sine

family. Then we have

(4.9) C(ί) = s-lim^

(4.10)

where the convergence is uniform with respect to t in any bounded interval of R.

REMARK 4.3. The representations (4.9) and (4.10) in terms of the resolvent
were first obtained by Webb [14]. But he used the representation theorem for
strongly continuous groups and required the result of Kisynski [4] in which
second order differential equations are converted into first order systems. In
[6], Lutz announced (4.5) and proved (4.9) by using a different method. In his

proof it is shown that the rate of convergence of (4.9) is O(l/v/m) for n = 2m.
Moreover, we have the following representation:
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We assume that \\AFntλ\\ ζMn\(λ — ω)~" for A>ω, then we obtain ||Gπ>λt|^

Λf(«-hi)!(λ-ω)-"-1 for Λ>ω.
Next we establish another type of approximation formula of a cosine family

C. We define for λ >ω

(4.11) t/B i A = Σ^/

(4.12) K / I ) A = xZ

We start with the following

LEMMA 4.4. Let Unλ and Vn>λ be defined by (4.11) and (4.12), respectively.
Then we have the following relations:

(4.13) I/,,, = ΛI/.

(4-14) AKM = AJ A F

(4.15) l/M = ̂ M

(4.16) A K M = Σ g = t

PROOF. For n = 2m we have

77 — VO T /" W ί 7^ 2m-k(U2m,λ — 2^k=o( 2k ) λ \

— (Λ -

, — Λ* + 1

For n = 2m + 1 , we have
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— I
2m+\,λ — 2*k=0\^ 2k

2m\ 2mm \\ f 2m+l-k( f-i λ ( λ ~
,

o 2m+l
' λ

Therefore we obtain (4.13). Similarly, for n = 2m we have

ΓΛ _ V™- 1 ^ 1 / 2m-k( t f\k
A V 2m,λ — Lk = θ( 2k Λ- 1 / λ ^ λ~ '

_ f V"- 1 / ^W ~~ ^ » Λ 2m- \-kiJ J\k _ι_ Λ ^Cm~\ ( ^m ~ *> \ J 2m- \~k ( T f\k
— Jλ λ,k = o( 2k+ 1 / λ (Jλ — 1) - r j λ 2 - < k = o ( 2k ) λ (Jλ~J)

For n = 2m + 1 , we get

V — V w I "̂ ~ 1 / 2m+l-k( f
* K 2 m + l , A — 2 w Λ = θ l 2^ + 1 / Λ V-'Λ""

Therefore we obtain (4.14). Combining (4.13) and (4.14), we obtain

Λ.λ>ί - n_, , Λ = ntλ - ,,r

Thus, we have (4.15). Moreover we have

^K,,Λ = ^Σi'=o(^Λ-F t_ 1,Λ) = Σί-oi/M

We now assume that Un^λ satisfies the boundedness condition

(4-17) l|t/,,,||^

Under this assumption (4.16) implies
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(4-18) II K..JI

To formulate an approximation formula for a cosine family, we put for ί^O:

(4.19)

(4.20) Sλ(ι

Then, by (4.17) and (4.18), Cλ(t) and Sλ(t) are estimated as

I — ω

and

/ 1 * \ n M / 1 \ M T /

= JMV —

Therefore Cλ(0 and Sλ(t) are well-defined. Noting that λ2(Jλ — I) = AJλ and

^O.A = ̂ » we nave ^y Lemma 4.4

n,λ

Moreover, we have

(dldt)S,(t) = -

/) ^,,Λ + Λ^.Λ} = ΛCΛ(ί) + λ(Jλ-I)Sλ(t).

Thus we obtain the relation

(d2/dt2)Cλ(t) = AJSCλ(t) + 2λ(λλ-I)AJλSλ(t) + λ*(Jλ-iγCλ(t).

THEOREM 4.5. Let A be a closed and densely defined linear operator in X
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satisfying (4.1) and (4.17). Then A determines a unique cosine family C which
is represented as

{4.21) C(t) = s-lim^^C^t) for feR,

and the convergence is uniform with respect to t in each bounded interval of R.

PROOF. For x e D(A), we have

\\λ(Jλ-I)x\\ = i- \\AJλx\\ ^ -^ω \\Ax\\ .

We here derive the conclusion in a way similar to the proof of Lemma 3.3. For
x E D(A) we have

Cλ(t)x - C(t)x = ds \C(t-s)Cλ(s)x\ds +Q-js- [_S(t-s)Sλ(s)AJλχ-]ds

= Γ C(t-s){AJλSλ(s) + λ(Jλ-I)Cλ(s)}xds - Γ S(t-s)ACλ(s)xds
Jo Jo

+ Γ S(t-s){JλCλ(s) + λ(Jλ-I)Sλ(s)}AJλxds - Γ C(t-s)AJλS,(s)Xds
J o J o

= Γ S(t-s)(AJλ

2-A)Cί(S)Xds
J o

+ Γ [C(ί - s)λ(Jλ - I)Cλ(s)x + S(t - s)λ(Jλ - ])Sλ(s)χ-\ds
J o

= Γ S(t-s)Cλ(S)(Jλ

2-I)AXds
J o

+ Γ [C(/-s)
J o

Therefore we have

Pr ί λs ] ί ω2s \+ M2eωt I <l + (ΐ — s)Ί > eχp( T ) ds\\λ lAJλx\\. q.e.d.
J o l Λ —ω J \Λ — co /

REMARK 4.6. The family {CΛ(ί)} defined by (4.19) is not a cosine family
generated by AJλ, but it is closely related to the Yosida-approximation of semi-
groups.

We see from (4.5) that (4.17) is equivalent to (4.2) for λ2 e p(A). Therefore,
(1.6) in Theorem 1.1 may be replaced by (4.17):

THEOREM 4.7. Let A be a closed and densely defined linear operator in X.
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Then A is the generator of a cosine family C if and only if for all λ with λ>ω,

( I )

(Π)

REMARK 4.8. We do not know whether (Π) is equivalent to the boundedness

condition for the powers of Jλ. Assume that for λ>ω and n eN

μ/ll ̂

Then we have

n-kί

Λf

and 1/2

-ω

/ J / 2 ]

- \λ-ω
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