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Introduction

On a self-adjoint harmonic space, we can establish Green's formulae, which

give relations between Dirichlet integral and energy of potentials (see [6; Part II]).

On the other hand, for the potential theory with respect to the heat equation,

relations between Dirichlet integral and energy have not been completely clarified

on a cylindrical domain, such relations have been discussed by M. Pierre [7],

[8] in the framework of "parabolic Dirichlet space", and also some results

can be found in the investigations of parabolic capacities (see, e.g., [4]).

The purpose of the present paper is to obtain such relations on a P-harmonic

space having an adjoint structure. We shall establish a sort of Green's formula

for continuous potentials with finite energy and show that the Dirichlet integral

is majorized by the energy for such potentials.

In the last section, we shall investigate the case of the heat equation on a

cylindrical domain I = Ωx(0, T) (ΩaRd

9 d>\) and show that continuous heat

potentials with finite energy on X belong to the class L2(0, T; Hl(Ω)) n L°°(0, Γ;

L2(Ω)), which is a space considered in [7], [8] (also, cf. [4]).

§ 1. Mutually adjoint harmonic structures

Let X be a connected locally compact space with a countable base, and

suppose two harmonic sheaves 2F and ^ * (or hyperharmonic sheaves ^ and ^ * )

are given so that (X, 3f) and (X, 3f*) (or, (X, W) and (X, <%*)) are both P-

harmonic spaces in the sense of Constantinescu-Cornea [2]. The set of all

continuous potentials with respect to JF (resp. j f *) is denoted by « ĉ (resp. 0>%).

We say that JF and «2f * are mutually adjoint if there exists a function (called an

associated Green function) G ( x j ) : I x I - > [ 0 , +oo] satisfying the following

conditions:

(G.O) G(x, y) is lower semicontinuous on X x X and continuous off the diagonal

set;

(G.I) For each yeX, G( , y) is a potential for Jίf and is harmonic for 2?
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(G*.l) For each xeX, G(x, •) is a potential for 34?* and is harmonic for 34?*

(G.2) For any p e ^ c , there is a unique non-negative measure μ on I such

that p = Gμ (Gμ(x) = J G(x, jO^Cv));

(G*.2) For any p* e ^ * , there is a unique non-negative measure v on X such

that p* = G*v (G*vO) = J G(x, ^)dv(x)).

REMARK 1.1. Given (34?, Jf7*), the Green function is unique up to a multi-

plicative constant.

REMARK 1.2. Existence of a Green function implies the proportionality

axiom (cf. [1]) and Doob's convergence property (cf. [9]) for both 34? and 34?*.

Hereafter, we assume that a pair (34?, 34? *) of mutually adjoint harmonic

structures is given and let G(x, y) be the associated Green function. For sim-

plicity, we further assume that the constant function 1 is superharmonic for

both 34? and 34?*. Since our assumptions are symmetric with respect to 34?

and Jf7*, every assertion relative to 34? has its counterpart (the dual statement)

relative to 34? *. Thus in many cases, we shall state results only for Jf, leaving

the formulation of their dual statements to the reader.

We denote by Jί%c the set of all non-negative measures μ on X such that

Gμ e 0>c. By (G.O) and (G.I), we easily see that if μ e Jt%c and μ' is a non-negative

measure on X such that μ! <μ, then μ' zJί%c. The following lemma is a conse-

quence of (G.2):

LEMMA 1.1. Let μί9 μ 2 e ^ c . If (Gμ1-Gμ2)\ueje(U) for an open set

U in X, then μx \u = μ2\u.

For a signed measure v such that | v | e ^ J c , we write Gv for Gv+—Gv~,

which is a continuous function on X.

Let & (resp. &*) be the sheaf of functions which are locally expressible as

differences of two continuous Jf- (resp. 34?*-) superharmonic functions. By

Lemma 1.1 and [2; Theorem 2.3.2], given fe&(U) (U: open) there exists a

uniquely determined signed measure σ(f) on U such that \σ(f)\\veJί%c and

(/-G[σ(/) lκ]) Ir e 3>ί?(V) for any relatively compact open set V with VczU. It

is easy to see that σ defines a sheaf morphism @-*Jί ( = the sheaf of signed

measures on X) such that σ(f) > 0 on U if and only if / is Jf-superharmonic

on U; namely σ is a measure representation for (X, 34?) as defined in [6]. If

μ e ^ ΐ c and he34?(X), then σ(Gμ + /?) = μ. Note that σ( l )>0 by assumption.

Likewise, we obtain a measure representation σ*: ^ * - * ^ for (X, 34?*).

LEMMA 1.2. Let s be a continuous 34?-superharmonic function on X such

that σ(s)(X)< + co. Then σ(s)eJί%c and s — G(σ(s)) is the greatest harmonic

minorant of s.
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PROOF. Let μ = σ (s), let {Xn} be an exhaustion of X and let μn = μ \ Xn. Then

μn^J(%c and (s — Gμn)\XneJi?(Xn). For any compact set K in Xn, α =
suPxeκ,yedxn G(x, y)< + °° by (CO). By (G*.l) and the assumption that 1 is

Jf *-superharmonic, we see that G(x, y)<α for all x e X and yeX^Xn (cf.

[6; Proposition 2.5]). Hence G(μ — μn) is bounded on K, which implies that

G(μ — μn)\XneJf(Xn). Since these are true for all n, it follows t h a t μ e ^ ΐ c

and s — Gμe Jf(X). Since Gμ is an ^-potential, s —Gμ is the greatest harmonic

minorant of s.

Let C0(X) be the set of all continuous functions with compact support in

X, and write @0(X)=<%(X) 0 C0(X), <%%(X) = @*(X) n C0(X). Also, we write

^ c = ̂ c — ^ c and &% = &% — &%. For φ e ^ 0 ( I ) , σ(φ) has compact support,

so that φ = G(σ(φ))e£c. Hence, ^ 0 (J ί )c :^ c . Similarly, ^g(X)cij2*. Thus,

i f / e f 0 W and/* e # § ( * ) > t h e n

(1.1) J/^*(/*) = §f*dσ(f).

PROPOSITION 1.1. Equality (1.1) holds for fe ^(X) and f*e&%(X), or

forfe&0(X) andf* e

PROOF. Let fe&(X) and/*E^*.(X). By [6; Proposition 2.17], there

exists φe&0(X) such that φ = l on a neighborhood F of Supp/*. Then

([6 Corollary 2.7]), /φ = / on Supp/* and σ(/φ) | F = σ(f) \ v. Hence

The case/e^0W and/* e ^*(Z) is similar.

COROLLARY 1.1. For u e ^ ( I ) , iί is harmonic on X if and only if

$udσ*(ψ) = 0for allψe&RX).

PROOF. Since &%(X) is dense in C0(X) (cf. [2; Theorem 2.3.1]), the

corollary immediately follows from the proposition.

As in [2; pp. 39-40], we denote by R (resp. JR*) the reduction operator

with respect to 3^ (resp. «#"*), namely, for a non-negative function / o n X,

Rf= inf {uG%\u>f on X} (resp. ,R*/=inf {ve<%* \ v>fon X}).

By [2; Proposition 2.2.3] (also see [6; Proposition 2.6]), Rfe0>c if / (>0) is

continuous and dominated by an ^-potential; in particular, if feC0(X).

Furthermore, Supp σ(Rf) c Supp/.

LEMMA 1.3. If μl9 μ 2

e - ^ ΐ c and Gμ1<Gμ2, then μί(X)<μ2(X).
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PROOF. If {φn} is a monotone increasing sequence of functions in C%(X)

such that φn(x) -*1 for any xe X, then {R*φn} is a monotone increasing sequence

in 0>% such that R*φn(x) ->1 for any x e l , since we assumed that 1 is J f *-super-

harmonic. Hence, if we put μ* = σ*(R*φn), n = l, 2,..., then

,,.^ J Gμ2 dμ* = lim^^ j R*φn dμ2 = μ2(X).

COROLLARY 1.2. For fe£c with \σ(f)\(X)< + oo (in partiuclar, for fe

@o(X))J>0 implies σ(f)(X)>0.

§ 2. Gradient measure and energy

For/, g e @(X)9 their mutual gradient measure with respect to σ is defined by

and the gradient measure of/e 0t(X) by

(see [6]). Similarly, δf/>β] and δj for/, ̂  e @*(X) are defined in terms of σ*.

THEOREM 2.1. ///, g e &(X) n

PROOF. Let φ e ^ 0 ( I ) . Then φf, φg, φfge@0(X) ([6; Corollary 2.7]).

By [6; Theorem 3.2],

= {ψMg)^-gσ(φf)-σ(φfg)-φfgσ(l)}

+ Mφg)

Hence, using Proposition 1.1, we have

2 J Ψ dhf,9\ = J g dσ(φf) + J fdσ{φg) - J fg dσ(φ) - J dσ(φfg)

= fφfdσ* (g) + J W dσ*(f) - Jφ dσ (^) - Jφ/flf dσ (l)
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Since @0(X) is dense in C0(X), it follows that δίffβli = δfftgy

PROPOSITION 2.1. Iffe @(X) and g e @0{X), then

2δίf9βl (X) + §fg dσ(l) + J/flf dσ* (1) = §fdσ(g) + J g dσ(f).

PROOF. Since σ(fg)(X) = $ fg dσ*(l) by Proposition 1.1, the equality of
the proposition follows from the definition of δUgy

COROLLARY 2.1. 7/σ(l) = σ*(l) = 0, then

δif,9i (χ) = y {$fdσ(g) +

/or/e 0t{X) and g e ̂ 0 W

We consider the following classes:

&BC = {P e &c IP: bounded}, ^ B C =

LEMMA 2.1. J//e ^B C, ίΛen f2 e £BC. Iffe £BIC, then

δf(X) + \

|σ(/2)|(Z) < + oo and σ(f2)(X) > 0.

PROOF. Let f=p — q with p, qe^BC and let M = max (supxp,
Then I/I < M and |σ(/)| <σ(p) + σ(ςf). Let i? = 2M(p + ςf) -f2. Since

0 < 2ί7 = 2fσ(f) - σ(f2) -/%(!) < 2Mσ(p + q) - σ(f2) = φ),

v is ^f-superharmonic on X. Also, 0<t;<2M(p4-^f) implies ve0>BC. Hence
f2 = 2M(p + q)-ve<2BC.

Since |/σ(/)|<Mσ(p + ̂ f) and/is bounded, we see that G(fσ(f))eJ2BC and
G(/2σ(l)) G ̂ β C . Hence G(δf) e £BC and

G(δf)=G(fσ(f)) - \f2 - \G(f2σ{\)) < G(fσ(f)) -±

Hence, by Lemma 1.3,

δf(X) + y
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provided J | / | d\σ(f)\ < + oo, i.e., fe £BIC- Furthermore, since

ί I/I d\σ(f)\ < + oo implies |σ(/ 2)|(X)< + oo, and hence σ(/ 2 )(X)>0 by Corollary

1.2.

PROPOSITION 2.2. / / Gμ, Gv e « ĉ,

|Gμ dv + Γ Gv dμ < \ Gμdμ+ Γ Gv dv.

PROOF. Let {Xn} be an exhaustion of X and put μn = μ\Xn and VΠ = V|A:M.

Since Gμπ < supXn Gμ and Gvn<sup^nGv (cf. [6; Proposition 2.5]), Gμn, Gvne

&BC. Let fn = Gμn-Gvn. Then fne J ^ c and

fl/»l ^ k ( Λ ) l < f I/J d μ + [ I/J rfv < + oo.

Hence, by the above lemma, §fndσ(fn)>0, i.e.,

J Gμn dvn + §Gvn dμn < §Gμn dμn + §Gvn dvn.

Letting n->oo, we obtain the required inequality.

COROLLARY 2.2. // Gμ, Gv e 0>c and Gμ < Gv on X, then

ΪGμ dμ<4 ΓGV dv.

PROOF.

J dμ< JGvdμ = §GQΪv) d(μ/y/2)

v)

= 2 ΓGV dv + y Γ

Hence, we obtain the required inequality if J" Gμdμ< +oo. In case §Gμdμ =

+ oo, consider μM as in the proof of the above proposition. Then, since Gμπ<

Gμ<Gv and \Gμndμn< + oo, J Gμ M dμ M <4 | Gvdv by the above. Letting n-»

oo, we obtain J Gv dv= + oo in this case.

REMARK 2.1. The inequalities in Proposition 2.2 and Corollary 2.2 fail to

hold if we omit the assumption that Gμ and Gv are continuous. For example,



Dirichlet integral and energy 7

let X = Rn+1 (n>l) and Jf (resp. jf*) be the harmonic sheaf defined by the
solutions of the heat (resp. adjoint heat) equation. If SuppμczJ?" x {0} and
Supp vc/?"x{l}, then J Gμdμ=$ Gvdv = 0, while J Gμdv>0 provided μφO
and VT^O. If Supp vcl?" x {0}, v/0 and μ = φ(x,t)dxdt with some φ e
Cl(Rn+1) such that SuppφaR" x {ί>0}, then Gμ<Gv for sufficiently small
non-zero <p, while j Gv dv = 0 and J Gμdμ>0. (See, e.g., [3] and [10] for
properties of potentials for the heat equation.)

COROLLARY 2.3. £IC (and hence £BIC) is a linear space, and for any /,
g e £IC, J I/I d\σ(g)\ < + oo. // we write

{§fdσ(g) + J# *</)} /or

then <*,-> ΪS α non-negative definite symmetric bilinear form on J2IC, so that

\<f,g>\2<<fj> <g,g> for f,ge£>ic.

PROOF. If /, g e J2/c, then f=Gμ1-Gμ2, g = Gv1- Gv2 with Gμp Gvj
(j — l9 2). Then, by the above proposition,

JΊ/I d\σ(g)\

< 2 I ^Gμ^dμ^ Γ Gμ2dμ2+ ΓGv1ί/v1+ Γ Gv2ί/v2| < + oo.

Hence, </, #> is well-defined for /, g e J / c . Also, by the above proposition
again, </, />>0 for any/e^ / c . The rest of the corollary is shown by standard
arguments.

§ 3. Green's formula

LEMMA 3.1. Let U be an open set in X, uneJ$?(U), n = l, 2,..., and suppose
MΠ->0 locally uniformly on U. Then, for any compact set K in I/,

PROOF. Given a compact set K in I/, choose φe^ 0 ([/) such that 0<<p<l
on U and φ = l o n X (cf. [6; Proposition 2.17]). If u e 3f(U), then

= { < ? > M « 2 ) « V

By [6; Theorem 3.2],
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Using [6; Proposition 3.3] and the continuity of u and φ, we obtain

<

Hence

φ2δu < u2σ(φ2) - σ(u2φ2) - 2u2φ2σ(l) + lβu2δφ

< u2σ(φψ + 16u2δφ - σ(u2φ2).

By Corollary 1.2, we have σ(u2φ2)(U)>0. Hence

δu(K)< \φ2άδu < L2dσ(φ2)+ + 16 \u2dδφ.

Since Supp σ(φ2) + , Supp δφ are both contained in Supp φ, which is compact in U9

we see that δUn(K) -• 0 if MΠ -• 0 locally uniformly on U.

THEOREM 3.1. // fe £IC, then δf(X)< + oo, \σ(f2)\(X)< + oo, J" f2dσ{\)<

+ oo, J I/I c/|σ(/)| < + oo and the following hold:

(i) {Green's formula)

δf(X) + -i-

(ii)

PROOF. In Corollary 2.3, we have shown that j | / | d\σ(f)\< + oo. Let

f=Gμ — Gv with Gμ, Gve0>ic. Let {Xπ} be an exhaustion of X and let μn =

μ\xn>vn = vk, Pπ = Gμn9 qn = Gvnand fn = pn-qn. Then,/-/„ is Jf-harmonic on

Xn and /—/„ -• 0 locally uniformly on X. (Note that p — pn | 0 and q — qni 0.)

Hence, for any compact set X in X, δf_fn(K) -> 0 (π->oo) by Lemma 3.1, so that

δfn(K) -• δf(K) ( n ^ oo). Since /„ e £BIC (cf. the proof of Proposition 2.2),

δfn(X) + Y J/2 ^(1) < J7.
by Lemma 2.1. Now,

Since |pπ — qn\<p + q, $(p + q)d(μ + v)< H-oo by Proposition 2.2 (cf. the proof

of Corollary 2.3) and pn — qn-+p — q (n-»oo), Lebesgue's convergence theorem

implies
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/n dσ(fn) — J(p-q) d(μ- v) = J/<M/) • (n-» oo).

Hence, for any compact set K in X,

δf(K) +

< lim inf.^ I δfn(X) + y

^ liminf^x J/ n dσ{fn) =

Hence

<5,« + y J/2^(l) < J/^(/) < + ex),

which implies <5y(X)< + oo and J / 2 dσ(l)< H- oo. Since

we obtain

\σ(P)\ (X) < 2

and Green's formula given in (i). Thus the theorem is proved.

COROLLARY 3.1. // /, g e ^ / c , ί/zen |<5[/>ί7]|(X)< + oo, |σ(/#)|(X)< + oo,
+ oo, f I/I d|σfo)| < + oo, f \g\ d\σ(f)\ < + oo

COROLLARY 3.2. ///, ge£IC0

PROOF. By Theorem 2.1, δ^g^X) = δt*/f ff](X). On the other hand, J fdσ(g)
+ \g dσ(f)= Jδfdσ*(/)+ §fdσ*(g). Hence the required formula follows from
the above corollary.

COROLLARY 3.3. Let /„, fe J2IC and suppose

α - / ) — 0 (Π-OO).
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Then δfn_f(X) -» 0 and δfn -» δf vaguely (n-»oo).

PROOF. By the theorem, (5/n_/(X)->0 (n->oo). For any φeC%(X), the
bilinear form (/, g) -> J <pdS[fg-} is non-negative definite. Hence

Therefore, δfn-*δf vaguely.

§ 4. Gradient measures for the heat equation — an example of the general theory

In this section, we consider the heat equation

T du Λ ALu Ξ w ~ Δ*u = °
and the adjoint heat equation

4 ^ Axu = 0
x

on Λ'+ 1 = {(x, Oljce*', ίeJR} (^>i). For any domain X in # d + 1 , the
sheaf je = j ^ L (resp.Jf* = Jfΐ) of solutions of Lu = 0 (resp. L * M = 0 ) on X
defines a P-harmonic space on X (cf. [2; §3.3]). Furthermore, Jί?L and ^ J
are mutually adjoint harmonic structures on X with a Green function G(x, y)
satisfying the conditions given in §1 (cf. e.g., [10] and [3; 1, XVII]). By [10;
§15], every j>ίfL- (resp. Jf f-) superharmonic function u is locally integrable with
respect to the Lebesgue measure dxdt on Rd+1 and μ = Lu (resp. L*u) in the
distribution sense is a non-negative measure. Thus, for any fe &(U) (resp.
^*(C/)), U: open in X, L/(resp. L*/) in the distribution sense is a signed measure
on U and in fact, σ(f) = Lf (resp. σ*(/) = L*/). Conversely, if/e C([/) and v =
L/(resp. L*/) in the distribution sense is a signed measure such that G(|v||κ)
(resp. G*(|v| | x)) is continuous for any compact set K in I/, then fe &(U) (resp.

In particular, if/(x, ί) on t/ is C1 in ί and C2 in x, then/e^(C7) Π
*(£/), and in this case we easily see that the gradient measure δf of/is given by

, ψdxdt ( = Σ^=i ( - ^ - ) 2 (x, t) dxdt) .

PROPOSITION 4.1. Lei Ω be a domain in Rd, T>0 and let X = Ωx(09 T).
Then, for the harmonic space (X, JfL),

Ά1C c= L2(0, T; H&Ω)) n L°°(0, T; L2(Ω))

and
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(4.1) δf = I Γxf(x, tψdxdt

for fe£ιc, where the gradient Vxf consists of the generalized derivatives of f.

(For the spaces L2(0, T; H^(Ω)) and L°°(0, T; L\Ω)\ one may refer, e.g., to [5].)

PROOF. (I) The case where / = Gμ with a non-negative measure μ having

a C°°-density φ on Ω with compact support in Ω. In this case, it is known (e.g.,

[3; 1, XVII, 6]) that /is C°° in (x, t), so that (4.1) holds with FJ in the classical

sense.

Let {Ωn} be an exhaustion of Ω by smooth domains such that Supp φc=:Ω1 x

(0, T), and let Gn be the Green function for L on Ωnx(0, T). Again by [3; 1,

XVII, 6], Gnμ is C00 in (x, ί) and L(Gnμ) = φ on Ωnx(0, T) in the classical sense.

Let fn = Gnμ on Ωnx(0, T) and =0 on (Ω\ί2n)x(0, T). Then, / „ ! / on X.

By the boundary regularity of the Green function on smooth domains (e.g.,

[3; 1, XV, 7]), we see that Gπμ( , t) has continuous partial derivatives on Ωn for

each t e (0, T) and /„ is continuous on X. It follows that /„( , t) e Hl(Ω) for any

ίe(0, T). Furthermore, by Green's formula, for each ίe(0, T), we have

Γ I VJn{x9 tψdx = - Γ /n(x, O^/Λx, 0 dx
J Ωn J Ωn

= - Γ /„(*> 0 ^ f (x, 0 d* + f /Λ(χ, 0Φ(X, 0dχ

Ux't)γdx+L/n{x't)φ{x't)dx-
Hence, noting that/B(x, ί)=0 for 0 < ί < ε for some ε>0, we have

(4.2) Γ I ΓJn(x, tψdxdt + \ \ lfn(x, sWdx
J<ί,χ(0,i) 2 Ji)»

= f f«dμ< Γ fdμ< +
J Ωnx(0,s) J X

00

for any s e (0, T). Since/-/„ is jfL-harmonic on ΩM x (0, T) and/-/ π | 0 (n-> oo),

we see that Vxfn-*Vxf locally uniformly on ί2x(0, T). Hence, by Fatou's

lemma,

(4.3) Γ I Γx/(x, tψdxdt + i- Γ [/(x, 5)]2<ίx < Γ
J Ωnx(0,s) έ J Ω J

< + 00

for any se(0, T). Therefore, /eL 2 (0, T; H 1 ^ ) ) Π L°°(0, T; L2(Ω)). Further-

more, (4.2) also shows that {/„} is bounded in L2(0, T; H^Ω)). Since /π-^/ on

X, it follows that /„-•/ weakly in L2(0, T; HH^)). Since /„ e L2(0, T; Hl(Ω)) for

each n and L2(0, T; if^(β)) is weakly closed in L2(0, T; H^Ω)), it follows that

/eL 2 (0, T
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(II) Next, consider the case where / = Gμ with a non-negative measure μ

such that Suppμ is compact in X. Note t h a t / e ^ β / c in this case. Let {ηn}

be a sequence of mollifiers on Rd+1 tending to the Dirac measure and put μn =

μ*ηn, the convolution of μ and ηn. We may assume that SuppμnczX for all n.

Then, each μn is a measure of the type considered in (I) and μn-*μ vaguely as

n->oo. Let/n = Gμπ.

We can write (cf. [3; pp. 331-332])

G((x, 0, 0>, s)) = W(x-y,t-s)- H(x, y;t,s),

where

Γ ( 4 π 0 - d / V l*l2/4ί, t > 0
W(x, t) =

I o, t < o
and H(x9 y; ί, s), as a function of (x, ί), is the generalized Dirichlet solution for

Lw = 0 in X with the boundary values W(ξ — y, τ — s) for (ξ, τ)edX. Suppose

Supp μnczK with a compact set K in X. We see easily that the family {H(x, y\

t, s)}iXft)eX is uniformly equicontinuous on K. It then follows that

un(x, t) = J /ί(x, j ; ί, s) dμn(y, s) > J H(x, y; t, s) dμ(y, s) = u(x, t)

uniformly in (x, t) e X. Since wΠ and u are «PfL-harmonic on X, it follows that

Vxun-^ Fxu locally uniformly on X. Since/= W*μ — u, the continuity of/ implies

the continuity of W*μ. Therefore, W*μ*ηn -+W*μ (n-^oo) locally uniformly on

Rd+1. Hence, /n->/ locally uniformly on X, so that

Γ fndμn >\ fdμ< + co (n-+co).
Jί2x(0,Γ) Jβx(OJ)

Since (4.3) holds for/n, it follows that {/„} is bounded in L2(0, T; Hl(Ω)) as well

as in L°°(0, Γ; L2(Ω)). Since /„->/, it then follows that / e L 2 ( 0 , T; i/έ(Ω)) Π

L°°(0, T; L2(ί2)), and /„->/ weakly in L2(0, T; Hi(Ω)), which implies (4.3) for

the present /. Furthermore, since dfjdXjeL\oc{X), d(W*μ)/dXjeLlc(X)

(j = l,...,d). Hence, d(W*μ*ηJldxj^d(W*μ)ldxj in L2

OC(Z), so that dfJdxj->

df/dxj in Llc(X) 0 = 1 , . . . , έQ Therefore, | Fxfn\
2dxdt -> | Fj\2dxdt vaguely on

X. On the other hand, <5/n= | Fxfn\
2dxdt and δfn->δf vaguely on Z by Corollary

3.3, since J (/„-/) d(μn-μ)-> 0. Therefore ^ = 1 FJ\2dxdt.

(Ill) Now, let / = Gμ e 0>IC. Let {XJ be an exhaustion of X and let μn =

μ|X n and/ π = Gμπ, n = l, 2,.... Then each/π is of the type considered in (II), so

that fneL2(0, T; H&Q)) Π L°°(0, Γ; L2(Ω)), (4.3) holds for /„ and <5 / n =|F x /J 2 .

dxdt. Since /„ ί/, we see, as in (II), that / e L 2 ( 0 , T; H}>(Ω)) Π L°°(0, T; L2(Ω))

and (4.3) holds for/. Thus (4.3) also holds for/—fne3?IC for each n. Since /„
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ί/ and fe0>IC, we see that J (/-/„)d(μ-μn)-+O (n->oo). Hence δfn-*δf

vaguely on X by Corollary 3.3, and (4.3) for/„, n = l, 2,..., imply that/n->/in
L2(0, T\ Hl(Ω)). It then follows that | FJa\

2dxdt-+\ FJ\2dxdt vaguely, which
implies δf=\Fxf\

2dxdt.
Finally, if/ei? / c, then f=f1— f2 w i t h / l 5 / 2 e ^ / c . Hence we obtain the

proposition.

COROLLARY 4.1. Let X be a domain in Rd+1 and let fe@(X) for the
harmonic space (X, JfL). Then df/dxj e L2

OC(X), j = 1,..., d9 and

δf = I FJ(x9 t)\2dxdt on X.

REMARK 4.1. In view of [7; Lemme Π-6] and the above proposition, if
/ e i / c for the harmonic space (X, JfL) with X = Ωx(0, Γ), then

ί/flx(O, s)) + \ Γ [/(x, sWdx = Γ fdσ(f)
^ J Ω J flx(O,s)

for any s e (0, T). Thus, by Theorem 3.1, we have

in this case.
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