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Introduction

Let X be an n-dimensional Fermat variety of degree d

*t + xί + - + x ί + 1 =0 (d^

in P" + 1 , where x0, xί9..., xn+i are homogeneous coordinates. We are concerned

with the p-th power frobenius action F on the n-th cohomology group Hn(X, Θx)

of X over an algebraic closure k of the field F p ( p > 0 ; p)(d). The F-module

Hn(X, Θx) is canonically isomorphic to the GΛ-module Hn+1(Fn+\ Θpn + ι(-d)),

and we know that the vector space Hn+ι(Pn+1, Θpn + ι( — d)) has as basis Wo

(cf. §1). We now consider the matrix (the so-called Hasse-Witt matrix) HW(X)

of Gh with respect to iΓ0.

In this paper, we show mainly the following theorems:

THEOREM T. For positive integers n, d and p (p; prime number with p\d

and d^.n + 2) given as above, we let pt be the number of all elements in iΓ0 of

type i defined in §1. We can arrange the p^s by some integers fo>fί > ••• > / r > 0

as follows:

Pi = 0 for ϊ > / 0 , Pfs = Pi< Pfs + ι for fs^i>fs+ί

and s<r, pfr = P i ^ P o for fr^i^\.

We denote by HW (X)nilp the nilpotent part of HΨ (X) at p. Then the normal

form of HW (X)nilp becomes the matrix

Λ(2)
0

0)

Po~Pfr

with Λ(p)=Λj-^ + 1 for Pftι_ι<p^pfat, α = 0, ί,...,r, where P/_,=0, and each
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Λθ is the square matrix (λu) of size g given by λi} = 1 ifj = i + l and λij = 0

otherwise (cf. §2).

THEOREM II. Let positive integers n, d and p be as above.

1) We have the property: if p= — 1 (mode/) then H W ( I ) at p is the zero

matrix.

2) In case of n = l i.e. X: x$ + xf + x% = 0, we have moreover the property:

if HW (X) at p is the zero matrix, then p= — 1 (mod d).

3) In case of n = 2 i.e. X: xg + xf+ x | + x^ = 0,

(i) when d is even, we have moreover the property: if HW (X) at p is the

zero matrix, then p= — 1 (mod d),

(ii) when d is odd, we have the property: HW (X) at p is the zero matrix if

and only if p=-\ (modi/) or p= -2 (mod d) or p = (d —1)/2 (modi/) (cf. §3).

We should remark that the statement of Th. II, 3), (ii) is suggested by N. Suwa.

The first proof of Th. II given by the author has been improved by R. Sasaki

later, and the author appreciates him for permitting to write his proof here.

Finally, we observe relations with Newton-polygons of X over the field

¥pf, where/=ord. {p mod d} in (Z/c/Z)x (cf. §4).

The author wish to express his hearty thanks to Prof. M. Nishi and Prof.

T. Sekiguchi for their hearty encouragement, and Prof. N. Suwa and Prof.

R. Sasaki for their useful conversations.

1. Hasse-Witt matrices HW (X)

Let n, d and p be the positive integers such that p is a prime number with

p)(d and d^.n + 2. We now consider the Fermat variety X defined by

We put h = x$ + xd-i h*i!+ 1, and k = Fp. From a commutative diagram of

short exact sequences of structure-sheaves:

we have a commutative diagram of cohomology groups:

δ
H"(X, Θx) ^> H"+1(Pn+ί, Θpn + ι(-d))

Gh\
δ J

Hn(X, Θx) ^> Hn+1(P"+ί, Θpn + ,(-d)),
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where Gh denotes hp~1F and <5 denotes the connecting morphism in the long

exact sequence derived from the above short exact sequence (cf. Serre [2], Chap.

Ill, 3, Prop. 8).

Now we put

where Z + is the set of all non-negative integers and |w| = Σjίo w r ^ e n o t e

that #iΓ0 = ( ~ i ), where # denotes the cardinality. According to Serre [2], loc.

^n ' ίd—\\

cit., we know that the /c-vector space H M + 1 ( P n + 1 , Θpn + i( — d)) is ί , * J -dimen-

sional and has a basis consisting of the classes of sections
ήβ\,...,n+i = i / ( 4 ° ^ l - - ^ r ) with β = <β09 βi9...9βH+1)eir09

of Opn + i(-d).

We denotes by [w] the class offftl,...fΠ+i, and by HW(X) the matrix of the

action Gh with respect to basis {[w] | w e

Now we shall describe HW (X). For υ e ^ 0 , we have

G v M = (χo~ \-xi+iy~1x~pv mod coboundaries

= ΣA((/ ?-l)ϊM !)^~ ( / 7 ϋ" ; L d ) mod coboundaries,

where Σ is taken over all λ = (λ0,..., λn+x)eZ%+1 with \λ\=p-\. Here, x =

^ + i ! and Ad = ( o , , ^ + i )

When we put Ah(v) = {λeZrl+2\ \λ\=p-l, pvy>λyd for all y} and

Z J + 2 | \λ\=p—l, pvy<λyd for some y}, we have

since p is a prime number with pjfd by assumption. If Ah(v)φ0, then it consists

of only one element λ and w = /?ί; — λd e i^0. In fact, \w\ =d and each pair (λγ, wy)

is uniquely determined via "euclidean algorithm" dividing pvy by d. Let 2 e

BΛ(i;). Then pvγo<λyod for some y0 and ((p-l)llλl)χ-(p»-λd) = pyj(x0--χyo.-

xn + ι)
m for m = max {pvy | O ^ y ^ π + l} and a homogeneous polynomial pyo in

x0,..., xM + 1 of degree — d + m(n + l). This is a section on ^o,...yo..,«+i(xo*"

jcy o---xn + 1/0) of Θpn + ί( — d). Thus ΣλeBh(v) is of the coboundary form of an

n-cochain with coefficients in Θpn + ί( — d).

Therefore, for each ve Wo, we have:

If Ah(υ)Φ09 then GΛ M = ((p-l)!/λ!)[w] (pv = λd + w).
(*) "

If Ah(v) = 0, then GΛ [ι;] = 0.
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Moreover we put

nr = {w = (w0,..., wn+ι)EZl+2\0<wγ<d (O^γ^ni-l), |w|=0 (mod d)}.

As in Koblitz [1], for a positive integer j , we consider the action j on Z j + 2 ,

for w = (w0,..., wn+ί), where each {jwy}d denotes the remainder for the division of

jwγ by d. Especially, suppose (7, d ) = l . Then we have 7 : Ψ~?+W as sets, and

j = / • (if j =/(modd))9 (jjf)- =j'(f •) for two positive integers 7, / coprime

to d. When, for each v e Ψ~o, we write

Gh M = Σ we^o KwM (K,* e fc),

we have

HW (X) = (/ϊy,JW)i;, w and 1; e τT0 .

From the above (*), we have

(•')

We note that the statement of this fact appears in Koblitz [1].

Let / be the order of p mod d as in the introduction. For w e #" 0 , when

pa w e τF0 for all α 6 Z+, we say that w is of type infinity. We put

S(p) = {we Ψ*o I w of type infinity},

For w e Ψ~o and 0^/^/—2, when /?α w e iΓ0 for any α ( O g α ^ ι ) and p i + 1 w

^ 0 , we say that w is of type 1. We put

Then we have disjoint unions

S*(p) = Wfro2 S^p), ^r 0 = S(p) U S0(p) U ••• U Sf_2(p),

a bijection p : S(p)^S(p), and injections /?• : S*(p)\S0(Jp)->5*(p), p : 50(p)->

iΓ ^iΓ0 as sets.

Thus, as for HW (X) at /?, we obtain

a) HW(X) is a square matrix of size ( ~, j = #iΓ0 and consists of three

minors (i), (ii), (iii):
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( i ) (h,w\w,v)er"0χs(p) of rank

0 0 (K,w\yv,v)erox(S*(p)\So(p)) θ f

(iii) (hυtW)iWtυ)erΌxso(P) o f r a n k z e r o

Each vth column of these minors is such a type of vectors with only non-zero
component at w = /? u.

b) rank HW (X) = $S(p) + *(S*(p)^S0(p)).
c) HW (X) is the zero matrix iff iΓQ = S0(p).

When we put

= ( U , , w and veS(p),

p = ( U v , ; w and »eS (p),

we see that HW (X)ss is non-singular, and HW (X)nilp is of the form (* 10), where 0
means %Ψ*0 x #S0(p)-matrix, with rank #(S*(p)\S0Q?)) and

HW(I)S S 0
HW (X) =

\ 0 HW(I)n ί / p

In later sections, we let [#^0] stand for Hn+1(Pn+\ Θpn + ί(-d)) and [S]
the subspace of \_ifr

0~] generated by a subset S of [#~0]

2. The normal form of HW (X)

Gh is a p-th power semilinear endomorphism of [^ 0] And, by (*')> for every
v e Ψ°o and for any integer N > 0, we have

(**) G M > ] = {hVfP.v)pN^K'v,p^yN'2''<K-^v,p^v)VvN'V-],
where if p w^ ^ 0 then hwp.w means the zero.

PROPOSITION 2.1. Gh acts bijectively on [S(p)], nilpotently on [S*Q>)].
Moreover we have

i) [*Ό] = [S(p)] Θ [S*(p)] as Gh-modules;
ϋ)

PROOF. For any veS(p), we have ι; = p w for some w by p- : S(p)^S(p).
Put C = (/ZW>P.VV)-^1G/C. Then [>] = GΛ (c[w]) by (**). Hence [S(p)]cGΛ.

On the other hand, since GΛ [5(p)]cz [S(p)], we have GΛ [S(»] =
And we also see that Ker(GΛ | [ S ( p ) ]) = 0 via p.: S(p)^S(p). By (**),

Gh acts nilpotently on S*(p) and hence on [S*(p)]. From the disjoint union
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iΓ0 = S(p)US*(pl GΛ [S(p)] = [S(p)] and GΛ-[S ( p ) ] c [ S (p)], the assertion i)

follows. Since Gh acts bijectly on [S(p)] (resp. nilpotently on [S*(p)]), we have

[5(p)]c=n N e Z + G ϊ . [ τ r o ] (resp. [S (p)]c W ^ Ker (Gfi [ j r o ] ) . For an element

ξe(r\NeZ+ G».IΨ~O-]) n (W*6 Z + Ker(G? | [ j r.0 ])), we write

ί = Σ «es(p) ^ M + Σ w e S (p) 4 M (cΌ, dwek).

Then, since £ e \JNeZ+ Ker ( G ^ ^ ^ ) , we have G% - ξ = 0 for sufficiently large TV and

hence

Σ,es(p) C Γ ^ C P " v] = 0 for some s e /cx.

Then

Therefore, by i), £ e [5(/?)] and then ξ = 0. Thus we have

Θ LS*(p)l = (ΓλNeZ+ G%.[iTQ-\) ® (KJNeZ+ Ker

Since [SίpflcΛjvez, G? [^ o ] and [S*(p)]c=WNez+ Ker (G^ | [ 3 r o ] ) , the assertion
ii) holds. Q. E. D.

On the other hand, we denote by [ ^ 0 ] G h t n e subspace of [ ^ 0 ] generated

by all Gft-fixed vectors and denote by \_i^o\Gh-niip t n e subspace of [#Vl consisting

of all vectors which are killed by powers of GΛ. Then we have

Since \S*(py\ = [iT0-]Gh-nUp and n ^ z , G^ [ ^ 0 ] ^ [ > T 0 ] ^ , we have

It is known that [Ψ~02
Gn has as basis GΛ-fixed vectors: ev's, v = l, 2,...,

Then, with respect to the ev's, the normal form of HW (X)ss at p becomes

the unit matrix lσ of size σ = #S(p).

Now, when S*(p) is non-empty, we shall choose a basis of [S*(p)] for the

sake of describing the normal form of HW (X)niιp. At first we note that if S0(p) =

0, then S*(/?) = 0; and if So{p)φ0, t h e n / ^ 2. In fact, suppose S*(p)φ0. Then

take w G S*(p). Since w is of type / for some i, we have p ' we S0(p). Suppose

/ = 1. Then, since Ψ~o = S(p), we have S*(p) = 0.

Therefore S*(p) has a unique non-negative integer fo^f— 2 such that St{p) = 0

for every ι > / 0 and 0*Sfo(p)-p-r>' '-p-r*Sί(p)-p-r>So(p).

We put

and [

PROPOSITION 2.2. Ŵe Λαt e the following properties:

i ) P t -^ ρi+1for0 ^ ϊ g / o «nί/pα = 0 for cc > / 0 .



On Hasse-Witt matrices of Fermat varieties 101

") LS*(p)Ύf0+1) = [S GO], [S*(p)]<1> = [S 0 (p)].

iii) GA: [S;(f>)] > [Sj-i(p)] is injective for i ^ 1.

iv) [S*Q>)]< > n [S;<»] = {0}/or i ^ 0.

v) [S*(p)]<ί+1> = [S (p)]<'> Θ [S((p)] /or i ^ 0.

v4nJ ί/iβ Gh~action has a commutative diagram:

[S*(i>)] ( ί + 1 ) = [S*(p)]O Θ [S((p)]

^ 1 * (. ̂
PROOF. The assertion i) is obvious. We prove the assertion ii). From the

definition of f0, we have G / o + 1 |>] = 0 for all v e S*(p). Therefore [S*Q?)]<'0+1>
=D['S*(p)] a n ( l hence the equality holds. We have [S*(p)] ( 1 )=>[S0(p)] by (**).

Let ξ G [Ψ*Q~] be such an element that Gh ξ = 0. Then we can write

ζ = ΈweS*(p) d w | > ] , J w G k

by Prop. 2.1, and also we can write

Hence we have

Since the Sf(p)'s are disjoint to each other, we have dw = 0 for w ^ S0(p) and hence

ξ G S0(p). Thus the assertion ii) holds.

Since ^ • ( Σ w e S j ( p ) ί ί w M ) = L e S i ( p ) ί ί p

w ί ι W ) P . w [ p . w ] and the p-w's are

distinct to each other in S^^p), if the right hand side is zero then we have dw = 0

for w G SjQ?). Hence the assertion iii) holds.

Suppose Gj[ -(ΣweSf(p) dw[w]) = 0. By (**), the left hand side is equal to

Σwes i (P) d^hWιP.wγ
i-ι'..(hpt-ί.Wtpi.w) lpl w].

Since w, p-w,..., pi -w (we S^p)) are all contained in Ψ~o and are distinct to each

other, we have dw = 0 for weS^p). Hence the assertion iv) holds. Obviously

[S*(p)] ( i + 1 ) ^[S*(>)] ( ί ) , and [S*(p)] ( ί + 1 )=3[Si0?)]. Conversely let

be in [S*(p)] ( ί + 1 ) . When we write

S = Σ j llveSj(p) cv M 9

we have Gj,+ 1 [Σy^i+i] = 0. By iii) and (**), we have c[J) = 0 for 7^ι

Then, since the sum Σj<ι in ί is in [S*(pW\ we have ξG [
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The commutativity with the GΛ-action is obvious. Thus the assertion v) holds.

Q.E.D

Now we have Th. I in the introduction.

THEOREM 2.3. For positive integers n, d and p (p: prime number with p)(d

and d^.n + 2) given as above, we let pt be the number of all elements in iΓ0 of

type i defined in §1. We arrange the p^s as in Theorem I in the introduction.

Then, with respect to the basis:

»h° • [t>J (« = 0, 1,..., r; iVβ =/.,/«-1,..., 0;

voeSfo(p), β.eS^ίp)^^—-•'"-• S^.Xp)/or α ^ l ) ,

HW {X)nilp at pis of the form:

(Ml)

Λ(2)

0

1 Pΰ - Pfr

with Λ(p)= Λfaι + 1 for α = 0, ί,...,r, where p

(otherwise), for all g.

_t = 0, and each

PROOF. If p • v ε Wo, then Gh • [D] is an non-zero constant multiplication of

[p v] by (**). Moreover Gh is injective on [S*(p)\S 0 (p)] by Prop. 2.2. The

symbol [ ] is a "one-to-one" map from Wo to [#~0]

Now, when we omit constant multiplications and the symbol [ ] in the

above arrangement of vectors, we obtain the following list:

SO(P)
= {pf°-v\υeSf0(p)} U ( W ] S ί g

where/ r + 1 = 0,

S/m-.m(p)
= {pf°-f-+*»..v\veSf0(p)} U (

(αm = 0, l , . . . , / m - / m + 1 - l ; m = l, 2,..., r),
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Sfo-Jp)

= {p« »| 17εS/0(p)} (αo = O, l , . . . ,/ 0 -/i-l)

We note that

(/o + l)P/o + Σί-iίP/.-P/.-X/ί+l) + 0»o-P/Γ)

= Zί-JP/X/ί-Zl+l) + P/Jr + P0 = Σ ί ϊ o Λ = #S*(p).

Through this list, we get the above basis of [S*(p)]. It is easily seen that, with
respect to these basis, the normal form of HW {X)niιP is as above. Q. E. D.

EXAMPLE 2.4 (n = l or 2; d=\2>). Let p=41s2 (mod 13), and hence/= 12.
In the following lists, " . . " denotes other permutations of the first one.

i) (n = lcase): #-jro=(« + Π=66.

Ψ~o = S*(p)

= S0(p) U Si(p) U S2(p) U S3(p) U S4(p) U S5(p)

( 4 , 4 , 5 ) . . ( 2 , 2 , 9 ) . . (1,1, 11).. (2,4, 7 ) . . (1, 2, 10).. (1, 5, 7). .

( 5 , 5 , 3 ) . . ( 3 , 3 , 7 ) . . ( 1 , 4 , 8 ) . .

( 6 , 6 , 1 ) . . ( 1 , 3 , 9 ) . .

( 2 , 5 , 6 ) . . ( 2 , 3 , 8 ) . .

( 3 , 4 , 6 ) . . .

Hence

6 = ρ5 = PA = P3 < 9 = p2 < 18 = pt < 21 = po;

/o = 5 > Λ = 2 > / 2 = l (r = 2).

S5(p) Si(p)^P3 * Ss(p) Si(p)^P' SI(P)

»:(1, 5 ,7) . . (1, 1, 11).. ( 3 , 3 , 7 ) . . w:(5, 5, 3 ) . .

( 1 , 3 , 9 ) . . .

Hence HW(X) = HW{X)ni lp, and it has the normal form:

Λ6,...,A6; Λ3,...,Λ3; Λ2,...,Λ2; 0,...,0

ii) (n = 2case):
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7Γ0 = S*(p) = S0(p) U S,(p) U S2(p)

( 4 , 4 , 4 , 1 ) . . ( 2 , 2 , 2 , 7 ) . . (1, 1 , 1 , 1 0 ) . .

( 3 , 3 , 3 , 4 ) . . (1, 1 , 2 , 9 ) . . (1, 1 , 4 , 7 ) . .

( 2 , 2 , 4 , 5 ) . . ( 1 , 1 , 3 , 8 ) . .

( 3 , 3 , 6 , 1 ) . . ( 2 , 2 , 8 , 1 ) . .

( 2 , 2 , 6 , 3 ) . . ( 1 , 2 , 3 , 7 ) . .

( 5 , 5 , 2 , 1 ) . .

(4, 4, 3, 2). .

( 1 , 1 , 5 , 6 ) . .

( 3 , 3 , 2 , 5 ) . .

( 2 , 4 , 6 , 1 ) . .

( 1 , 3 , 4 , 5 ) . . .

Hence I6 = p2<64 = p1<l4θ = po;fo = 2>fι = l (r=l).

S2(P) S^p^p • S2(p) S0(p)^p • St(p)

v: (1, 1, 1, 10). . ( 1 , 1 , 2 , 9 ) . . w:(3, 3, 3,4) . .

( 1 , 1 , 4 , 7 ) . . ( 1 , 1 , 3 , 8 ) . . ( 3 , 3 , 6 , 1 ) . .

( 1 , 2 , 3 , 7 ) . . ( 5 , 5 , 2 , 1 ) . .

(1, 1, 5, 6). .

( 3 , 3 , 2 , 5 ) . .

( 1 , 3 , 4 , 5 ) . . .

Hence HW (X) = HW (X)mlp, and the normal form is as follows:

Λ39...,A3; Λ2,...,Λ2; 0,...,0

p2=16 P l - p 2 = 48 po-p!=76.

3. Nullity conditions for HW (X) in case of n = 1 and 2

We start with the following lemma:

LEMMA 3.1. Let X be the Fermat variety of dimension n defined by

x$ + *?+•••+ xd

n+1 =0 (d^n + 2),

and let p be a prime number not dividing d. Then we have the following:
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i) Ifd-n^{p}d^d-l, then HW(I) at p is zero.
ii) Assume d is even. If dl2-{n-\-{nj2'])^{p}d^dj2-\, then HW(I)

at p is zero.
iii) Assume d is odd. If

(d-l)l2 - (n-l-[(n + l)/2]) ^ {p}d ^ (d-l)/2,

then HW (X) at p is zero.

Here, as usual, [r] is the largest integer^r.

PROOF, i) Let w = (w0,..., wn + ί)eiΓ0. Then for l<.j^n, {p}d = d-j:

(-j) w = ({-jwo}d,..., {-jwn+ί}d).

Let och Ôg i: ^ n +1, be the positive integer such that

ocid>jwi >(α i - l )d .

Then we have

and Σ"ίo(M--M)^(« + 2)d-7Σ"ίoW i = d(π + 2-j)^2d. This means that
none of (—j) w, 1 Sjύn, is contained in #"0.

ii) Letw = (w0,..., wn+1)ef*0. Then for 1^/c^n-l -[n/2], {p}d = d/2-k:
-k).w = ({(d/2-k)wo}d,..., {(dl2-k)wn+1}d). We may assume that

w0,..., w2A_! are odd (2^-l<Ξrc + l, i.e., ^ - l ^

w2je,..., wπ + 1 are even.

It follows that

(dj2 - k)wt = d/2 - fcw, (mod J) (0 ̂  i ̂  2^ - 1 ) ,

(d/2 - /c)w7. = - few, (mod d) (2^ ̂ j^n + 1).

Let αί? αy be non-negative integers such that

d>otid + dβ - kWi > 0 ( 0 ^ / ^ 2 ^ - l ) ,

d > (ocj+l)d - kwj > 0

Then we have

and
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- k Σfio1 wt + ΣJίi. («

( )) ^ 2c/.

Thus we see that (d/2-k)- w is not in HΓ0.
iii) The similar proof to ii) works. So we omit it. Q. E. D.

THEOREM 3.2 (n = l case). Let X be the Fermat curve defined by
x% = 0 (d^3), and pjfd (p: prime number). Then we see that HW (X) at p is
the zero matrix if and only if p= — 1 (mod d).

PROOF. We shall prove the "only if" part, because the "if" part is already
proved.

Let j be the smallest positive integer satisfying j = p (modd). Assume
l^jSd/2. Since (d-2)j= -2j =d-2j (modd), both w = (l, 1, d-2) and

j . w = (jj9 {(d-2)j}d) = (j9j, d-2j) are contained in iΓ0. Assume dj2<j<d-\.
Since J/2>[J/(d-j)], we get d-2[d/(d-j)l>0; hence

-m, d-2ldl(d-j)])eir0.

We shall show that

is contained in Ψ~o. Since j\_dl(d—j)~] = d — {d—j)\_dl(d—j)~] (modd) and d>d —
(d-j)Ldl(d-j)l>0, we have

-m}ά = d- (d-j)

Moreover we get

ίdj{d-m > d/(d-j) - I > dl2(d-j), 2d > 2{d-j)ίdl{d-m > d

and

j(d - 2[d/(d -7)]) = - 2j[dl(d -m = Άd -j) ld/(d - ; ) ] (mod d).

Thus we have

{j(d-2ldl(d~jMd = 2(d-j) Vdlid-j)-] - d;

hence we see j -we Wo. Q. E. D .

THEOREM 3.3 (n = 2 case). Let X be the Fermat surface defined by xg-h
xf + x% + xi = 0 (d^4), p)(d (p: prime number). Then we see that HW (X) at p
is the zero matrix if and only if p= — I or —2 or (d—\)\2 (modi/).

PROOF. By the same reason as in the proof of Th. 3.2, we shall only prove
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the "only if" part. It is sufficient to show that there exists weΨ~ such that both
of w and p w are contained in #~0. As before, let j = {p}d.

The proof will be divided into 4 cases plus an exceptional case (5):
(1) l^/<d/3. Let w = (l, 1, 1, d-3); then w andj w = (j,j9j, d-3j) are

contained in Ψ*o.
(2) d/3</<(d-l)/2. Since j g (d- l )/2- l=(d-3)/2 and d - 2 ; ^ 3 , we

get

j/(d-2Λ ^ (d-3)/2(d-2j) ^ (d-3)/6.

If d — 2j divides j , we have j = (d—1)/2 by an easy calculation which contradicts
the condition on 7 hence we get

U7(d-2 7)]<(d-3)/6.

Therefore we see that

w = (2[j/(d-2/)] + l, 2D7(d-2;)] + l, 2D7(d-2j)] + l, d-6D7(d-2j)]-3)
is contained in iΓ0. Now we shall showj we#Ό. Since 2/>(2/3)d, i.e., d/3>
d — 2/, we have

2j) -(j- (d/3))/(d - 2;) = dl(3(d - 2j

hence

If we put i4=j(2[j7(d-2/)] + l)-[77(d-2;)]d, then we have

^ Ξ ;(2[j/(d - 2/)] +1) (mod d) and 0 < A < d/3.

Since 7 w = (^, A, A, {j(d - 6[y/(d - 2j)] - 3)}d) and 3 A < d, we see j weiT0.
(3) dj2<j<{2j3)d. In this case we assume d>6. The cases d^β are

proved trivially. Put w = (2, 2, 2, d —6). Then we see j -we iΓ0. For we have
d<2j<(4/3)d; hence

2/ = 2j - d (mod d) and d > 2j - d > 0.

Since - 3 d > —6/> -4d, we get d> —6/ + 4d>0 and (d-6)j== -6j + 4d (modd).
(4) (2/3)d<j<d-2 (assume d>6). Since d^(3d)/(d-./)>3[d/(d-7)],

we have w = ([d/(d-;)], [d/(d~7)], [d/(d-;)], d-3[d/(d-j)]) is contained in
->F0. Moreover we get

-j)-] = d- (d- ; ) [d/(d-;) ] (modd),

d> d- (d-j) [d/(d-j)] > 0 and

- ; ) ] - 2d (modd).



108 Keisuke TOKI

Since 3(d-j)[d/(d-j)]>3(d-j)(dl(d-j)-l) = 3d-3(d-j) = 3j>2d9 it follows

that j w is contained in iΓ0.

(5) d: even, and./ = (d/2)-l . In this case, put w = (l, 1, (d/2)-l , (d/2)-l) .

Then we have j-w = ((d/2)— 1, (d/2) — 1, 1, 1). Hence both w and j w are

contained in #~0. Q. E. D.

4. Relations with Newton-polygons Nwt (X)

Let π, d, /?,/, X be as previous. We put q = pf. In the rational expression

of the zeta-function Z(Γ; X/Fq)9 we know that

where w runs over TT, and βweQ(ζ) (C = exp(2π(-l) 1/2/d)) and that the P-adic

value v^(βw) of βw is given by the so-called Stickelberger's formula

for φ | p (cf. Shioda-Katsura [3]).

We now consider the "Newton-polygon" Nwt(Z) at p of X, namely, the

monotonously increasing sequence of non-negative rational numbers λ(w) = (l/f)

Vy(βw). Let L(λ) be the number of times for which the slope λ occurs in this

sequence. Then Nwt (X) at p: λ0 < λ1 < λ2 < , where each λ has the multiplicity

L(λ). Since |p ι w\=(ε(pi w)+ l)d, we obviously obtain a formula

^(w) = (l//)Σί=o 1e(P ί w) for

where ε(y) = oc if veiΓa.

Now we are concerned with the case of n = 2.

PROPOSITION 4.1 (rc = 2 case: pjfd, d^4) . ^ / o r s/opes of Nwt(X) at p, we

have the following:

i ) lip* - w) = λ(w) for 0 ^ / ̂  / - 1, for every weiΓ.

ii) λ(w) + λ((d -1) w) = 2 for every weiΓ0.

iii) Assume that there exist distinct slopes in Nwt(JΓ). Then there

exist woe Ψ~o, wί e Wt and w2ε ^ 2 > s u c n t n a t Λ-(wo)<l5 λ(w1)=l and λ(w2)>\

respectively.

iv) Min μ(w) I w e W} = Min {A(w) | w e TT 0} .

v) //HW(I) is the zero matrix, then the first slope λ0 of Nwt (X) is not

less than 1/2.

PROOF. Put v = pio w for a fixed i0 with 0 ̂  ΐ0 ̂  / - 1 . Then
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ΣU \P1 V\ = ΣU l/>ί+ί° H

Hence we have i). Next put w' = (d — 1) w. Then

w' = (d-w0, d-wl9 d-w2, d-w3).

We can write

PKd-wy) = (pi-Ai-W + (d-^'vv^),

where ^ w ^ ^ d + ̂ w ^ (O^AiKp1) in Z + . Hence

{P'(d-wy)}d = d - {p*wy}d (y = 0, 1, 2, 3).

Therefore

| p* . w'l = 4d — \pi - w\,

and hence

(4^- |p ί w|)) - / = If - v^

So we have ii).

We now proceed to iii). Under our assumption, suppose λ(w)^l for all

w e iΓ0. When, by virtue of the above formula for λ(w), we write

λ(w) = (l//)(0 + (α + α' + α " + . )) with α, α', α",...e{0, I, 2},

we have some α = 2. On the other hand, under our assumption, there exists w' e

Ψ*o such that λ(w')>l. In fact, suppose λ(w) = l for all weΨ^. By the iso-

morphism (d— 1): # " 0 ^ ^ 2 , we obtain A(w)= 1 for all w e Ψ~2 by ii). Moreover,

as for we 7 ^ ; if p ' - w G ^ for all i then A(w)=l; if pio-weir0 or e ̂ 2 for

some ί0

 t n e n A(w)=l by i). Thus A(w)=l for all w e ^ . This is contrary to

our assumption. For w', let w" be an element of iΓ2 corresponding to α = 2.

Then A(w") = ̂ (w')>l. According to ii), λ(w)^l for all weΨ*2. This is a

contradiction. Therefore there exists weΨ~0 such that λ(w)<l under our

assumption. Put w = (A, A, d — A, d — A) with 0<A<d. Obviously weϋr

1.

Put = {p}d. Then 1 ̂ j ̂  d - 1 and ( j, d) = 1. We have

U(d-A)}d9

Since
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where jA = Bd + {jA}d (0^B<j) in Z+, we have {j(d-A)}d = d-{jA}d and hence

P'WE iVγ. Then we have successively pi'• we iΓ1 for 2^i^ f— 1, and moreover

;i(w) = (l//)(l + l + + l) = l. We can take W G # 0 such that λ((d-ΐ)-w)>l

by virtue of ii). Thus the assertion iii) holds.

In the case of all slopes being equal, the assertion iv) trivially holds. In

the other case, we put

λ0 = Min {λ(w) I w e W} and μ0 = Min {λ(w) \ w e τΓ0} .

Then we have μ0 < 1 by iii). Let weiΓι. If an element of iΓ0 occures in {p w,...,

pf-χ'W}, then λ(w)^μ0. If it is not so, then Λ(w) = (l//')(l+(α + α/ + α"+ •••))

(α, a\ α",. . .^l) and hence λ(w)^ l>μ0. Let we iΓ2. Similarly we see λ(w)^μ0.

Thus we have λo^μo. On the other hand, from their definitions, we have λ0gμ0.

Thus λo = μo.

Finally we prove v). Using iv), we can easily verify the equivalence of

λ0 ^ 1/2 and Σί="o \Pι M έ (3/d)/2 for all w G >T0 •

When w 6 ^ is in ^ α , we say that w has o/ /nc/βx α. Assume that H W ( I ) = 0.

Then p w£iΓ0 for all H>ef 0, and hence w, p w, /?2 w,..., pf~1 w has the

sequence of indices

{0 ,β^l ; η',η",..., (all ^ 1 ) ; 0, β'^ 1;,...; ζ', ζ",..., (all ^1)}

or

When / is even, we have l^Ξ#{all (0, ε)}^//2. When / is odd, we have 1 ^

#{all (0, ε)} ^(/-1)/2 . Therefore, if/ is even then

Σί=oι \Pι'M ^ (d + 2d){fl2) = (3/a)/2,

and if/ is odd then

Σί=oι \P1 M ^ (d + 2d)(f-l)l2 + Id

= (3f+l)d/2>(3fd)/2.

Thus we have λ0 ^ 1/2. Therefore the assertion v) holds. Q. E. D.

When we consider the inverse of v) in the above proposition, it does not

hold in case of n = 2. We have examples as follows.

EXAMPLE 4.2 (d = 9 case). At p = 2 (mod 9), we have / = 6, p^1 = - 1 (mod d)

and HW (X) = HW (X)nUp. Moreover,
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the indices: 0 0 1

(1, 1, 1, 6) -Jϋ-> (2, 2, 2, 3) -£-> (4, 4, 4, 6)

(1, 1, 2, 5) -^> (2, 2, 4, 1) -*i+ (4, 4, 8, 2).

So, rank HW(Λr)=16 and Nwt(X): λo=l with L(AO) = 457.

EXAMPLE 4.3 (d = l l case). At p = 3 (mod 11), we have/=5 and H W ( I ) =

HW {X)nilp. Moreover,

the indices: 0 0 1 2

(1, 1, 1, 8) -JU+ (3, 3, 3, 2) - J ^ (9, 9, 9, 6)

(4, 4, 1, 2) -*L+ (1, 1, 3, 6) -*L+ (3, 3, 9, 7)

(1, 1, 4, 5) ^ > (3, 3, 1, 4) ^ > (9, 9, 3, 1).

So, rank HW(X) = 28 and

Nwt (X): λ0 = 3/5 < 4/5 < 1 < 6/5 < 7/5

L(/l): 60 200 391 200 60.

EXAMPLE 4.4 {ά = 39 case). At p = 34 (mod d), we have / = A,pfi2φ—\ (mod

d) and HW (X) = HW (X)m ,p. Moreover

# { w e ^ o | ^ . w e ^ o 0 ' = 0, 1, 2), p 3 . w e 7 ί r 2 } = 12,

^ { w e ^ Ό l p ^ w e ^ o ί i ^ O , 1), p2 wφ iΓ0} = 572; rank H W ( I ) = 584

and

Nwt(X): λ0 = 1/2 < 3/4 < 1 < 5/4 < 3/2

L(λ): 1,264 12,416 26,107 12,416 1,264.
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