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§ 1. Introduction

The theory of the orbit equivalence has occupied an important place in
ergodic theory and is closely related to the notion of the time changes. In this
paper we shall investigate the relation between them.

In §2 and §3 we shall follow Totoki's paper [6] with some additional results.
He constructed time changes from given flows by means of so called additive
cocycles, which have the similar properties to those of the lags of the parameters
in the orbit equivalence. To speak in more detail, an additive cocycle φ with
respect to a flow (X, &, μ, {Tt}) (usually on a Lebesgue probability space) is

a measurable map from RxX to R, which satisfies the equation φ(t + s, x) =
φ(s, x) + φ(t, Tsx) f, s e R, x e X, with φx(t) = φ(t, x) non-decreasing (not
necessarily strictly increasing) and continuous in t for x in a {T,}-invariant co-null

set. Among them additive cocycles of the forms φ(t, x)= 1 f(Tsx)ds with non-
J o'

negative/'s are important ones, as we shall see later on. For an additive cocycle
φ, we shall see limΛ_>0 φ(h, x)/Λ exists a.e. by the same method as in the Wiener's
local ergodic theorem, from which we have the Lebesgue decomposition of φ.
The time change is defined as the same way as in [6] and its invariant measure
is described by φ. Especially for 5-flows, we have 5-representations of time
changes.

In §4 we shall argue the relation between these time changes and the orbit
equivalence. Time change defines an equivalence relation, which is denoted
by ~, among ergodic flows. That is, {St}~{Tt} if there exists some integrable
additive cocycle φ such that the time change {S?} is isomorphic to {Tt}. It turns

out that ~ is an equivalence relation and we shall show, as expected naturally,
that ~ and the orbit equivalence Z coincide. This is the main theorem in this
paper.

In §5 we shall treat a special problem of isomorphic relation. The time
change of an S-flow by an additive cocycle φ is isomorphic to those by φn, where

φn's are the ones defined by the functions/n's such that/π->/=limΛ^0 φ(h, - )/h a.e.
In this connection we have the following problem. Is the time change by φac

isomorphic to the one by φ, where φac is the additive cocycle defined by / ?
Generally this is not true except for the tiivial case when φ is of integral form
(defined by/).
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§ 2. Additive cocycle

Let (X, &, μ, {Tt}) be a measure preserving flow on a complete finite measure

space. We shall often use the notation such as {Tt} for abbreviation. To make

the arguments clear, we define the following two notions of measurability according

to [6], That is, {Tt} is said to be B-measurable if the mapping (ί, x)-*Tfx is

x ^/^-measurable, where ^(R) is the σ-algebra of all Borel sets in R,

and is said to be L-measurable if the mapping above is ^(R) x ^Ax"/^-

measurable, where λ is the ordinary Lebesgue measure on R and ~λ x μ is the

completion.

DEFINITION 2.1. Let {Tt} be a /^-measurable (or an L-measurable) flow on

a finite measure space (X, 3$, μ). A map φ from R x X to R is said to be an

additive cocycle with respect to {Tt} if it satisfies the following properties (2.1)~

(2.3).

(2.1) φ is &(R) x ^/^(R)-measurable.

(2.2) There exists a {Tf}-invariant co-null set D called the domain of φ, on
which the following conditions are satisfied.

(2.2a) For each xeD, the function f-xp(f, x) is continuous and non-

decreasing. (This function is denoted by φx.)

(2.2b) For each x e D and ί, s e R, the equality

φ(t + s, x) = φ(s, x) + φ(ί, Tsx)

holds.
(2.3) Set

C = {xeD: lim,^ φ(f, x) = oo and lim^.^φίί, x)=-oo},

then μ(C)>0. (C is called the carrier of φ.) Π

REMARK 2.2. We may assume φx is identically zero for each xeD^C as

mentined in [6].

Furthermore an additive cocycle satisfying the following condition (2.4)

is called an integrable one.

(2.4) The function x - > φt(x) Ξ <p(l, x) is integrable.
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Let (X, 3$, μ, {Γf}) be a B-measurable (or an L-measurable) flow and /

be a non-negative measurable function which is strictly positive on a set of
positive measure and satisfies the following condition.

(2.5) I f(Tsx)ds is finite for each teR and for each x in some {Γ,} -in variant
J o

co-null set.

Then it can be shown that φ(t, x) = \ f(Tsx)ds is well-defined and φ is an
J o

additive cocycle. (See [6].) An additive cocycle of this form is called that of
integral form (defined by /). The reason why additive cocycle of this form is
important is that we can get the concrete form of the induced measure for the
time change. Especially if / is integrable, / satisfies the condition (2.5) and
it is easy to see that φ defined above is an integrable additive cocycle.

Suppose φ is an additive cocycle of integral form with the defining function
/integrable. Then by the Wiener's local ergodic theorem, limΛ_0 φ(h, x)jh=f(x)
a.e. In general we obtain the next results.

LEMMA 2.3. For any additive cocycle φ, HmΛ_0 φ(h, x)/h exists a.e. and
this limit f ( x ) satisfies (2.5). Furthermore if φ is integrable, then f is also

integrable.

PROOF. As in the local ergodic theorem, we first define

E = {(/, *)eR x X: lim^0 ?(* + *•*.)-?»(*•*) exists}.

Then we can easily see that £e^(R)x^. From the property of (2.2a) of φ,

we have

λ(Ex

c) = 0, where Ex = {ί e R : (ί, x) e E} .

Then the argument similar to the local ergodic theorem leads us to the first con-
clusion of the lemma.

Next, since /(Tfx) is the derivative of the non-decreasing function φx at f,

we have

u;' f(Tsx)ds £\φ(t,x)\, for all ίeR.
0

Hence/satisfies the property (2.5). If φ is integrable, by Fatou's lemma we have

J fdμ = J lim^^ nφ(ΐ/n, x)dμ(x) g lim^^ nj φ(l/n, x)dμ(x)

= \\9ιII < oo,
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where || || is the ZΛnorm. (The last equality follows from (2.2b).) q. e. d.

Though it may cause confusions, we shall call the function obtained in Lemma
2.3 the derivative of the additive cocycle φ. That is, the value of the derivative
of φ is nothing but the derivative of the real function φx at zero in the sense
of ordinary integration theory.

THEOREM 2.4. Let φ be an additive cocycle with the derivative f. Then φ
admits the unique decomposition

(2.6) φ = φac + φsing

where φac is the additive cocycle defined by f and φsin& is the one such that (φsing)
x

is singular with respect to the Lebesgue measure on Rfor each x in some {Tt}-
invariant co-null set. Here 0 is also regarded as an additive cocycle.

PROOF. Since f ( T t x ) is the derivative of φ* at ί, it is clear that

<Px(t) - (φac)
x(t) = φ*(t) - f(Tsx)ds

Jo

is singular for each xe D. (D is the intersection of the domain of φ and φac.)

The non-decreasing property of (φsing)
x is shown by

> x) - φsίng(t, x) = φsing(h, Ttx)

= φ(h, Ttx) - P/(7>Tfx)</s ^ 0.
J o

The positivity of measures of the carriers are shown in the same way as in Lemma

2.1 of [6] unless either of them is identically zero. Other conditions can easily
be checked. q.e. d.

COROLLARY 2.5. An additive cocycle φ is of integral form if and only if
there is {Tt}-invariant null set N such that φ* is absolutely continuous with
respect to the Lebesgue measure on Rfor each xeNc. Furthermore in this
case the function which defines φ is the derivative of φ.

§3. Time change

From now on we treat only Lebesgue probability spaces. Let (X, &, μ, {Γf})

be an L-measurable flow and φ be its additive cocycle. Suppose ^0 is a σ-algebra
which is introduced in [6], i.e. a countably generated σ-algebra with respect to
which {Tt} becomes /^-measurable and φ becomes ^(R) x ^0/^(R)-measurable
and whose completion is precisely .̂ Define Xφ, &$, μ$9 φ~l, {T*} as follows.
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(3.1) X* = {xeC: φ(t, x) > 0 for all ί>0},

where C is the carrier of φ.

(3.2) ^g = { B n X » : Be&0}.

(3.3) μ (B) = J(£ χB(Ttx)dφ(t, x))/μ(x), for B e ̂ §.

(3.4) φ-\t, x) = sup{s: φ(s, x)^ί}» for xeX*.

(3.5) Γfx = Tφ-,(rfX)x, for x e X * and f e R .

Note that it can be shown φ~l(t, x) is finite for all xeXφ and ίeR by the same
argument as in [6]. It is easy to see that for an additive cocycle φ, μφ is finite

if and only if φ is integrable and that for the additive cocycle φ defined by a

function/, μ =fμ , *g.

THEOREM 3.1 ([6]). (X*, &%, μφ) is a σ-finite measure space and {Tf} is
a B-measurable flow on it.

Suppose Λ* is the completion of &$ with respect to μφ. Then the B-

measurable flow above is uniquely extended to an L-measurable flow (Xφ, &φ,

μφ, {?7}) which we shall call the time change of (X, 0, μ, {Tf}) by φ. If the
additive cocycle φ is integrable we treat the time change with the normalized

induced measure unless otherwise stated. We call it the time change by φ and
denote it by (Xφ, &φ, μφ, {Tf }) or simply {T? } in this case too. That is, we
take the following induced measure (3.3)' instead of (3.3).

(3.3)' μ^) = - j / B ( 7 ; x ) ^ ( ί , x ) d μ ( x ) , for Be^g.

Let S be an automorphism (i.e. an invertible measure preserving trans-
formation) on a finite Lebesgue space (X, &9 μ) and α be a strictly positive
integrable function on X. As usual we define an S-flow (or a special flow, a flow
build under a function) (S, α) on (Xα, ^α, μα) where XΛ = {(x, u): xε X,

O^u <α(x)}, (βΛ, μα) is the restriction of (^ x ^(R)"xλ, μ x A) to XΛ. (See [1].)
We call X, S and α the base space, the base automorphism and the ceiling function

of the S-flow (S, α) respectively. If a flow {St} is isomorphic to an 5-flow (5, α),
we call (S, α) an 5-representation (or a special representation) of {Sf}. In this

case the base automorphism S is often called a cross-section of {SJ.

THEOREM 3.2 ([6]). Let (5, α) be an S-flow on XΛ made by the base auto-

morphism (X, &9 μ, S) and the positive integrable function α on X. For
convenience we assume J αί/μ=l. Let φ be an integrable additive cocycle
with respect ot (S, α). Then
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(S, α)» * (S£, Λ)

wΛere f/ie left hand side is the (normalized) time change, ^ a metrical iso-

morphic relation, SE the induced automorphism,

(£, 0E9 μ/\\φιl SE), E = {xeX: φ(x(x), x, 0)>0}

and h is the function

h(χ) = φ(a(x\ x, 0), x e E.

(We substituted φ(t, x, u) for φ(t, (x, u)).)

REMARK 3.3. Since any induced automorphism of an ergodic automorphism

is also ergodic and an S-flow is ergodic if and only if the base automorphism is

ergodic, we can conclude that any time change of an ergodic flow on a Lebesgue

probability space is also ergodic by virtue of Theorem 3.2 and the special repre-

sentation theorem ([!]).

§ 4. Orbit equivalence

Throughout this section flows are all assumed to be L-measurable flows on

Lebesgue probability spaces.

DEFINITION 4.1. Let {St} and {Tr} be two ergodic flows. We denote {St} ̂

{Tt} if there exists an integrable additive cocycle φ with respect to {St} such that

D

Though the relation above seems to be only a one-way relation, we shall

see that it defines an equivalence relation among ergodic flows. We first prepare

the following lemma.

LEMMA 4.2. Let {St} be an ergodic flow and φ be an integrable additive

cocycle. Then there exists an integrable additive cocycle \jι such that

{Sf}^{Sf} and

(4.1) ψx is piecewise linear with positive slopes for each xeC, where C is the
common carrier of φ and ψ.

PROOF. We may assume that {St} is an S-flow made by an automorphism

(X, ,̂ μ, S) and a positive integrable function α, because every ergodic flow
on a Lebesgue space is isomorphic to an S-flow.

Set

£ = {xeX: φ(«(x), x, 0)>0) .
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Then μ(E)>0, so that we can consider SE. Since the flow is ergodic, (5, α)~

(SE, <*£), with an isomorphism Φ from XΛ to EαE, where α£ is the function on E
defined by

(rE is the recurrence time function for £.)

Define the additive cocycle ψ with respect to (S£, α£) by

#(f, x, M) = Γ/((S£, <*E)J(x, u))dυ
J o

where /(x, w) = (p(α(x), x, 0)/α£(x) (xeE, 0^w<α£(x)). Then by Theorem 3.2,

(S£, «*)* * (SE, Λ), (/>(x) = φ(α(x), x, 0)).

Since again by Theorem 3.2, (5, a)*£±(S£, /ι), we have

(S£, α£)* - (S, α)^.

Then the additive cocycle ψ defined by

ψ(t, x, M) = ψ(t, Φ(x, w)), (x, ιι) 6 XΛ

is the desired one. q. e. d.

PROPOSITION 4.3. The relation ^ has the following properties.

(4.2) {St}*{Tt} implies {Tt} * {St} .

(4.3) {St}*{Tt}, {Tt}*{Ut} implies {St}*{Ut}.

Therefore ^ defines an equivalence relation ~ among ergodic flows.

PROOF. Let {SJ, {Tt}9 {Ut} be ergodic flows on (X9 &9 μ\ (7, ,̂ v),
(Z, 3ι, p) respectively.

Suppose {Sf} — {Tt} for some φ. By Lemma 4.2, we may assume φ has the
property (4.1). Then it is easy to see that φ~l defined by (3.4) is an additive

cocycle. In fact, since (φ~l)x is just the inverse function of φx, (φ~l)x is also
piecewise linear with positive slopes, which means φ~l is the one of integral form
defined by the reciprocal of the function defining φ. Therefore, if μφ = aμ(ae Li),

Let Φ be an isomorphism from {Sf} to {ΓJ. Then for the additive cocycle
defined by

ψ(t, y) = φ-*(t, Φ~ly\ 1 6 R, y 6 7,

we have
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Next suppose that for φ and ψ,

(4.4) {

(4.5)

Here we may again assume that both φ and φ have the property (4. 1) in Lemma 4.2.
Let Φ and Ψ be isomorphisms from the left hand sides to the right hand sides
in (4.4) and (4.5) respectively. Then the additive cocycle Θ defined by

0(ί, x) = ή/(φ(t^ x), φx), t e R, x e X

satisfies the relation {S?}^ {I/,}, ϊn fact, since θ~l(t, x) = φ~l(ψ-l(t9 Φx), x), we

have

StX = O0-i( f > J c ) Λ: = Sφ~nψ-nttφχ)tX)X = 3^-i(f,φjc)^

= φ-ΌΓ,-, ( f f φ j e )oφjC = φΊoTfoφx = φ-loψ-loUt°ψoφX,

and since

where a and ί> are the derivatives of φ and ψ respectively, we have

Γ /rfμ = Γ fa(b°Φ)dμ = Γ f(b°Φ)dμ« = Γ (βφ-^bdv
J X J X J X J Y

= Γ foφ-*dv+ = Γ foφ-*oψ-idp, for all feL*(X,dμ).
J Y J Z

(Note that 0 is of integral form.) q.e.d.

Next we consider the relation between the equivalence ~ and the orbit
equivalence.

DEFINITION 4.4. Let (X, 09 μ, {St}) and (7, #, v, {Tf}) be two ergodic
flows. They are said to be mutually orbit equivalent if there exists an onto, one
to one, bimeasurable map Φ: X-^y such that voφis equivalent to μ, and ΦoSfx =
Tφ(tx}°Φx for all t eR, all x in some {Tf}-invariant co-null set, where φ is ^(R) x
^/^(R)-measurable with φx(t) = φ(t, x) strictly increasing and continuous in
t for all x in the set mentioned above. In this case we use the notation {St} & {Tt}
and Φ is called an orbit map. Π

REMARK 4.5. It is easy to see that φ in Definition 4.4 is an additive cocycle
in the sense of Definition 2.1. Furthermore φ is an integrable one as we shall
see later on (Theorem 4.9).
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Next result, which is fundamental to introduce the Kakutani equivalence,
was given in [4] without proof (see also [5]).

PROPOSITION 4.6. Suppose that two ergodic flows (X, &, μ, {St}) and
(Ϋ9 & , v, {Tf}) aremutually orbit equivalent and $ is an orbit map such that
$oStx = Tφ(t x)o$χ. Then φx is absolutely continuous for a.e. x in X.

Before going into the proof of Proposition 4.6, we prepare the next lemma.

LEMMA 4.7. Suppose that an ergodic flow (X, &9 μ, {St}) is orbit equivalent
to an ergodic S-flow (Yβ9 Vβ, vβ, {(T, β)t}). Then there exists an S-repre-
sentation (XΛ9 &Λ, μα, {(S, α),}) of {St} and an orbit map Φ from XΛ to Yβ (note
that (S, α) is orbit equivalent to (T, β)) such that

(4.6) Φ(Xx{0})= Yx {0},

i.e. Φ maps the base space of XΛ onto that of Yβ.

PROOF. Let Φ be an orbit map from X to Yβ such that

$°3tx = (T, β)φ(t,x)°$x.

Let X = $-*(Yx {0}), ̂  = Φ'1(^), and define for x in X

α(x) = φ-^oΦx, x),

where Φ = π°$: X-»7and π is the natural projection from Yβ to Y. Then it can
be shown that α is measurable with respect to 38. Next define a transformation
S on X by

Sx = SΛ(x)x.

Then one can show in the same way as in the special representation theorem of
ergodic flows that

(S, α) « {St}

with the mapping

Ψ(x,u) = Sux, for (x,w)e*α,

an isomorphism with respect to the S-invariant base measure

, for Be&,

where π is the natural projection from XΛ to the factor space by the partition
{Cx: xeX}, Cx = {(x, u): 0^w«x(x)} and B* = {CX: xeB}. It is clear that the
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S-representation (Xα,^α, μα, {(S, α),}) and the orbit map Φ = $oψ from (5, α)
to (T, β) satisfy (4.6). q.e.d.

PROOF OF PROPOSITION 4.6. By the special representation theorem of ergodic
flows, we may assume that (?, V', v, {f,}) is an S-flow (Yβ, <#β, vβ, {(T, β\}).
Let (XΛ, 38Λ, μα, {(S, α)f}) be the S-representation of {St} under the isomorphism
Ψ and Φ=$oψ be the orbit map from (S, α) to (T, β) in Lemma 4.7. Then we
have the following equality.

Φo(S, α),(x, u) = (Γ, β)φ(ttXtU}oΦ(x, w),

for all ίeR and all (x, u) in a (S, α)-invariant co-null set, where φ(t, x, M) =
φ(ί, *P(x, M)). As for the measure vβoΦ9 the following equality holds;

, for Be&x,

where ^={1^: (x, w)eB} and Φ is the restriction of πoφ to X as before. From
this it is easy to see that

(4.7) voφ ~ μ.

To show the assertion of the theorem, it is enough to see that φ(t, x, w) is
absolutely continuous for a.e. (x, u) and this is assured by showing that φ(t, x, 0)
is absolutely continuous in t on the interval [0, α(x)) for μ-a.e. x in X. Suppose
the theorem fails to hold. Then there exists Be&, μ(£)>0, such that φ<* 0) has
a non-zero singular part in [0, α(x)) for each x e B. Therefore for each x E B,
there exists a A-null set Nxc:[0, α(x)) such that

9x

Sing(Nx)>^ where φx

sing = λoφ&<>\

Since φx

sing is concentrated on the set E£, where

E = {(x, u): lim^o φ(h, x, w)/Λ exists},

(note that ££ = {fe[0, α(x)): the derivative of <p<x>°> at t does not exist}), we
may take NX = EC

X. Let

F = VΛe* Ec

x.

Then Fc£c, which shows the measurability of F. (Note that Ec is a μα-null set
as we have seen in the proof of Lemma 2.3.) By the definition of F, μa(F) = 0.
But since voφ(J3)>0 by (4.7), we have

oΦ(F) = Γ φ*sing(E<x)d(voΦ)(χ) > 0,
«/ B
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which shows a contradiction to the assumption that vβ°Φ is equivalent to μα.
q.e. d.

REMARK 4.8. In the proof of Proposition 4.6, the transformation S coincides
with ΦoΓoΦ"1. Hence we have that the measure voφ is also S-invariant. But
since S-invariant μ is equivalent to voφ and any measurable cross-section of the
ergodic fow {St} is also ergodic, we can conclude that μ = cv°Φ for some constant
c.

THEOREM 4.9. {S,} & {Tt} if and only if {St} ~ {Tt}.

PROOF. We may assume that {S,}=(S, α) and {Tt}=(T9 β) respectively on
XΛ and Yβ for some ergodic 5, T and positive α, β.

Suppose that (S, α),fl(T, β). Then there exists an orbit map Φ such that
φo(S, α)f(x, tt) = (T, /?)φ(f x u)oφ(χ, w). As we have seen in Proposition 4.6, <p<x'M>

is absolutely continuous for a.e. (x, M), we have φ(t, x, M)= I /((S, α)s(x,w))ί/s
J o

for some positive function / by Theorem 2.4. Therefore the measure /μα

is the induced measure by φ which is σ-finite and (S, α^-invariant. But it can
be easily seen that v^oφ, which is equivalent to μα, is also (S, α)^-invariant. Hence
fμΛ = cvβ°Φ for some constant c by the ergodicity of (5, α)«% which shows the
integrability of/and this is equivalent to that of φ. Therefore we can consider
the normalized time change, which is also denoted by (S, <x)φ as mentioned before,
and it is easy to see that (S, ot)φ is isomorphic to (T, β) under Φ.

Conversely suppose that (S, α)~(T, β). Then there exists an additive
cocycle φ with the property (4.1) such that (S, <x)φ^(T, β). It is a routine work to
check that an isomorphism Φ between them is an orbit map from (S, α) to (T, β).

q.e.d.

§ 5. Non-equivalence of the time changes by φ and φac

In this section, we shall treat a special topic in connection with Theorem 2.4
and Theorem 3.2.

Let (5, α) be an S-flow on XΛ and φ be an additive cocycle whose domain
is D. Define /„ (n e N) as follows.

u =

' ' &(x)lh

^ u< — α( c),

= 0, if jce£c,
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where E = {x e D : <p(α(x), *, 0) > 0} .
Let φn (n e N) be the additive cocycle defined by /„, Then it is easily shown

by Theorem 3.2 that

(5.1) (S, α)^^(S, «)*, for all neN.

Let /be the derivative of φ. Then a little computation shows

(5.2) Λ— */ a.e.

Comparing (5.1) and (5.2), it will be interesting to ask whether (5, v)φ c is iso-
morphic to (S, a.)φ or not, where φac is the absolute continuous part of the decom-
position of φ in Theorem 2.4.

One way to give an answer to this question is to try to compare the entropies

of the time changes. With the aid of Abramov's formula, one can compute the
entropies of the time changes.

THEOREM 5.1 ([6]). Let (S, α) be an ergodic S-flow whose base auto-
morphism is (X, &, μ, S) (jαdμ=l). Then for integrable φ

where the left hand side is the entropy of the normalized time change and h(S)
is that of the normalized automorphism (X, ,̂ μ/μ(X), S).

We also prepare the next lemma.

LEMMA 5.2. Let (X, &, μ, {Tf}) be a flow, φ and ψ be additive cocycles

with the common domain D, such that φ^ψ in the sense that

φ(t, x) ̂  \l/(t, x), for all t ^ 0, x 6 D.

Suppose that for each xeD, if there exists t0 such that

(5.3) φ(tθ9 x) = Wo, x)

holds, then we have

(5.4) φ(t, x) = ψ(t, x), for all t e [0, ί0] and all x e Z).

PROOF. Let 0^ t ̂  t0. Then from the additivity of φ and ψ, we have

(5.5) φ(tθ9 x) = φ(t, x) + φ(t-tθ9 Tfx),

(5.6) ψ(t0,x) = ψ(t,x) + ψ(t-t0,Ttx).

The equation (5.4) follows from (5.3), (5.5), (5.6) and the condition φ^ψ.
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Though we restrict ourselves to simple cases, we have the next results.

THEOREM 5.3. Let (5, α) be an ergodic S-flow with positive finite entropy,

whose base automorphism is (X, &, μ, S), and Jαdμ=l. Let φ and φ be
integrable additive cocycles such that

(5.7) φ ̂  φ.

Suppose that

(5.8) (S, α)* * (S, α)*.

Then φ = ψ.

PROOF. The relation (5.8) and the condition on the entropy imply that

0 < h(S)l*X)l\\<Pi\\ = h(S)μ(X)/\\ΦΛ < °o

by Theorem 5.1. Then we have | |<Pιll = ||ι/Ίl| and furthermore ψι=Ψι a.e. by
(5.7).

It follows that φn = φn for all neN, a.e. where φn(x, u) = φ(n, x, u) etc.
Hence Lemma 5.2 shows that

(5.9) φt = ψt, for all t > 0, a.e. where φt(x, u) = φ(t, x, u) etc.

Similarly we have

(5.10) φt = ψί9 for all t < 0, a.e.

The excluded set in (5.9) and (5.10) may be assumed to be (5, α)-invariant, so

that we have φt = Ψt f°Γ all ίeR with an elimination of some (5, α)-invariant null
set. This implies φ=*ψ. q.e.d.

In particular, we have

COROLLARY 5.4. Let (5, α) be the same as in Theorem 5.3 and φ be an

additive cocycle. Then (S, α)«" cannot be isomorphic to (S, α)φαc unless the trivial
case φ = φac, that is, unless φ is of integral form.
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