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Introduction

On a self-adjoint harmonic space, we can establish Green’s formulae, which
give relations between Dirichlet integral and energy of potentials (see [6; Part I1]).
On the other hand, for the potential theory with respect to the heat equation,
relations between Dirichlet integral and energy have not been completely clarified ;
on a cylindrical domain, such relations have been discussed by M. Pierre [7],
[8] in the framework of ‘“parabolic Dirichlet space’’, and also some results
can be found in the investigations of parabolic capacities (see, e.g., [4]).

The purpose of the present paper is to obtain such relations on a P-harmonic
space having an adjoint structure. We shall establish a sort of Green’s formula
for continuous potentials with finite energy and show that the Dirichlet integral
is majorized by the energy for such potentials.

In the last section, we shall investigate the case of the heat equation on a
cylindrical domain X=Qx (0, T) (< R9, d>1) and show that continuous heat
potentials with finite energy on X belong to the class L2(0, T; Hy(RQ)) n L*(0, T;
L2(Q)), which is a space considered in [7], [8] (also, cf. [4]).

§1. Mutually adjoint harmonic structures

Let X be a connected locally compact space with a countable base, and
suppose two harmonic sheaves s and s#* (or hyperharmonic sheaves % and #*)
are given so that (X, s#) and (X, 5#*) (or, (X, %) and (X, #*)) are both P-
harmonic spaces in the sense of Constantinescu-Cornea [2]. The set of all
continuous potentials with respect to s (resp. #*) is denoted by 2. (resp. 2§).
We say that 5# and s#* are mutually adjoint if there exists a function (called an
associated Green function) G(x, y): X x X—[0, +oo] satisfying the following
conditions:

(G.0) G(x, y)is lower semicontinuous on X x X and continuous off the diagonal
set;

(G.1) For each ye X, G(-, y) is a potential for s and is harmonic for s
on X~{y};
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(G*.1) For each xe X, G(x,-) is a potential for ##* and is harmonic for s#*
on X~{x};

(G.2) For any pe £, there is a unique non-negative measure 4 on X such
that p=Gu (Gu(x)= [ G(x, y)du(y));

(G*.2) For any p*e 2§, there is a unique non-negative measure v on X such
that p*=G*v (G*W(y)=[ G(x, y)dv(x)).

REMARK 1.1. Given (57, #*), the Green function is unique up to a multi-
plicative constant.

REMARK 1.2. Existence of a Green function implies the proportionality
axiom (cf. [1]) and Doob’s convergence property (cf. [9]) for both s and s#*.

Hereafter, we assume that a pair (s, #*) of mutually adjoint harmonic
structures is given and let G(x, y) be the associated Green function. For sim-
plicity, we further assume that the constant function 1 is superharmonic for
both s and s#*. Since our assumptions are symmetric with respect to 5
and s£*, every assertion relative to s# has its counterpart (the dual statement)
relative to s#*. Thus in many cases, we shall state results only for s#, leaving
the formulation of their dual statements to the reader.

We denote by .#}. the set of all non-negative measures y on X such that
Gue Z.. By(G.0)and (G.1), we easily see that if ue .#%. and y’ is a non-negative
measure on X such that ' <y, then y'e€ #%.. The following lemma is a conse-
quence of (G.2):

LEmMMA 1.1. Let u,, ype M. If (Guy—Guy)|y€#(U) for an open set
U in X, then #1 IU=#2|U'

For a signed measure v such that |v| e .#%., we write Gv for Gv* —Gv~,
which is a continuous function on X.

Let # (resp. #*) be the sheaf of functions which are locally expressible as
differences of two continuous s#- (resp. #°*-) superharmonic functions. By
Lemma 1.1 and [2; Theorem 2.3.2], given fe #(U) (U: open) there exists a
uniquely determined signed measure o(f) on U such that |o(f)||, € #}c and
(f=GLa(f) |y |y € #(V) for any relatively compact open set ¥V with V<U. It
is easy to see that o defines a sheaf morphism #—.# (=the sheaf of signed
measures on X) such that o(f)>0 on U if and only if f is s#-superharmonic
on U; namely o is a measure representation for (X, s#) as defined in [6]. If
ue Msc and he #(X), then o(Gu+h)=p. Note that ¢(1)>0 by assumption.
Likewise, we obtain a measure representation o*: Z2*—.# for (X, #%*).

LEMMA 1.2. Let s be a continuous #-superharmonic function on X such
that o(s)(X)<+ 0. Then o(s)e #}c and s—G(a(s)) is the greatest harmonic
minorant of s.
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PrOOF. Let p=o (s), let {X,} be an exhaustion of X and let y,=pu|x,. Then
u,€ MEc and (s—Gpu,)|x, €#(X,). For any compact set K in X,, a=
SUP,ck,yeoxn G(X, Y)<+ 00 by (G.0). By (G*.1) and the assumption that 1 is
H#*-superharmonic, we see that G(x, y)<a for all xeK and ye X~ X, (cf.
[6; Proposition 2.5]). Hence G(u—u,) is bounded on K, which implies that
G(u—u,) | x, € #(X,). Since these are true for all n, it follows that pe .#%¢
and s—Gue #(X). Since Gu is an #-potential, s— Gpu is the greatest harmonic
minorant of s.

Let Cyo(X) be the set of all continuous functions with compact support in
X, and write Zy(X)=2(X)N Co(X), 2§ X)=2R*(X) N Co(X). Also, we write
2c=P:—P; and 2E=2PE—P¢ For peRy(X), o(p) has compact support,
so that ¢=G(a(p))e 2.. Hence, Zy(X)=2.. Similarly, 2§(X)=2§. Thus,
if fe Zy(X) and f* € Z%(X), then

(L.1) [ raorre) = [ redots).

ProvrosiTION 1.1.  Equality (1.1) holds for fe #(X) and f*e Z¥X), or
for fe Zy(X) and f* € Z¥(X).

Proor. Let fe 2(X) and f*e 2§(X). By [6; Proposition 2.17], there
exists @ € Zyo(X) such that ¢ =1 on a neighborhood V of Suppf*. Then fpe
Zo(X) ([6; Corollary 2.7]), fo=f on Supp f* and o(fp)|,=0(f)|,. Hence

[saors%) = [ g0 do*(s) = [ 12da (1) = [ rrdo(p.

The case fe Z,(X) and f* € Z2*(X) is similar.

COROLLARY 1.1. For ue %(X), it is harmonic on X if and only if
[u da*()=0 for all y € Z¥X).

Proor. Since #Z¥(X) is dense in Cy(X) (cf. [2; Theorem 2.3.1]), the
corollary immediately follows from the proposition.

As in [2; pp. 39-40], we denote by R (resp. R*) the reduction operator
with respect to s (resp. s#*), namely, for a non-negative function f on X,

Rf=inf{ue|u>fon X} (resp. R*f=inf{ve#*|v> fon X}).

By [2; Proposition 2.2.3] (also see [6; Proposition 2.6]), Rfe 2. if f (=0) is
continuous and dominated by an s#-potential; in particular, if fe Cy(X).
Furthermore, Supp ¢(Rf)<Supp f.

Lemma 1.3, If py, € A5 and Guy <G, then p(X) < uy(X).
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Proor. If {¢,} is a monotone increasing sequence of functions in C§(X)
such that ¢,(x) —1 for any x € X, then {R*¢,} is a monotone increasing sequence
in 2% such that R*¢,(x) —1 for any x € X, since we assumed that 1 is s#*-super-
harmonic. Hence, if we put u*=0%(R*p,), n=1, 2,..., then

10 = lim, .. [R¥o, dsy = lim, .. | Gru i
< lim ., [Gpip dpt = lim, .., [R*0, dity = 1o (X).
COROLLARY 1.2. For fe 9. with |o(f)(X)<+ oo (in partiuclar, for fe

Ro(X)), f =0 implies a(f)(X)>0.

§2. Gradient measure and energy

For f, g € 2(X), their mutual gradient measure with respect to o is defined by
1
Otr.e1 = 5 1f0(g)+go(f)—a(fg)—fga(1)}
and the gradient measure of fe 2(X) by

8 = bippy = & Qo)) =0(f)~fa(1)}
(see [6]). Similarly, 6§, ,; and 6% for f, g € 2*(X) are defined in terms of o*.
THEOREM 2.1. If f, g€ #(X) N Z*(X), then &, 51=06, -

PrROOF. Let @ e %Z,(X). Then of, ¢g, ofge Z,(X) ([6; Corollary 2.7]).
By [6; Theorem 3.2],

200(1,01 = 20101, — 201001
= {¢fo(g)+go(of) —o(efg) — fga(1)}
— {foo(9)+fga(p)—fo(eg)— fga(1)}
= go(ef) + fo(eg) — fgo(e) — o(efg).

Hence, using Proposition 1.1, we have
2 [0 déyy = [gdoton) + [ fdateg) - [ fg dote) - [ datofe)
= Jordor @ + [0gdo*() - [ do*(sa) ~ [ty do*(t)

=2 pdsty. .
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Since Z,(X) is dense in Co(X), it follows that o;; 1 =0F; ;1.

ProPOSITION 2.1.  If fe #(X) and g € Zy(X), then

2110 (X) + [ fg do)) + [ fg do*(1) = [ fdotg) + [ g dots).

ProoF. Since o(fg)(X)=| fg do*(1) by Proposition 1.1, the equality of
the proposition follows from the definition of & ;.

COROLLARY 2.1. If a(1)=0*(1)=0, then

5700 = 5 {[ fdoto)+ [g dot)}

for fe Z(X) and g € Z,(X).
We consider the following classes:

Psc = {pePc|p: bounded}, 2pc = Pyc — Ppc,
Pic = {P59c|jpd0'(17)< + 0}, 2= Pic — Pic»
Poic = Poc N Prcs 2g1c = Psic — Paic-

LEMMA 2.1. If fe 2gc, then f2€ 2pc. If f€ D¢, then
6,00 + 5 [ £2dotn) < [ faot),
le(fHI(X) < + 0 and o(f?)(X)>0.

PrOOF. Let f=p—q with p, e Py and let M =max (supy p, supy q).
Then |f|<M and |o(f)|<o(p)+0(q). Let v=2M(p+4q)—f2. Since

0 <26, = 2fo(f) — o(f?) — f20(1) < 2Ma(p+q) — o(f?) = o(v),
v is s#-superharmonic on X. Also, 0<v<2M(p+q) implies ve Pz.. Hence
f?=2M(p+q)—v € 2p.

Since |fo(f)|<Mo(p+q) and f is bounded, we see that G(fo(f))e 25 and
G(f?0(1)) € Pyc. Hence G(d,) € 25¢ and

G(6,)=G(fo(f)) = 3 f* = 5 G(f2a() < G(fa(f)) — 5 G(f2a(1).

Hence, by Lemma 1.3,

8,00 + 5 [ £2do(t) < [ fdo(s),
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provided [ |f|d|o(f)| <+, i.e., fe 25 Furthermore, since
le(fA] < 21f1e(f) + 26, + f?a(1),

j'lfl dla(f)| < + oo implies |a(f?)|(X)< + o0, and hence a(f?)(X)>0 by Corollary
1.2

PROPOSITION 2.2. If Gu, Gve P, then

IGudv + ijdu < IGud,u + IGV dv.
Proor. Let {X,} be an exhaustion of X and put p,=ulyx, and v,=v|y,.

Since Gu,<supy Gu and Gv,<supy Gv (cf. [6; Proposition 2.5]), Gu,, Gv,€
Pyc. Let f,=Gu,—Gv,. Then f, € 25 and

st < [ idu+ [ ifldv < + oo
Hence, by the above lemma, {f, do(f,)>0, i.e.,

| Gupan, + f Gy, du, < [ Gty dit, + [ v, d,.

Letting n— o0, we obtain the required inequality.

COROLLARY 2.2. If Gu, Gve #; and Gu<Gv on X, then

JGy du < 4JGV dv.

PROOF.
fGy du < f Gvdu = f G(y/2v) d(u/y/2)
< [eZv W2y + [ Guy2) duy2)
- 2JGvdv + —;—fGydp.

Hence, we obtain the required inequality if [ Gudu< +oo0. In case [Gudu=
+ o0, consider y, as in the proof of the above proposition. Then, since Gu,<
Gu<Gv and [ G, dp, <+ oo, | Gu,du,<4[ Gvdv by the above. Letting n—
0, we obtain | Gvdv= + oo in this case.

REMARK 2.1. The inequalities in Proposition 2.2 and Corollary 2.2 fail to
hold if we omit the assumption that Gu and Gv are continuous. For example,
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let X=R"*!' (n>1) and s (resp. ##*) be the harmonic sheaf defined by the
solutions of the heat (resp. adjoint heat) equation. If Supp pu= R"x {0} and
Supp ve R" x {1}, then | Gudu= [ Gvdv=0, while [ Gudv>0 provided u#0
and v#0. If SuppveR"x {0}, v#0 and p=e¢(x, t)dxdt with some ¢e€
C§(R™1) such that Supp o= R"x {t>0}, then Gu<Gv for sufficiently small
non-zero ¢, while [ Gvdv=0 and | Gudu>0. (See, e.g., [3] and [10] for
properties of potentials for the heat equation.)

COROLLARY 2.3. 2,- (and hence 2g;c) is a linear space, and for any f,
g€ 2 [Ifldlo(g)l<+co. If we write

9y =5 {[rdo@+ [gdon}  for fge2sc,
then {-,-) is a non-negative definite symmetric bilinear form on 2,¢, so that

KL P <L f>K9,9>  for f,ge2.
Proor. If f, g € 2,c, then f=Gu, —Gu,, g=Gv, —Gv, with Gu;, Gv;€ P
(j=1, 2). Then, by the above proposition,

fm dlo(g)] < f(cul +Gy) d(v; +v,)

<2 {faﬂldyl +f Gy, + Jledvl + fcvzdvz} < + oo

Hence, <{f, g) is well-defined for f, ge 2,.. Also, by the above proposition
again, {f, f>>0 for any fe 2,c. The rest of the corollary is shown by standard
arguments.

§3. Green’s formula

LeMMA 3.1. Let U be an open set in X, u,e #(U), n=1, 2,..., and suppose
u,—0 locally uniformly on U. Then, for any compact set K in U,

lim, ., 8, (K) = 0.

Proor. Given a compact set K in U, choose ¢ € Z,(U) such that 0<¢<1
on U and ¢ =1 on K (cf. [6; Proposition 2.17]). If u € 5#(U), then

9?6, = - {—¢*o(u?) —u?¢?o(1)}

D= =

{u20(@?)—a(u29?) —2u?p?a(1)} — (,2, 421 -

By [6; Theorem 3.2],
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5[,,2,(,,21 = 4uq)5[u,¢] .

Using [6; Proposition 3.3] and the continuity of u and ¢, we obtain
—4u@dy, ) < % @20, + 8u?,.

Hence
929, < u?a(9?) — a(u?9?) — 2u?p?a(1) + 16u?5,
< u?o(@?)* + 16u?d, — o(u?¢?).
By Corollary 1.2, we have o(u?¢?)(U)>0. Hence
5.(K)< f(pz ds, < fuz do(0?)* + 16f u2ds, .
Since Supp a(¢?)*, Supp §,, are both contained in Supp ¢, which is compact in U,
we see that d, (K) — 0 if u, — 0 locally uniformly on U.

THEOREM 3.1. If fe 2,¢, then 6(X)<+ 0, |o(fH)|(X)<+ 0, | f2do(1)<
+ o0, [|fldlo(f)] <+ and the following hold:
(i) (Green’s formula)

5,(X) + 5 [ 12do() + L a(rD(N) = [ fdots).

() 0<)6,x) + L ffz do(l) < ff do(f), ie., o(f2)(X)=0.

Proor. In Corollary 2.3, we have shown that [ |f|d|o(f)|<+ 0. Let
f=Gu—Gv with Gu, Gve Z,.. Let {X,} be an exhaustion of X and let pu,=
tlx,» Va=Vlx,» Pn=Gly 9,=Gv,and f,=p,—q,. Then, f—f, is #-harmonic on
X, and f—f, — 0 locally uniformly on X. (Note that p—p, | 0Oand g—gq,!0.)
Hence, for any compact set K in X,6,_  (K) —» 0 (n—c0) by Lemma 3.1, so that
07,(K) = 6/K) (n—0). Since f, € 2 (cf. the proof of Proposition 2.2),

6,00 + 4 [ f3doV) < [ f,do(s)

by Lemma 2.1. Now,
[ fudoty = [ —a)dw—.

Since |p,—q,|<p+4q, [(p+q)d(u+v)<+oo by Proposition 2.2 (cf. the proof
of Corollary 2.3) and p,—q, = p—q (n—o0), Lebesgue’s convergence theorem
implies
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[frdotsy — - du=) = [ sdot) (@-c0).

Hence, for any compact set K in X,

5,(K) ++ L frdo(1) = lim, . 6,,(K)+1- L fido ()

< liminf, ., { 5,(X) +4 f 12 do—(l)}

< timinf,..., [ f,do(f,) = | fda(s).
Hence

5,(X) + é—ffz do(1) < dea(f) < + oo,
which implies 8 (X)< + oo and [ f2do(1)< +o0. Since ‘
8+ 2120 () + L a(f2) = fo(f),
we obtain
0021 (X0) < 28,00+ 5 [ £2da} + [171dlo()] < +e0

and Green’s formula given in (i). Thus the theorem is proved.

CoROLLARY 3.1. If f, g€ 2, then |6 I(X)<+o00, |o(f@I(X)<+ 0,
f1f9l do(1)< + 0, [ | fldla(g)l < + oo, [ |g| dlo(f)| < + o0 and

247,00+ [ f do(1) + o(f)X) = [ 1do(@) + g do(s).
COROLLARY 3.2. Iff, g € 2;c N 2%, then
| 19 dot) + at16) 0 = [ g do*1) + (S 0.
PROOF. By Theorem 2.1, 8,,.,(X)=5%,, ,(X). On the other hand, | fda(g)

+ [ gdo(f)= g de*(f)+ [ fdo*(g). Hence the required formula follows from
the above corollary.

COROLLARY 3.3. Let f,, fe 2,c and suppose

[th=pastsi-p—0 @w).
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Then 6, (X) — 0 and 6, — 6, vaguely (n— 00).

PrOOF. By the theorem, d, _(X)— 0 (n—00). For any ¢eC§(X), the
bilinear form (f, g) — [ ¢dé;,,; is non-negative definite. Hence

(Jodor)” ~(Joder)"] < Joton-r—0 oo

Therefore, 6, —6, vaguely.

§4. Gradient measures for the heat equation — an example of the general theory

In this section, we consider the heat equation

= ou =
Lu = T Adu =
and the adjoint heat equation
L*u = ———a—li—Axu—O
ot

on R¥t1={(x,t)|xeR% te R} (d>1). For any domain X in R9*! the
sheaf o# =s¢, (resp. #*=s#%) of solutions of Lu=0 (resp. L*u=0) on X
defines a P-harmonic space on X (cf. [2; §3.3]). Furthermore, s, and #%
are mutually adjoint harmonic structures on X with a Green function G(x, y)
satisfying the conditions given in §1 (cf. e.g., [10] and [3; 1, XVII]). By [10;
§15], every s#,- (resp. s£¥-) superharmonic function u is locally integrable with
respect to the Lebesgue measure dxdt on R4*! and pu=Lu (resp. L*u) in the
distribution sense is a non-negative measure. Thus, for any fe 2(U) (resp.
2*(U)), U: open in X, Lf (resp. L*f) in the distribution sense is a signed measure
on U and in fact, 6(f)=Lf (resp. 6*(f)=L*f). Conversely, if fe C(U) and v=
Lf (resp. L*f) in the distribution sense is a signed measure such that G(|v||)
(resp. G*(Jv| | x)) is continuous for any compact set K in U, then fe 2(U) (resp.
2*(U)). In particular, if f(x, t) on U is C! in t and C? in x, then fe 2(U)n
#2*(U), and in this case we easily see that the gradient measure J, of fis given by

8, = |7.f(x, 0l2dxd (=z;=1( 2 )2 (x, 1) dxdt).

0x;

PROPOSITION 4.1. Let Q be a domain in R4, T>0 and let X=Qx(0, T).
Then, for the harmonic space (X, 5#),

21c = LX0, T; HY(Q) n L*(0, T; L*(Q))

and
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4.1) 0; = |V f(x, O)2dxdt

for fe 2,c, where the gradient V. f consists of the generalized derivatives of f.
(For the spaces L*0, T; H4(Q)) and L*(0, T; L*(Q)), one may refer, e.g., to [5].)

ProOF. (I) The case where f=Gu with a non-negative measure y having
a C®-density ¢ on Q with compact support in Q. In this case, it is known (e.g.,
[3; 1, XVII, 6]) that fis C* in (x, t), so that (4.1) holds with 7 f in the classical
sense.

Let {Q,} be an exhaustion of 2 by smooth domains such that Supp ¢ =Q, x
(0, T), and let G, be the Green function for L on Q,x (0, T). Again by [3; 1,
XVII, 6], G,uis C* in (x, t) and L(G,u)=¢ on Q,x (0, T) in the classical sense.
Let f,=G,u on ,x(0, T) and =0 on (2~Q,)x(0, T). Then, f,1f on X.
By the boundary regularity of the Green function on smooth domains (e.g.,
[3; 1, XV, 7]), we see that G,u( -, t) has continuous partial derivatives on Q, for
each t€(0, T) and f, is continuous on X. It follows that f,(-, t) e H§(Q) for any
te(0, T). Furthermore, by Green’s formula, for each ¢t (0, T), we have

[ 17six oax = —f £, D4, f(x, 1) dx
2, 2n

~f, fxn

- - ‘lz“ait j o, Ui, 02dx + L"fn(x, De(x, 1) dx.

65; (x, ) dx +J‘Q"f,,(x, Do(x, 1) dx

Hence, noting that f,(x, t)=0 for 0<t<¢ for some ¢>0, we have
(42) [ o 1P oRdxde + L [ LG 972
2,%(0,5) 2 Jao,

- f"dugffdu<+oo
2,%(0,s) X

forany se (0, T). Sincef—f, is s#,-harmonic on 2, x (0, T) and f—f, | 0 (n— 0),

we see that P f, - V. f locally uniformly on Qx(0, T). Hence, by Fatou’s

lemma,

2 L 2
4.3) f ooy PG DAzt + L [f(x, )]dx < f Sdp< + o

for any se(0, T). Therefore, fe L%0, T; H(Q))n L*(0, T; L*Q)). Further-
more, (4.2) also shows that {f,} is bounded in L2(0, T; H'(Q)). Since f,—f on
X, it follows that f,—f weakly in L2(0, T; H'(Q)). Since f, € L*0, T; H§(2)) for
each n and L%(0, T; H}(Q)) is weakly closed in L2(0, T; HY(Q)), it follows that
fe L0, T, H{(Q)).
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(I) Next, consider the case where f=Gu with a non-negative measure u
such that Supp p is compact in X. Note that fe &, in this case. Let {5,}
be a sequence of mollifiers on R4*! tending to the Dirac measure and put u,=
uxn,, the convolution of u and #,. We may assume that Supp p,<=X for all n.
Then, each y, is a measure of the type considered in (I) and u,—pu vaguely as
n—o. Letf,=Gu,.

We can write (cf. [3; pp. 331-332])

G((x’ t)’ (y’ S)) = W(X—y, t—S) - H(X, Y t, S),
where

(4nt)~d/2e= 151714t ¢ > (O

W(x,t)={
0, t<0

and H(x, y; t, s), as a function of (x, t), is the generalized Dirichlet solution for
Lu=0 in X with the boundary values W({—y, t—s) for (£, 7)€ 0X. Suppose

Supp u, =K with a compact set K in X. We see easily that the family {H(x, y;
t, $)}(x.nex is uniformly equicontinuous on K. It then follows that

u(x, 1) = f HCx, y3 15 du(y, ) — [ HOx p3 1 ) du(y, s) = u(x, 1

uniformly in (x, f)e X. Since u, and u are s#,-harmonic on X, it follows that
V.u,— V.u locally uniformly on X. Since f=Wxu—u, the continuity of f implies
the continuity of Wxu. Therefore, Wxuxn, - Wxu (n— o0) locally uniformly on
R4+, Hence, f,—f locally uniformly on X, so that

f fodu, — fdu < + 0 (n—>0).
2%(0,T) Q%(0,T)

Since (4.3) holds for f,, it follows that {f,} is bounded in L2(0, T; H{(R)) as well
as in L®(0, T; L*Q)). Since f,—f, it then follows that fe L%(0, T; H{(2)) n
L*(0, T; L%Q)), and f,— f weakly in L2(0, T; H{(R2)), which implies (4.3) for
the present f. Furthermore, since 0f/0x;e L% (X), O(W*p)/ox;e L, (X)
(j=1,...,d). Hence, d(Wxpuxn,)[ox;— d(W*w)dx; in L} (X), so that of,/0x;—
offox; in L3 (X) (j=1,...,d). Therefore, |V, f,|2dxdt — |V, f|?dxdt vaguely on
X. On the other hand, é,,=|7,f,|?dxdt and 6, —J, vaguely on X by Corollary
3.3, since [ (f,—f) d(u,—p) — 0. Therefore 6,=|F, f|*dxdt.

(III) Now, let f=Gue 2. Let {X,} be an exhaustion of X and let u,=
ulx, and f,=Gpu,, n=1, 2,.... Then each f, is of the type considered in (II), so
that f, e L%(0, T; H{()) n L=(0, T; L*)), (4.3) holds for f, and d, =|F.f,|>-
dxdt. Since f, 1 f, we see, as in (II), that fe L2(0, T; H)(Q)) n L*(0, T; L*(RQ))
and (4.3) holds for f. Thus (4.3) also holds for f—f, € #,c for each n. Since f,
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tf and feP, we see that | (f—f,)d(u—p,)—>0 (n—>). Hence &, -9,
vaguely on X by Corollary 3.3, and (4.3) for f,,n=1, 2,..., imply that f, —» fin
L0, T; H{(R2)). It then follows that |F,f,|>dxdt— |V, f|2dxdt vaguely, which
implies 6, =V, f|2dxdt.

Finally, if fe 2,c, then f=f,—f, with f,, f,€ #,. Hence we obtain the
proposition.

COROLLARY 4.1. Let X be a domain in R! and let fe #(X) for the
harmonic space (X, s#7). Then 0f/0x;e L} (X), j=1,...,d, and

0, = |F f(x, t)]2dxdt on X.

REMARK 4.1. In view of [7; Lemme II-6] and the above proposition, if
f€ 2, for the harmonic space (X, 5#;) with X=Q x (0, T), then

5420, )+ 5 [ fCr 9dx= [ fdo()

%(0,s)
for any s € (0, T). Thus, by Theorem 3.1, we have

o)) = lim,.r | [1(x, 912dx

in this case.
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