On Hasse-Witt matrices of Fermat varieties

Keisuke Токі

(Received May 19, 1987)

Introduction

Let X be an n-dimensional Fermat variety of degree d

$$
x_{0}^{d}+x_{1}^{d}+\cdots+x_{n+1}^{d}=0 \quad(d \geqq n+2)
$$

in \mathbf{P}^{n+1}, where $x_{0}, x_{1}, \ldots, x_{n+1}$ are homogeneous coordinates. We are concerned with the p-th power frobenius action F on the n-th cohomology group $H^{n}\left(X, \mathcal{O}_{X}\right)$ of X over an algebraic closure k of the field $\mathbf{F}_{p}(p>0 ; p \nmid d)$. The F-module $H^{n}\left(X, \mathcal{O}_{X}\right)$ is canonically isomorphic to the G_{h}-module $H^{n+1}\left(\mathbf{P}^{n+1}, \mathcal{O}_{\mathbf{P}^{n+1}}(-d)\right)$, and we know that the vector space $H^{n+1}\left(\mathbf{P}^{n+1}, \mathcal{O}_{\mathbf{P}^{n+1}}(-d)\right)$ has as basis \mathscr{W}_{0} (cf. §1). We now consider the matrix (the so-called Hasse-Witt matrix) HW (X) of G_{h} with respect to \mathscr{W}_{0}.

In this paper, we show mainly the following theorems:
Theorem I. For positive integers n, d and p (p; prime number with $p \nmid d$ and $d \geqq n+2$) given as above, we let ρ_{i} be the number of all elements in \mathscr{W}_{0} of type i defined in $\S 1$. We can arrange the ρ_{i} 's by some integers $f_{0}>f_{1}>\cdots>f_{r}>0$ as follows:

$$
\begin{aligned}
& \rho_{i}=0 \quad \text { for } \quad i>f_{0}, \quad \rho_{f_{s}}=\rho_{i}<\rho_{f_{s+1}} \quad \text { for } \quad f_{s} \geqq i>f_{s+1} \\
& \text { and } \quad s<r, \quad \rho_{f_{r}}=\rho_{i} \leqq \rho_{0} \quad \text { for } \quad f_{r} \geqq i \geqq 1 .
\end{aligned}
$$

We denote by $\mathrm{HW}(X)_{\text {nilp }}$ the nilpotent part of $\mathrm{HW}(X)$ at p. Then the normal form of HW $(X)_{\text {nilp }}$ becomes the matrix

$$
\left.\left(\begin{array}{llllll}
\Lambda(1) & & & & 0 \\
& & & & & \\
& \ddots(2) & & & \\
& & \Lambda\left(\rho_{f_{r}}\right) & & \\
& & & 0 & & \\
& & & & 0 & \\
& & & & \ddots & \\
0 & & & & 0
\end{array}\right)\right\} \rho_{0}-\rho_{f_{r}}
$$

with $\Lambda(\rho)=\Lambda_{f_{\alpha}+1}$ for $\rho_{f_{\alpha-1}}<\rho \leqq \rho_{f_{\alpha}}, \alpha=0,1, \ldots, r$, where $\rho_{f_{-1}}=0$, and each
Λ_{g} is the square matrix $\left(\lambda_{i j}\right)$ of size g given by $\lambda_{i j}=1$ if $j=i+1$ and $\lambda_{i j}=0$ otherwise (cf. §2).

TheOrem II. Let positive integers n, d and p be as above.

1) We have the property: if $p \equiv-1(\bmod d)$ then $\mathrm{HW}(X)$ at p is the zero matrix.
2) In case of $n=1$ i.e. $X: x_{0}^{d}+x_{1}^{d}+x_{2}^{d}=0$, we have moreover the property: if $\mathrm{HW}(X)$ at p is the zero matrix, then $p \equiv-1(\bmod d)$.
3) In case of $n=2$ i.e. $X: x_{0}^{d}+x_{1}^{d}+x_{2}^{d}+x_{3}^{d}=0$,
(i) when d is even, we have moreover the property: if $\mathrm{HW}(X)$ at p is the zero matrix, then $p \equiv-1(\bmod d)$,
(ii) when d is odd, we have the property: $\mathrm{HW}(X)$ at p is the zero matrix if and only if $p \equiv-1(\bmod d)$ or $p \equiv-2(\bmod d)$ or $p \equiv(d-1) / 2(\bmod d)(c f . \S 3)$.

We should remark that the statement of Th. II, 3), (ii) is suggested by N. Suwa. The first proof of Th. II given by the author has been improved by R. Sasaki later, and the author appreciates him for permitting to write his proof here.

Finally, we observe relations with Newton-polygons of X over the field $\mathbf{F}_{p^{f}}$, where $f=\operatorname{ord} .\langle p \bmod d\rangle$ in $(\mathbf{Z} / d \mathbf{Z})^{\times}($cf. $\S 4)$.

The author wish to express his hearty thanks to Prof. M. Nishi and Prof. T. Sekiguchi for their hearty encouragement, and Prof. N. Suwa and Prof. R. Sasaki for their useful conversations.

1. Hasse-Witt matrices HW (X)

Let n, d and p be the positive integers such that p is a prime number with $p \nmid d$ and $d \geqq n+2$. We now consider the Fermat variety X defined by

$$
x_{0}^{d}+x_{1}^{d}+\cdots+x_{n+1}^{d}=0
$$

We put $h=x_{0}^{d}+x_{1}^{d}+\cdots+x_{n+1}^{d}$, and $k=\overline{\mathbf{F}}_{p}$. From a commutative diagram of short exact sequences of structure-sheaves:

we have a commutative diagram of cohomology groups:

where G_{h} denotes $h^{p-1} F$ and δ denotes the connecting morphism in the long exact sequence derived from the above short exact sequence (cf. Serre [2], Chap. III, 3, Prop. 8).

Now we put

$$
\mathscr{W}_{0}=\left\{w=\left(w_{0}, w_{1}, \ldots, w_{n+1}\right) \in \mathbf{Z}_{+}^{n+2} \mid 0<w_{\gamma} \text { for all } \gamma=0, \ldots, n+1,|w|=d\right\}
$$

where \mathbf{Z}_{+}is the set of all non-negative integers and $|w|=\sum_{\gamma=0}^{n+1} w_{\gamma}$. We note that $\# \mathscr{W}_{0}=\binom{d-1}{n+1}$, where \# denotes the cardinality. According to Serre [2], loc. cit., we know that the k-vector space $H^{n+1}\left(\mathbf{P}^{n+1}, \mathcal{O}_{\mathbf{P}^{n+1}}(-d)\right)$ is $\binom{d-1}{n+1}$-dimensional and has a basis consisting of the classes of sections

$$
f_{0,1, \ldots, n+1}^{(\beta)}=1 /\left(x_{0}^{\beta_{0}} x_{1}^{\beta_{1}} \cdots x_{n+1}^{\beta_{n+1}}\right) \quad \text { with } \quad \beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{n+1}\right) \in \mathscr{W}_{0} \text {, }
$$

on $U_{0,1, \ldots, n+1}\left(x_{0} x_{1} \cdots x_{n+1} \neq 0\right)$ of $\mathcal{O}_{\mathbf{P}^{n+1}}(-d)$.
We denotes by $[w]$ the class of $f_{0,1, \ldots, n+1}^{(w)}$, and by $\operatorname{HW}(X)$ the matrix of the action G_{h} with respect to basis $\left\{[w] \mid w \in \mathscr{W}_{0}\right\}$.

Now we shall describe HW (X). For $v \in \mathscr{W}_{0}$, we have

$$
\begin{aligned}
G_{h} \cdot[v] & =\left(x_{0}^{d}+\cdots+x_{n+1}^{d}\right)^{p-1} x^{-p v} \text { mod coboundaries } \\
& =\sum_{\lambda}((p-1)!/ \lambda!) x^{-(p v-\lambda d)} \text { mod coboundaries },
\end{aligned}
$$

where \sum is taken over all $\lambda=\left(\lambda_{0}, \ldots, \lambda_{n+1}\right) \in \mathbf{Z}_{+}^{n+2}$ with $|\lambda|=p-1$. Here, $x=$ $\left(x_{0}, \ldots, x_{n+1}\right), \quad p v=\left(p v_{0}, \ldots, p v_{n+1}\right), x^{-\alpha}=x_{0}^{-\alpha_{0} \ldots x_{n+1}^{-\alpha_{n+1}}}\left(\alpha=\left(\alpha_{0}, \ldots, \alpha_{n+1}\right)\right), \quad \lambda!=$ $\lambda_{0}!\cdots \lambda_{n+1}!$ and $\lambda d=\left(\lambda_{0} d, \ldots, \lambda_{n+1} d\right)$.

When we put $A_{h}(v)=\left\{\lambda \in \mathbf{Z}_{+}^{n+2}| | \lambda \mid=p-1, p v_{\gamma}>\lambda_{\gamma} d\right.$ for all $\left.\gamma\right\}$ and $B_{h}(v)=$ $\left\{\lambda \in \mathbf{Z}_{+}^{n+2}| | \lambda \mid=p-1, p v_{\gamma}<\lambda_{\gamma} d\right.$ for some $\left.\gamma\right\}$, we have

$$
G_{h} \cdot[v]=\left(\sum_{\lambda \in A_{h}(v)}+\sum_{\lambda \in B_{h}(v)}\right)((p-1)!/ \lambda!) x^{-(p v-\lambda d)},
$$

since p is a prime number with $p \nmid d$ by assumption. If $A_{h}(v) \neq \varnothing$, then it consists of only one element λ and $w=p v-\lambda d \in \mathscr{W}_{0}$. In fact, $|w|=d$ and each pair $\left(\lambda_{\gamma}, w_{\gamma}\right)$ is uniquely determined via "euclidean algorithm" dividing $p v_{\gamma}$ by d. Let $\lambda \in$ $B_{h}(v)$. Then $p v_{\gamma_{0}}<\lambda_{\gamma_{0}} d$ for some γ_{0} and $((p-1)!/ \lambda!) x^{-(p v-\lambda d)}=p_{\gamma_{0}} /\left(x_{0} \cdots \check{x}_{\gamma_{0}} \cdots\right.$ $\left.x_{n+1}\right)^{m}$ for $m=\max \left\{p v_{\gamma} \mid 0 \leqq \gamma \leqq n+1\right\}$ and a homogeneous polynomial $p_{\gamma_{0}}$ in x_{0}, \ldots, x_{n+1} of degree $-d+m(n+1)$. This is a section on $U_{0, \ldots, \gamma_{0} \ldots, n+1}\left(x_{0} \ldots\right.$ $\check{x}_{\gamma_{0}} \cdots x_{n+1} \neq 0$) of $\mathcal{O}_{\mathbf{P}^{n+1}}(-d)$. Thus $\sum_{\lambda \in B_{h}(v)}$ is of the coboundary form of an n-cochain with coefficients in $\mathcal{O}_{\mathbf{P}^{n+1}}(-d)$.

Therefore, for each $v \in \mathscr{W}_{0}$, we have:
(*) $\quad \begin{cases}\text { If } A_{h}(v) \neq \varnothing, & \text { then } G_{h} \cdot[v]=((p-1)!/ \lambda!)[w] \quad(p v=\lambda d+w) . \\ \text { If } A_{h}(v)=\varnothing, & \text { then } G_{h} \cdot[v]=0 .\end{cases}$

Moreover we put

$$
\mathscr{W}=\left\{w=\left(w_{0}, \ldots, w_{n+1}\right) \in \mathbf{Z}_{+}^{n+2}\left|0<w_{\gamma}<d(0 \leqq \gamma \leqq n+1),|w| \equiv 0(\bmod d)\right\} .\right.
$$

As in Koblitz [1], for a positive integer j, we consider the action j - on \mathbf{Z}_{+}^{n+2},

$$
j \cdot w=\left(\left\{j w_{0}\right\}_{d}, \ldots,\left\{j w_{n+1}\right\}_{d}\right)
$$

for $w=\left(w_{0}, \ldots, w_{n+1}\right)$, where each $\left\{j w_{\gamma}\right\}_{d}$ denotes the remainder for the division of $j w_{\gamma}$ by d. Especially, suppose $(j, d)=1$. Then we have $j \cdot: \mathscr{W} 工 \mathscr{W}$ as sets, and $j \cdot=j^{\prime}$. (if $\left.j \equiv j^{\prime}(\bmod d)\right),\left(j j^{\prime}\right) \cdot=j \cdot\left(j^{\prime} \cdot\right)$ for two positive integers j, j^{\prime} coprime to d. When, for each $v \in \mathscr{W}_{0}$, we write

$$
G_{h} \cdot[v]=\sum_{w \in \mathscr{V}_{0}} h_{v, w}[w] \quad\left(h_{v, w} \in k\right),
$$

we have

$$
\operatorname{HW}(X)=\left(h_{v, w}\right)_{w, v}, \quad w \quad \text { and } \quad v \in \mathscr{W}_{0} .
$$

From the above (*), we have

$$
\begin{cases}h_{v, w} \neq 0 & (\text { if } w=p \cdot v), \\ h_{v, w}=0 & \text { (if } w \neq p \cdot v) .\end{cases}
$$

We note that the statement of this fact appears in Koblitz [1].
Let f be the order of $p \bmod d$ as in the introduction. For $w \in \mathscr{W}_{0}$, when $p^{\alpha} \cdot w \in \mathscr{W}_{0}$ for all $\alpha \in \mathbf{Z}_{+}$, we say that w is of type infinity. We put

$$
\begin{aligned}
& S(p)=\left\{w \in \mathscr{W}_{0} \mid w ; \text { of type infinity }\right\} \\
& S^{*}(p)=\mathscr{W}_{0} \backslash S(p)
\end{aligned}
$$

For $w \in \mathscr{W}_{0}$ and $0 \leqq i \leqq f-2$, when $p^{\alpha} \cdot w \in \mathscr{W}_{0}$ for any $\alpha(0 \leqq \alpha \leqq i)$ and $p^{i+1} \cdot w \notin$ \mathscr{W}_{0}, we say that w is of type i. We put

$$
S_{i}(p)=\left\{w \in \mathscr{W}_{0} \mid w ; \text { of type } i\right\}
$$

Then we have disjoint unions

$$
S^{*}(p)=\cup_{i=0}^{f-2} S_{i}(p), \quad \mathscr{W}_{0}=S(p) \cup S_{0}(p) \cup \cdots \cup S_{f-2}(p),
$$

a bijection $p \cdot: S(p) \simeq S(p)$, and injections $p \cdot: S^{*}(p) \backslash S_{0}(p) \rightarrow S^{*}(p), p \cdot: S_{0}(p) \rightarrow$ $\mathscr{W} \backslash \mathscr{W}_{0}$ as sets.

Thus, as for $\mathrm{HW}(X)$ at p, we obtain
a) HW (X) is a square matrix of size $\binom{d-1}{n+1}=\# \mathscr{W}_{0}$ and consists of three minors (i), (ii), (iii):
(i) $\left(h_{v, w}\right)_{(w, v) \in \mathscr{V}_{0} \times S(p)}$ of rank \#S(p),
(ii) $\left(h_{v, w}\right)_{(w, v) \in \mathcal{C}_{0} \times\left(S^{*}(p) \backslash S_{0}(p)\right)}$ of rank $\#\left(S^{*}(p) \backslash S_{0}(p)\right)$,
(iii) $\left(h_{v, w}\right)_{(w, v) \in \mathscr{F}_{0} \times S_{0}(p)}$ of rank zero.

Each $v^{\text {th }}$ column of these minors is such a type of vectors with only non-zero component at $w=p \cdot v$.
b) $\operatorname{rank} \mathrm{HW}(X)=\# S(p)+\#\left(S^{*}(p) \backslash S_{0}(p)\right)$.
c) $\operatorname{HW}(X)$ is the zero matrix iff $\mathscr{W}_{0}=S_{0}(p)$.

When we put

$$
\begin{aligned}
& \operatorname{HW}(X)_{s s}=\left(h_{v, w}\right)_{w, v} ; \quad w \text { and } v \in S(p), \\
& \operatorname{HW}(X)_{n i l p}=\left(h_{v, w}\right)_{w, v} ; \quad w \text { and } v \in S^{*}(p),
\end{aligned}
$$

we see that HW $(X)_{s s}$ is non-singular, and HW $(X)_{\text {nilp }}$ is of the form $(* \mid 0)$, where 0 means $\# \mathscr{W}_{0} \times \# S_{0}(p)$-matrix, with rank $\#\left(S^{*}(p) \backslash S_{0}(p)\right)$ and

$$
\mathrm{HW}(X)=\left(\begin{array}{ll}
\mathrm{HW}(X)_{s s} & 0 \\
0 & \mathrm{HW}(X)_{\text {nilp }}
\end{array}\right)
$$

In later sections, we let $\left[\mathscr{W}_{0}\right]$ stand for $H^{n+1}\left(\mathbf{P}^{n+1}, \mathcal{O}_{\mathbf{P}^{n+1}}(-d)\right)$ and $[S]$ the subspace of $\left[\mathscr{W}_{0}\right]$ generated by a subset S of $\left[\mathscr{W}_{0}\right]$.

2. The normal form of $\mathbf{H W}(X)$

G_{h} is a p-th power semilinear endomorphism of $\left[\mathscr{W}_{0}\right]$. And, by ($*^{\prime}$), for every $v \in \mathscr{W}_{0}$ and for any integer $N>0$, we have
(**) $\quad G_{h}^{N} \cdot[v]=\left(h_{v, p \cdot v}\right)^{p^{N-1}}\left(h_{p^{\cdot} \cdot v, p^{2} \cdot v}\right)^{p^{N-2} \cdots\left(h_{p^{N-1} \cdot v, p^{N \cdot v}}\right)\left[p^{N} \cdot v\right], ~}$ where if $p \cdot w \notin \mathscr{W}_{0}$ then $h_{w, p \cdot w}$ means the zero.

Proposition 2.1. G_{h} acts bijectively on $[S(p)]$, nilpotently on $\left[S^{*}(p)\right]$. Moreover we have
i) $\left[\mathscr{W}_{0}\right]=[S(p)] \oplus\left[S^{*}(p)\right]$ as G_{h}-modules;
ii) $\quad[S(p)]=\cap_{N \in \mathbf{Z}_{+}} G_{h}^{N} \cdot\left[\mathscr{W}_{0}\right]$,

$$
\left[S^{*}(p)\right]=\cup_{N \in \mathbf{Z}_{+}} \operatorname{Ker}\left(G_{h \mid\left[\mathscr{V}_{0}\right]}^{N}\right)
$$

Proof. For any $v \in S(p)$, we have $v=p \cdot w$ for some w by $p \cdot: S(p) \simeq S(p)$. Put $c=\left(h_{w, p \cdot w}\right)^{-p^{-1}} \in k$. Then $[v]=G_{h} \cdot(c[w])$ by (**). Hence $[S(p)] \subset G_{h}$. $[S(p)]$. On the other hand, since $G_{h} \cdot[S(p)] \subset[S(p)]$, we have $G_{h} \cdot[S(p)]=$ $[S(p)]$. And we also see that $\operatorname{Ker}\left(G_{h[[S(p)]}\right)=0$ via $p .: S(p) \leadsto S(p)$. By (**), G_{h} acts nilpotently on $S^{*}(p)$ and hence on $\left[S^{*}(p)\right]$. From the disjoint union
$\mathscr{W}_{0}=S(p) \cup S^{*}(p), G_{h} \cdot[S(p)]=[S(p)]$ and $G_{h} \cdot\left[S^{*}(p)\right] \subset\left[S^{*}(p)\right]$, the assertion i) follows. Since G_{h} acts bijectly on $[S(p)]$ (resp. nilpotently on $\left[S^{*}(p)\right]$), we have $[S(p)] \subset \cap_{N \in \mathbf{Z}_{+}} G_{h}^{N} \cdot\left[\mathscr{W}_{0}\right]$ (resp. $\left[S^{*}(p)\right] \subset \cup_{N \in \mathbf{Z}_{+}} \operatorname{Ker}\left(G_{h \mid\left[\mathscr{W}_{0}\right]}^{N}\right)$. For an element $\xi \in\left(\cap_{N \in \mathbf{Z}_{+}} G_{h}^{N} \cdot\left[\mathscr{W}_{0}\right]\right) \cap\left(\cup_{N \in \mathbf{Z}_{+}} \operatorname{Ker}\left(G_{h \mid\left[\mathscr{O}_{0}\right]}^{N}\right)\right)$, we write

$$
\xi=\sum_{v \in S(p)} c_{v}[v]+\sum_{w \in S^{*}(p)} d_{w}[w] \quad\left(c_{v}, d_{w} \in k\right) .
$$

Then, since $\xi \in \cup_{N \in \mathbf{Z}_{+}} \operatorname{Ker}\left(G_{h \mid\left[\mathscr{K}_{0}\right]}^{N}\right)$, we have $G_{h}^{N} \cdot \xi=0$ for sufficiently large N and hence

$$
\sum_{v \in S(p)} c_{v}^{p N} s\left[p^{N} \cdot v\right]=0 \quad \text { for some } \quad s \in k^{\times} .
$$

Then

$$
\xi=\sum_{w \in S^{*}(p)} d_{w}[w] \in \cap_{N \in \mathbf{Z}_{+}} G_{h}^{N} \cdot\left[\mathscr{W}_{0}\right] .
$$

Therefore, by i), $\xi \in[S(p)]$ and then $\xi=0$. Thus we have

$$
\left[\mathscr{W}_{0}\right]=[S(p)] \oplus\left[S^{*}(p)\right]=\left(\cap_{N \in \mathbf{Z}_{+}} G_{h}^{N} \cdot\left[\mathscr{W}_{0}\right]\right) \oplus\left(\cup_{N \in \mathbf{Z}_{+}} \operatorname{Ker}\left(G_{N \mid\left[\mathscr{K}_{0}\right]}^{h}\right)\right)
$$

Since $[S(p)] \subset \cap_{N \in \mathbf{Z}_{+}} G_{h}^{N} \cdot\left[\mathscr{W}_{0}\right]$ and $\left[S^{*}(p)\right] \subset \cup_{N \in \mathbf{Z}_{+}} \operatorname{Ker}\left(G_{h \mid\left[\mathscr{F}_{0}\right]}^{N}\right)$, the assertion ii) holds.
Q.E.D.

On the other hand, we denote by $\left[\mathscr{W}_{0}\right]^{G_{h}}$ the subspace of $\left[\mathscr{W}_{0}\right]$ generated by all G_{h}-fixed vectors and denote by $\left[\mathscr{W}_{0}\right]_{G_{h}-\text { nilp }}$ the subspace of $\left[\mathscr{W}_{0}\right]$ consisting of all vectors which are killed by powers of G_{h}. Then we have

$$
\left[\mathscr{W}_{0}\right]=\left[\mathscr{W}_{0}\right]^{G_{n}} \oplus\left[\mathscr{W}_{0}\right]_{G_{n}-n i l p}
$$

Since $\left[S^{*}(p)\right]=\left[\mathscr{W}_{0}\right]_{G_{h}-n i l p}$ and $\cap_{N \in \mathbf{z}_{+}} G_{h}^{N} \cdot\left[\mathscr{W}_{0}\right] \supset\left[\mathscr{W}_{0}\right]^{G_{h}}$, we have $\left[\mathscr{W}_{0}\right]^{G_{h}}=$ $[S(p)]$. It is known that $\left[\mathscr{W}_{0}\right]^{G_{n}}$ has as basis G_{h}-fixed vectors: e_{v} 's, $v=1,2, \ldots$, $\# S(p)$. Then, with respect to the e_{v} 's, the normal form of $\mathrm{HW}(X)_{s s}$ at p becomes the unit matrix $\mathbf{1}_{\sigma}$ of size $\sigma=\# S(p)$.

Now, when $S^{*}(p)$ is non-empty, we shall choose a basis of $\left[S^{*}(p)\right]$ for the sake of describing the normal form of HW $(X)_{\text {nilp }}$. At first we note that if $S_{0}(p)=$ \emptyset, then $S^{*}(p)=\varnothing$; and if $S_{0}(p) \neq \varnothing$, then $f \geqq 2$. In fact, suppose $S^{*}(p) \neq \varnothing$. Then take $w \in S^{*}(p)$. Since w is of type i for some i, we have $p^{i} \cdot w \in S_{0}(p)$. Suppose $f=1$. Then, since $\mathscr{W}_{0}=S(p)$, we have $S^{*}(p)=\varnothing$.

Therefore $S^{*}(p)$ has a unique non-negative integer $f_{0} \leqq f-2$ such that $S_{i}(p)=\varnothing$ for every $i>f_{0}$ and $\emptyset \neq S_{f_{0}}(p) \underset{p \cdot}{\longrightarrow} \underset{p}{ } S_{1}(p) \underset{p}{ } S_{0}(p)$.
We put

$$
\rho_{i}=\# S_{i}(p), \quad \text { and } \quad\left[S^{*}(p)\right]^{(i)}=\operatorname{Ker}\left(G_{h \mid\left[\mathscr{F}_{0}\right]}^{i}\right) .
$$

Proposition 2.2. We have the following properties:
i) $\rho_{i} \geqq \rho_{i+1}$ for $0 \leqq i \leqq f_{0}$ and $\rho_{\alpha}=0$ for $\alpha>f_{0}$.
ii) $\quad\left[S^{*}(p)\right]^{\left(f_{0}+1\right)}=\left[S^{*}(p)\right],\left[S^{*}(p)\right]^{(1)}=\left[S_{0}(p)\right]$.
iii) $\quad G_{h}:\left[S_{i}(p)\right] \longrightarrow\left[S_{i-1}(p)\right]$ is injective for $i \geqq 1$.
iv) $\quad\left[S^{*}(p)\right]^{(i)} \cap\left[S_{i}(p)\right]=\{0\}$ for $i \geqq 0$.
v) $\left[S^{*}(p)\right]^{(i+1)}=\left[S^{*}(p)\right]^{(i)} \oplus\left[S_{i}(p)\right]$ for $i \geqq 0$.

And the G_{h}-action has a commutative diagram:

Proof. The assertion i) is obvious. We prove the assertion ii). From the definition of f_{0}, we have $G^{f_{0}+1} \cdot[v]=0$ for all $v \in S^{*}(p)$. Therefore $\left[S^{*}(p)\right]^{\left(f_{0}+1\right)}$ $\supset\left[S^{*}(p)\right]$ and hence the equality holds. We have $\left[S^{*}(p)\right]^{(1)} \supset\left[S_{0}(p)\right]$ by (**). Let $\xi \in\left[\mathscr{W}_{0}\right]$ be such an element that $G_{h} \cdot \xi=0$. Then we can write

$$
\xi=\sum_{w \in S^{*}(p)} d_{w}[w], \quad d_{w} \in k
$$

by Prop. 2.1, and also we can write

$$
\xi=\sum_{0 \leqq i \leqq f_{0}}\left(\sum_{w \in S_{i}(p)} d_{w}[w]\right) .
$$

Hence we have

$$
G_{h} \cdot \xi=\sum_{i \geqq 1}\left(\sum_{w \in S_{i}(p)} d_{w}^{p} h_{w, p \cdot w}[p \cdot w]\right)=0 .
$$

Since the $S_{i}(p)$'s are disjoint to each other, we have $d_{w}=0$ for $w \notin S_{0}(p)$ and hence $\xi \in S_{0}(p)$. Thus the assertion ii) holds.

Since $G_{h} \cdot\left(\sum_{w \in S_{i}(p)} d_{w}[w]\right)=\sum_{w \in S_{i}(p)} d_{w}^{p} h_{w, p \cdot w}[p \cdot w]$ and the $p \cdot w$'s are distinct to each other in $S_{i-1}(p)$, if the right hand side is zero then we have $d_{w}=0$ for $w \in S_{i}(p)$. Hence the assertion iii) holds.

Suppose $G_{h}^{i} \cdot\left(\sum_{w \in S_{i}(p)} d_{w}[w]\right)=0 . \quad$ By $(* *)$, the left hand side is equal to

$$
\sum_{w \in S_{i}(p)} d_{w}^{p_{i}^{i}}\left(h_{w, p \cdot w}\right)^{p^{i-1}} \cdots\left(h_{p^{i-1} \cdot w, p^{i} \cdot w}\right)\left[p^{i} \cdot w\right] .
$$

Since $w, p \cdot w, \ldots, p^{i} \cdot w\left(w \in S_{i}(p)\right)$ are all contained in \mathscr{W}_{0} and are distinct to each other, we have $d_{w}=0$ for $w \in S_{i}(p)$. Hence the assertion iv) holds. Obviously $\left[S^{*}(p)\right]^{(i+1)} \supset\left[S^{*}(p)\right]^{(i)}$, and $\left[S^{*}(p)\right]^{(i+1)} \supset\left[S_{i}(p)\right]$. Conversely let $\xi \in\left[\mathscr{W}_{0}\right]$ be in $\left[S^{*}(p)\right]^{(i+1)}$. When we write

$$
\xi=\sum_{j} \sum_{v \in S_{j}(p)} c_{v}^{(j)}[v]
$$

we have $G_{h}^{i+1} \cdot\left[\sum_{j \geqq i+1}\right]=0$. By iii) and (**), we have $c_{v}^{(j)}=0$ for $j \geqq i+1$. Then, since the sum $\sum_{j<i}$ in ξ is in $\left[S^{*}(p)\right]^{(i)}$, we have $\xi \in\left[S^{*}(p)\right]^{(i)}+\left[S_{i}(p)\right]$.

The commutativity with the G_{h}-action is obvious. Thus the assertion v) holds.
Q. E. D

Now we have Th. I in the introduction.
Theorem 2.3. For positive integers n, d and p (p : prime number with $p \nmid d$ and $d \geqq n+2$) given as above, we let ρ_{i} be the number of all elements in \mathscr{W}_{0} of type i defined in §1. We arrange the ρ_{i} 's as in Theorem I in the introduction. Then, with respect to the basis:

$$
\left\{\begin{array}{l}
G_{h}^{N_{\alpha}} \cdot\left[v_{\alpha}\right]\left(\alpha=0,1, \ldots, r ; N_{\alpha}=f_{\alpha}, f_{\alpha}-1, \ldots, 0 ;\right. \\
\left.\quad v_{0} \in S_{f_{0}}(p), v_{\alpha} \in S_{f_{\alpha}}(p) \backslash p^{f_{\alpha-1}-f_{\alpha}} \cdot S_{f_{\alpha-1}}(p) \text { for } \alpha \geqq 1\right), \\
\quad[w]\left(w \in S_{0}(p) \backslash p^{f_{r}} \cdot S_{f_{r}}(p)\right),
\end{array}\right.
$$

$\mathrm{HW}(X)_{\text {nilp }}$ at p is of the form:

$$
\left.\left(\begin{array}{ccccc}
\Lambda(1) & & & & \\
& \Lambda(2) & & 0 & \\
& \ddots & & \\
& & \Lambda\left(\rho_{\left.f_{r}\right)}\right) & & \\
& & & 0 & \\
& & & 0 & \\
& & & & \\
& & & & 0
\end{array}\right)\right\} \rho_{0}-\rho_{f_{r}}
$$

with $\Lambda(\rho)=\Lambda_{f_{\alpha}+1}$ for $\rho_{f_{\alpha-1}}<\rho \leqq \rho_{f_{\alpha}}, \alpha=0,1, \ldots, r$, where $\rho_{f_{-1}}=0$, and each $\Lambda_{g}=\left(\lambda_{i j}\right)_{1 \leqq i, j \leqq g}, \lambda_{i j}=1(j=i+1), \lambda_{i j}=0$ (otherwise), for all g.

Proof. If $p \cdot v \in \mathscr{W}_{0}$, then $G_{h} \cdot[v]$ is an non-zero constant multiplication of $[p \cdot v]$ by $(* *)$. Moreover G_{h} is injective on $\left[S^{*}(p) \backslash S_{0}(p)\right]$ by Prop. 2.2. The symbol [] is a "one-to-one" map from \mathscr{W}_{0} to [\mathscr{W}_{0}].

Now, when we omit constant multiplications and the symbol [] in the above arrangement of vectors, we obtain the following list:

$$
\begin{aligned}
& S_{0}(p)
\end{aligned}
$$

where $f_{r+1}=0$,

$$
\begin{gathered}
=\left\{\begin{array}{c}
S_{f_{m}-\alpha_{m}}(p) \\
\left\{p^{f_{0}-f_{m}+\alpha_{m}} \cdot v \mid v \in S_{f_{0}}(p)\right\} \cup\left(\cup _ { 1 \leqq i \leqq m } \left\{p^{f_{i}-f_{m}+\alpha_{m} \cdot v \mid}\right.\right. \\
\left.\left.v \in S_{f_{i}}(p) \backslash p^{f_{i-1}-f_{i}} \cdot S_{f_{i-1}}(p)\right\}\right) \\
\left(\alpha_{m}=0,1, \ldots, f_{m}-f_{m+1}-1 ; m=1,2, \ldots, r\right),
\end{array}\right.
\end{gathered}
$$

$$
\begin{aligned}
& S_{f_{0}-\alpha_{0}}(p) \\
& \quad=\left\{p^{\alpha_{0}} \cdot v \mid v \in S_{f_{0}}(p)\right\} \quad\left(\alpha_{0}=0,1, \ldots, f_{0}-f_{1}-1\right) .
\end{aligned}
$$

We note that

$$
\begin{aligned}
& \left(f_{0}+1\right) \rho_{f_{0}}+\sum_{i=1}^{r}\left(\rho_{f_{i}}-\rho_{f_{i-1}}\right)\left(f_{i}+1\right)+\left(\rho_{0}-\rho_{f_{r}}\right) \\
& \quad=\sum_{i=0}^{r=1} \rho_{f_{i}}\left(f_{i}-f_{i+1}\right)+\rho_{f_{r}} f_{r}+\rho_{0}=\sum_{\alpha=0}^{f_{0}} \rho_{\alpha}=\# S^{*}(p) .
\end{aligned}
$$

Through this list, we get the above basis of $\left[S^{*}(p)\right]$. It is easily seen that, with respect to these basis, the normal form of $\mathrm{HW}(X)_{\text {nilp }}$ is as above.
Q.E.D.

Example $2.4(n=1$ or $2 ; d=13)$. Let $p=41 \equiv 2(\bmod 13)$, and hence $f=12$. In the following lists, ". . " denotes other permutations of the first one.
i) $(n=1$ case $): \# \mathscr{W}_{0}=\binom{d-1}{n+1}=66$.

$$
\begin{aligned}
\mathscr{W}_{0} & =S^{*}(p) \\
= & S_{0}(p) \quad \cup \\
& S_{1}(p) \quad \cup \\
& (4,4,5) \ldots \\
& (2,2,9) \ldots \\
& (5,5,3) \ldots \\
& (3,3,7) \ldots \\
& (6,6,1) \ldots \\
& (1,4,4,8) \ldots \\
& (2,5,6) \ldots \\
& (3,4,6) \ldots
\end{aligned}
$$

Hence

$$
\begin{aligned}
& 6=\rho_{5}=\rho_{4}=\rho_{3}<9=\rho_{2}<18=\rho_{1}<21=\rho_{0} ; \\
& f_{0}=5>f_{1}=2>f_{2}=1 \quad(r=2) . \\
& S_{5}(p) \quad S_{2}(p) \backslash p^{3} \cdot S_{5}(p) S_{1}(p) \backslash p \cdot S_{2}(p) S_{0}(p) \backslash p \cdot S_{1}(p) \\
& v:(1,5,7) \ldots(1,1,11) \ldots \quad(3,3,7) \ldots \quad w:(5,5,3) \ldots \\
& \\
& \quad(1,3,9) \ldots
\end{aligned}
$$

Hence $\operatorname{HW}(X)=\mathrm{HW}(X)_{\text {nilp }}$, and it has the normal form:

$$
\underbrace{\Lambda_{6}, \ldots, \Lambda_{6}}_{\rho_{5}=6} ; \underbrace{\Lambda_{3}, \ldots, \Lambda_{3}}_{\rho_{2}-\rho_{5}=3} ; \underbrace{\Lambda_{2}, \ldots, \Lambda_{2}}_{\rho_{1}-\rho_{2}=9} ; \underbrace{0, \ldots, 0}_{\rho_{0}-\rho_{1}=3 .}
$$

ii) $(n=2$ case $): \# \mathscr{W}_{0}=\binom{d-1}{n+1}=220$.

$$
\begin{aligned}
\mathscr{W}_{0}=S^{*}(p)= & S_{0}(p) \quad \cup \quad S_{1}(p) \quad \cup \quad S_{2}(p) \\
& (4,4,4,1) \ldots(2,2,2,7) \ldots(1,1,1,10) \ldots \\
& (3,3,3,4) \ldots(1,1,2,9) \ldots(1,1,4,7) \ldots \\
& (2,2,4,5) \ldots(1,1,3,8) \ldots \\
& (3,3,6,1) \ldots(2,2,8,1) \ldots \\
& (2,2,6,3) \ldots(1,2,3,7) \ldots \\
& (5,5,2,1) \ldots \\
& (4,4,3,2) \ldots \\
& (1,1,5,6) \ldots \\
& (3,3,2,5) \ldots \\
& (2,4,6,1) \ldots \\
& (1,3,4,5) \ldots
\end{aligned}
$$

Hence $16=\rho_{2}<64=\rho_{1}<140=\rho_{0} ; f_{0}=2>f_{1}=1(r=1)$.

$$
\begin{array}{rcr}
S_{2}(p) & S_{1}(p) \backslash p \cdot S_{2}(p) & S_{0}(p) \backslash p \cdot S_{1}(p) \\
v:(1,1,1,10) \ldots & (1,1,2,9) \ldots & w:(3,3,3,4) \ldots \\
(1,1,4,7) \ldots & (1,1,3,8) \ldots & (3,3,6,1) \ldots \\
& (1,2,3,7) \ldots & (5,5,2,1) \ldots \\
& & (1,1,5,6) \ldots \\
& & (3,3,2,5) \ldots \\
& & (1,3,4,5) \ldots
\end{array}
$$

Hence HW $(X)=\mathrm{HW}(X)_{\text {nilp }}$, and the normal form is as follows:

$$
\underbrace{\Lambda_{3}, \ldots, \Lambda_{3}}_{\rho_{2}=16} ; \quad \underbrace{\Lambda_{2}, \ldots, \Lambda_{2}}_{\rho_{1}-\rho_{2}=48} ; \quad \underbrace{0, \ldots, 0}_{\rho_{0}-\rho_{1}=76 .}
$$

3. Nullity conditions for $\mathbf{H W}(X)$ in case of $\mathbf{n}=1$ and 2

We start with the following lemma:
Lemma 3.1. Let X be the Fermat variety of dimension n defined by

$$
x_{0}^{d}+x_{1}^{d}+\cdots+x_{n+1}^{d}=0 \quad(d \geqq n+2),
$$

and let p be a prime number not dividing d. Then we have the following:
i) If $d-n \leqq\{p\}_{d} \leqq d-1$, then $\mathrm{HW}(X)$ at p is zero.
ii) Assume d is even. If $d / 2-(n-1-[n / 2]) \leqq\{p\}_{d} \leqq d / 2-1$, then HW (X) at p is zero.
iii) Assume d is odd. If

$$
(d-1) / 2-(n-1-[(n+1) / 2]) \leqq\{p\}_{d} \leqq(d-1) / 2
$$

then $\operatorname{HW}(X)$ at p is zero.
Here, as usual, $[r]$ is the largest integer $\leqq r$.
Proof. i) Let $w=\left(w_{0}, \ldots, w_{n+1}\right) \in \mathscr{W}_{0}$. Then for $1 \leqq j \leqq n,\{p\}_{d}=d-j$:

$$
(-j) \cdot w=\left(\left\{-j w_{0}\right\}_{d}, \ldots,\left\{-j w_{n+1}\right\}_{d}\right) .
$$

Let $\alpha_{i}, 0 \leqq i \leqq n+1$, be the positive integer such that

$$
\alpha_{i} d>j w_{i}>\left(\alpha_{i}-1\right) d .
$$

Then we have

$$
(-j) \cdot w=\left(\alpha_{0} d-j w_{0}, \ldots, \alpha_{n+1} d-j w_{n+1}\right)
$$

and $\sum_{i=0}^{n+1}\left(\alpha_{i} d-j w_{i}\right) \geqq(n+2) d-j \sum_{i=0}^{n+1} w_{i}=d(n+2-j) \geqq 2 d$. This means that none of $(-j) \cdot w, 1 \leqq j \leqq n$, is contained in \mathscr{W}_{0}.
ii) Let $w=\left(w_{0}, \ldots, w_{n+1}\right) \in \mathscr{W}_{0}$. Then for $1 \leqq k \leqq n-1-[n / 2],\{p\}_{d}=d / 2-k$: $(d / 2-k) \cdot w=\left(\left\{(d / 2-k) w_{0}\right\}_{d}, \ldots,\left\{(d / 2-k) w_{n+1}\right\}_{d}\right)$. We may assume that

$$
\begin{aligned}
& w_{0}, \ldots, w_{2 \ell-1} \text { are odd }(2 \ell-1 \leqq n+1, \text { i.e., } \ell-1 \leqq[n / 2]), \\
& w_{2 \ell}, \ldots, w_{n+1} \text { are even. }
\end{aligned}
$$

It follows that

$$
\begin{array}{lll}
(d / 2-k) w_{i} \equiv d / 2-k w_{i} & (\bmod d) & (0 \leqq i \leqq 2 \ell-1) \\
(d / 2-k) w_{j} \equiv-k w_{j} & (\bmod d) & (2 \ell \leqq j \leqq n+1)
\end{array}
$$

Let α_{i}, α_{j} be non-negative integers such that

$$
\begin{array}{ll}
d>\alpha_{i} d+d / 2-k w_{i}>0 & (0 \leqq i \leqq 2 \ell-1) \\
d>\left(\alpha_{j}+1\right) d-k w_{j}>0 & (2 \ell \leqq j \leqq n+1) .
\end{array}
$$

Then we have

$$
(d / 2-k) \cdot w=\left(\ldots,\left(\alpha_{i}+1 / 2\right) d-k w_{i}, \ldots,\left(\alpha_{j}+1\right) d-k w_{j}, \ldots\right)
$$

and

$$
\begin{aligned}
& \sum_{i=1}^{2 \ell-1}\left(\alpha_{i}+1 / 2\right) d-k \sum_{i=0}^{2 \ell-1} w_{i}+\sum_{j=2 \ell}^{n+1}\left(\alpha_{i}+1\right) d-k \sum_{j=2 \ell}^{n+1} w_{j} \\
& \quad \geqq((1 / 2) 2 \ell+n+1-2 \ell+1-k) d=(n+2-(k+\ell)) d \geqq 2 d
\end{aligned}
$$

Thus we see that $(d / 2-k) \cdot w$ is not in \mathscr{W}_{0}.
iii) The similar proof to ii) works. So we omit it. Q.E.D.

Theorem 3.2 ($n=1$ case). Let X be the Fermat curve defined by $x_{0}^{d}+x_{1}^{d}+$ $x_{2}^{d}=0(d \geqq 3)$, and $p \nmid d$ (p : prime number). Then we see that HW (X) at p is the zero matrix if and only if $p \equiv-1(\bmod d)$.

Proof. We shall prove the "only if" part, because the "if"' part is already proved.

Let j be the smallest positive integer satisfying $j \equiv p(\bmod d)$. Assume $1 \leqq j \leqq d / 2$. Since $(d-2) j \equiv-2 j \equiv d-2 j \quad(\bmod d)$, both $w=(1,1, d-2)$ and $j \cdot w=\left(j, j,\{(d-2) j\}_{d}\right)=(j, j, d-2 j)$ are contained in $\mathscr{W}_{0} . \quad$ Assume $d / 2<j<d-1$. Since $d / 2>[d /(d-j)]$, we get $d-2[d /(d-j)]>0$; hence

$$
w=([d /(d-j)],[d /(d-j)], d-2[d /(d-j)]) \in \mathscr{W}_{0}
$$

We shall show that

$$
j \cdot w=\left(\{j[d /(d-j)]\}_{d},\{j[d /(d-j)]\}_{d},\{j(d-2[d /(d-j)])\}_{d}\right)
$$

is contained in $\mathscr{W}_{0} . \quad$ Since $j[d /(d-j)] \equiv d-(d-j)[d /(d-j)](\bmod d)$ and $d>d-$ $(d-j)[d /(d-j)]>0$, we have

$$
\{j[d /(d-j)]\}_{d}=d-(d-j)[d /(d-j)]
$$

Moreover we get

$$
[d /(d-j)]>d /(d-j)-1>d / 2(d-j), \quad 2 d>2(d-j)[d /(d-j)]>d
$$

and

$$
j(d-2[d /(d-j)]) \equiv-2 j[d /(d-j)] \equiv 2(d-j)[d /(d-j)] \quad(\bmod d)
$$

Thus we have

$$
\{j(d-2[d /(d-j)])\}_{d}=2(d-j)[d /(d-j)]-d
$$

hence we see $j \cdot w \in \mathscr{W}_{0}$.
Q.E.D.

Theorem 3.3 ($n=2$ case). Let X be the Fermat surface defined by $x_{0}^{d}+$ $x_{1}^{d}+x_{2}^{d}+x_{3}^{d}=0(d \geqq 4), p \nmid d(p$: prime number). Then we see that $\mathrm{HW}(X)$ at p is the zero matrix if and only if $p \equiv-1$ or -2 or $(d-1) / 2(\bmod d)$.

Proof. By the same reason as in the proof of Th. 3.2, we shall only prove
the "only if"' part. It is sufficient to show that there exists $w \in \mathscr{W}$ such that both of w and $p \cdot w$ are contained in \mathscr{W}_{0}. As before, let $j=\{p\}_{d}$.

The proof will be divided into 4 cases plus an exceptional case (5):
(1) $1 \leqq j<d / 3$. Let $w=(1,1,1, d-3)$; then w and $j \cdot w=(j, j, j, d-3 j)$ are contained in \mathscr{W}_{0}.
(2) $d / 3<j<(d-1) / 2$. Since $j \leqq(d-1) / 2-1=(d-3) / 2$ and $d-2 j \geqq 3$, we get

$$
j /(d-2 j) \leqq(d-3) / 2(d-2 j) \leqq(d-3) / 6
$$

If $d-2 j$ divides j, we have $j=(d-1) / 2$ by an easy calculation which contradicts the condition on j; hence we get

$$
[j /(d-2 j)]<(d-3) / 6
$$

Therefore we see that

$$
w=(2[j /(d-2 j)]+1,2[j /(d-2 j)]+1,2[j /(d-2 j)]+1, d-6[j /(d-2 j)]-3)
$$

is contained in \mathscr{W}_{0}. Now we shall show $j \cdot w \in \mathscr{W}_{0}$. Since $2 j>(2 / 3) d$, i.e., $d / 3>$ $d-2 j$, we have

$$
j /(d-2 j)-(j-(d / 3)) /(d-2 j)=d /(3(d-2 j))>1
$$

hence

$$
j-(d / 3)<[j /(d-2 j)](d-2 j)
$$

If we put $A=j(2[j /(d-2 j)]+1)-[j /(d-2 j)] d$, then we have

$$
A \equiv j(2[j /(d-2 j)]+1)(\bmod d) \quad \text { and } \quad 0<A<d / 3
$$

Since $j \cdot w=\left(A, A, A,\{j(d-6[j /(d-2 j)]-3)\}_{d}\right)$ and $3 A<d$, we see $j \cdot w \in \mathscr{W}_{0}$.
(3) $d / 2<j<(2 / 3) d$. In this case we assume $d>6$. The cases $d \leqq 6$ are proved trivially. Put $w=(2,2,2, d-6)$. Then we see $j \cdot w \in \mathscr{W}_{0}$. For we have $d<2 j<(4 / 3) d$; hence

$$
2 j \equiv 2 j-d(\bmod d) \quad \text { and } \quad d>2 j-d>0
$$

Since $-3 d>-6 j>-4 d$, we get $d>-6 j+4 d>0$ and $(d-6) j \equiv-6 j+4 d(\bmod d)$.
(4) $\quad(2 / 3) d<j<d-2$ (assume $d>6$). Since $d \geqq(3 d) /(d-j)>3[d /(d-j)]$, we have $w=([d /(d-j)],[d /(d-j)],[d /(d-j)], d-3[d /(d-j)])$ is contained in \mathscr{W}_{0}. Moreover we get

$$
\begin{aligned}
& j[d /(d-j)] \equiv d-(d-j)[d /(d-j)](\bmod d) \\
& d>d-(d-j)[d /(d-j)]>0 \quad \text { and } \\
& j(d-3[d /(d-j)]) \equiv 3(d-j)[d /(d-j)]-2 d(\bmod d)
\end{aligned}
$$

Since $3(d-j)[d /(d-j)]>3(d-j)(d /(d-j)-1)=3 d-3(d-j)=3 j>2 d$, it follows that $j \cdot w$ is contained in \mathscr{W}_{0}.
(5) d : even, and $j=(d / 2)-1$. In this case, put $w=(1,1,(d / 2)-1,(d / 2)-1)$. Then we have $j \cdot w=((d / 2)-1,(d / 2)-1,1,1)$. Hence both w and $j \cdot w$ are contained in \mathscr{W}_{0}.
Q.E.D.

4. Relations with Newton-polygons Nwt (X)

Let n, d, p, f, X be as previous. We put $q=p^{f}$. In the rational expression

$$
P(T)^{(-1)^{n-1}} /(1-T) \cdots\left(1-q^{n} T\right)
$$

of the zeta-function $Z\left(T ; X / \mathbf{F}_{q}\right)$, we know that

$$
P(T)=\prod_{w}\left(1-\beta_{w} T\right),
$$

where w runs over \mathscr{W}, and $\beta_{w} \in \mathbf{Q}(\zeta)\left(\zeta=\exp \left(2 \pi(-1)^{1 / 2} / d\right)\right)$ and that the P-adic value $v_{\beta}\left(\beta_{w}\right)$ of β_{w} is given by the so-called Stickelberger's formula

$$
v_{\mathbb{R}}\left(\beta_{w}\right)=\left((1 / d) \sum_{i=0}^{f-1}\left|p^{i} \cdot w\right|\right)-f
$$

for $\mathfrak{P}_{\mid p}$ (cf. Shioda-Katsura [3]).
We now consider the "Newton-polygon" $\operatorname{Nwt}(X)$ at p of X, namely, the monotonously increasing sequence of non-negative rational numbers $\lambda(w)=(1 / f)$. $v_{\mathfrak{B}}\left(\beta_{w}\right)$. Let $L(\lambda)$ be the number of times for which the slope λ occurs in this sequence. Then $\operatorname{Nwt}(X)$ at $p: \lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots$, where each λ has the multiplicity $L(\lambda)$. Since $\left|p^{i} \cdot w\right|=\left(\varepsilon\left(p^{i} \cdot w\right)+1\right) d$, we obviously obtain a formula

$$
\lambda(w)=(1 / f) \sum_{i=0}^{f=1} \varepsilon\left(p^{i} \cdot w\right) \quad \text { for } \quad w \in \mathscr{W},
$$

where $\varepsilon(v)=\alpha$ if $v \in \mathscr{W}_{\alpha}$.
Now we are concerned with the case of $n=2$.
Proposition 4.1 ($n=2$ case: $p \nmid d, d \geqq 4$). As for slopes of $\operatorname{Nwt}(X)$ at p, we have the following:
i) $\lambda\left(p^{i} \cdot w\right)=\lambda(w)$ for $0 \leqq i \leqq f-1$, for every $w \in \mathscr{W}$.
ii) $\lambda(w)+\lambda((d-1) \cdot w)=2$ for every $w \in \mathscr{W}_{0}$.
iii) Assume that there exist distinct slopes in $\operatorname{Nwt}(X)$. Then there exist $w_{0} \in \mathscr{W}_{0}, w_{1} \in \mathscr{W}_{1}$ and $w_{2} \in \mathscr{W}_{2}$, such that $\lambda\left(w_{0}\right)<1, \lambda\left(w_{1}\right)=1$ and $\lambda\left(w_{2}\right)>1$ respectively.
iv) $\operatorname{Min}\{\lambda(w) \mid w \in \mathscr{W}\}=\operatorname{Min}\left\{\lambda(w) \mid w \in \mathscr{W}_{0}\right\}$.
v) If $\mathrm{HW}(X)$ is the zero matrix, then the first slope λ_{0} of $\operatorname{Nwt}(X)$ is not less than $1 / 2$.

Proof. Put $v=p^{i_{0}} \cdot w$ for a fixed i_{0} with $0 \leqq i_{0} \leqq f-1$. Then

$$
\begin{aligned}
\sum_{i=0}^{f-1}\left|p^{i} \cdot v\right| & =\sum_{i=0}^{f-1}\left|p^{i+i_{0}} \cdot w\right| \\
& =\sum_{\alpha=i_{0}}^{f-1}\left|p^{\alpha} \cdot w\right|+\sum_{\alpha=f^{\prime}-1}^{f+i_{0}}\left|p^{\alpha} \cdot w\right| \\
& =\sum_{j=0}^{f-1}\left|p^{j} \cdot w\right|
\end{aligned}
$$

Hence we have i). Next put $w^{\prime}=(d-1) \cdot w$. Then

$$
w^{\prime}=\left(d-w_{0}, d-w_{1}, d-w_{2}, d-w_{3}\right)
$$

We can write

$$
p^{i}\left(d-w_{\gamma}\right)=\left(p^{i}-A_{i}-1\right) d+\left(d-\left\{p^{i} w_{\gamma}\right\}_{d}\right)
$$

where $p^{i} w_{\gamma}=A_{i} d+\left\{p^{i} w_{\gamma}\right\}_{d}\left(0 \leqq A_{i}<p^{i}\right)$ in \mathbf{Z}_{+}. Hence

$$
\left\{p^{i}\left(d-w_{\gamma}\right)\right\}_{d}=d-\left\{p^{i} w_{\gamma}\right\}_{d} \quad(\gamma=0,1,2,3)
$$

Therefore

$$
\left|p^{i} \cdot w^{\prime}\right|=4 d-\left|p^{i} \cdot w\right|
$$

and hence

$$
v_{\mathfrak{B}}\left(\beta_{w^{\prime}}\right)=\left((1 / d) \sum_{i=0}^{f-1}\left(4 d-\left|p^{i} \cdot w\right|\right)\right)-f=2 f-v_{\mathfrak{B}}\left(\beta_{w}\right)
$$

So we have ii).
We now proceed to iii). Under our assumption, suppose $\lambda(w) \geqq 1$ for all $w \in \mathscr{W}_{0}$. When, by virtue of the above formula for $\lambda(w)$, we write

$$
\lambda(w)=(1 / f)\left(0+\left(\alpha+\alpha^{\prime}+\alpha^{\prime \prime}+\cdots\right)\right) \quad \text { with } \quad \alpha, \alpha^{\prime}, \alpha^{\prime \prime}, \ldots \in\{0,1,2\}
$$

we have some $\alpha=2$. On the other hand, under our assumption, there exists $w^{\prime} \in$ \mathscr{W}_{0} such that $\lambda\left(w^{\prime}\right)>1$. In fact, suppose $\lambda(w)=1$ for all $w \in \mathscr{W}_{0}$. By the isomorphism $(d-1): \mathscr{W}_{0} 工 \mathscr{W}_{2}$, we obtain $\lambda(w)=1$ for all $w \in \mathscr{W}_{2}$ by ii). Moreover, as for $w \in \mathscr{W}_{1}$; if $p^{i} \cdot w \in \mathscr{W}_{1}$ for all i then $\lambda(w)=1$; if $p^{i_{0}} \cdot w \in \mathscr{W}_{0}$ or $\in \mathscr{W}_{2}$ for some i_{0} then $\lambda(w)=1$ by i). Thus $\lambda(w)=1$ for all $w \in \mathscr{W}$. This is contrary to our assumption. For w^{\prime}, let $w^{\prime \prime}$ be an element of \mathscr{W}_{2} corresponding to $\alpha=2$. Then $\lambda\left(w^{\prime \prime}\right)=\lambda\left(w^{\prime}\right)>1$. According to ii), $\lambda(w) \leqq 1$ for all $w \in \mathscr{W}_{2}$. This is a contradiction. Therefore there exists $w \in \mathscr{W}_{0}$ such that $\lambda(w)<1$ under our assumption. Put $w=(A, A, d-A, d-A)$ with $0<A<d$. Obviously $w \in \mathscr{W}_{1}$. Put $j=\{p\}_{d}$. Then $1 \leqq j \leqq d-1$ and $(j, d)=1$. We have

$$
p \cdot w=\left(\{j A\}_{d},\{j A\}_{d},\{j(d-A)\}_{d},\{j(d-A)\}_{d}\right)
$$

Since

$$
j(d-A)=(j-B-1) d+\left(d-\{j A\}_{d}\right),
$$

where $j A=B d+\{j A\}_{d}(0 \leqq B<j)$ in \mathbf{Z}_{+}, we have $\{j(d-A)\}_{d}=d-\{j A\}_{d}$ and hence $p \cdot w \in \mathscr{W}_{1}$. Then we have successively $p^{i} \cdot w \in \mathscr{W}_{1}$ for $2 \leqq i \leqq f-1$, and moreover $\lambda(w)=(1 / f)(1+1+\cdots+1)=1$. We can take $w \in \mathscr{W}_{0}$ such that $\lambda((d-1) \cdot w)>1$ by virtue of ii). Thus the assertion iii) holds.

In the case of all slopes being equal, the assertion iv) trivially holds. In the other case, we put

$$
\lambda_{0}=\operatorname{Min}\{\lambda(w) \mid w \in \mathscr{W}\} \quad \text { and } \quad \mu_{0}=\operatorname{Min}\left\{\lambda(w) \mid w \in \mathscr{W}_{0}\right\} .
$$

Then we have $\mu_{0}<1$ by iii). Let $w \in \mathscr{W}_{1}$. If an element of \mathscr{W}_{0} occures in $\{p \cdot w, \ldots$, $\left.p^{f-1} \cdot w\right\}$, then $\lambda(w) \geqq \mu_{0}$. If it is not so, then $\lambda(w)=(1 / f)\left(1+\left(\alpha+\alpha^{\prime}+\alpha^{\prime \prime}+\cdots\right)\right)$ $\left(\alpha, \alpha^{\prime}, \alpha^{\prime \prime}, \ldots \geqq 1\right)$ and hence $\lambda(w) \geqq 1>\mu_{0}$. Let $w \in \mathscr{W}_{2}$. Similarly we see $\lambda(w) \geqq \mu_{0}$. Thus we have $\lambda_{0} \geqq \mu_{0}$. On the other hand, from their definitions, we have $\lambda_{0} \leqq \mu_{0}$. Thus $\lambda_{0}=\mu_{0}$.

Finally we prove v). Using iv), we can easily verify the equivalence of

$$
\lambda_{0} \geqq 1 / 2 \quad \text { and } \quad \sum_{i=0}^{f-1}\left|p^{i} \cdot w\right| \geqq(3 f d) / 2 \quad \text { for all } \quad w \in \mathscr{W}_{0} .
$$

When $w \in \mathscr{W}$ is in \mathscr{W}_{α}, we say that w has of index α. Assume that $\operatorname{HW}(X)=0$. Then $p \cdot w \notin \mathscr{W}_{0}$ for all $w \in \mathscr{W}_{0}$, and hence $w, p \cdot w, p^{2} \cdot w, \ldots, p^{f-1} \cdot w$ has the sequence of indices

$$
\left\{0, \varepsilon \geqq 1 ; \eta^{\prime}, \eta^{\prime \prime}, \ldots,(\text { all } \geqq 1) ; 0, \varepsilon^{\prime} \geqq 1 ;, \ldots ; \zeta^{\prime}, \zeta^{\prime \prime}, \ldots,(\text { all } \geqq 1)\right\}
$$

or

$$
\left\{0, \varepsilon \geqq 1 ; \ldots ; 0, \varepsilon^{\prime} \geqq 1 ; \ldots ; 0, \varepsilon^{\prime \prime} \geqq 1\right\} .
$$

When f is even, we have $1 \leqq \#\{$ all $(0, \varepsilon)\} \leqq f / 2$. When f is odd, we have $1 \leqq$ $\#\{$ all $(0, \varepsilon)\} \leqq(f-1) / 2$. Therefore, if f is even then

$$
\sum_{i=0}^{f=1}\left|p^{i} \cdot w\right| \geqq(d+2 d)(f / 2)=(3 f d) / 2
$$

and if f is odd then

$$
\begin{aligned}
\sum_{i=0}^{f-1}\left|p^{i} \cdot w\right| & \geqq(d+2 d)(f-1) / 2+2 d \\
& =(3 f+1) d / 2>(3 f d) / 2 .
\end{aligned}
$$

Thus we have $\lambda_{0} \geqq 1 / 2$. Therefore the assertion v) holds.
Q. E. D.

When we consider the inverse of v) in the above proposition, it does not hold in case of $n=2$. We have examples as follows.

Example $4.2(d=9$ case $) . \quad$ At $p \equiv 2(\bmod 9)$, we have $f=6, p^{f / 2} \equiv-1(\bmod d)$ and $\mathrm{HW}(X)=\mathrm{HW}(X)_{\text {nilp }}$. Moreover,
the indices: $0 \quad 0 \quad 1$

$$
\begin{aligned}
& (1,1,1,6) \xrightarrow{p .}(2,2,2,3) \xrightarrow{p .}(4,4,4,6) \\
& (1,1,2,5) \xrightarrow{p .}(2,2,4,1) \xrightarrow{p .}(4,4,8,2) .
\end{aligned}
$$

So, rank HW $(X)=16$ and $\operatorname{Nwt}(X): \lambda_{0}=1$ with $L\left(\lambda_{0}\right)=457$.
Example $4.3(d=11$ case $)$. At $p \equiv 3(\bmod 11)$, we have $f=5$ and $\mathrm{HW}(X)=$ HW $(X)_{\text {nilp. }}$. Moreover,
the indices: $0 \quad 0 \quad 1 \begin{array}{llll}2\end{array}$

$$
\begin{aligned}
& (1,1,1,8) \xrightarrow{p .}(3,3,3,2) \\
& (4,4,1,2) \xrightarrow[p .]{p .}(1,1,3,6) \xrightarrow{p .}(3,3,9,7) \\
& (1,1,4,5) \xrightarrow{p .}(3,3,1,4) \xrightarrow{p .}(9,9,3,1) .
\end{aligned}
$$

So, rank HW $(X)=28$ and

$$
\begin{array}{rlcc}
\text { Nwt }(X): & \lambda_{0}=3 / 5<4 / 5<1<6 / 5<7 / 5 \\
L(\lambda): & 60 & 200 \quad 39120060
\end{array}
$$

Example $4.4(d=39$ case $) . ~ A t ~ p \equiv 34(\bmod d)$, we have $f=4, p^{f / 2} \not \equiv-1(\bmod$ d) and HW $(X)=\mathrm{HW}(X)_{\text {nilp }}$. Moreover

$$
\begin{aligned}
& \#\left\{w \in \mathscr{W}_{0} \mid p^{i} \cdot w \in \mathscr{W}_{0}(i=0,1,2), p^{3} \cdot w \in \mathscr{W}_{2}\right\}=12 \\
& \#\left\{w \in \mathscr{W}_{0} \mid p^{i} \cdot w \in \mathscr{W}_{0}(i=0,1), p^{2} \cdot w \notin \mathscr{W}_{0}\right\}=572 ; \operatorname{rank} \operatorname{HW}(X)=584
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Nwt}(X): & \lambda_{0}=1 / 2<3 / 4<1<5 / 4<3 / 2 \\
L(\lambda): & 1,264 \quad 12,41626,10712,4161,264
\end{aligned}
$$

References

[1] N. Koblitz, P-adic variation of the zeta-function over families of varieties defined over finite fields, Compositio Math., 31 (1975), 119-218.
[2] J.-P. Serre, Faisceaux algébriques cohérents, Ann. of Math., 61 (1955), 197-278.
[3] T. Shioda and T. Katsura, On Fermat varieties, Tôhoku Math. J., 31 (1979), 97-115.

> Department of Mathematics,
> Faculty of Education, Yokohama National University

