Maximal extensions of ordered fields

Daiji KIJIMA, Mieo NISHI and Miyoko SAKAIBARA (Received December 2, 1987)

The notion of maximal ordered fields was first introduced in [2] and [3] by the authors. The existence and the uniqueness for a given rank were mainly discussed there.

In this paper, we say that K is a maximal extension of an ordered field F if $\psi_{K/F}$ is bijective and K is a maximal ordered field. The aim of this paper is to develope serveral basic properties of maximal extensions. Namely, for maximal extensions K_i/F_i (i=1, 2) and a given isomorphism σ : $F_1 \simeq F_2$ as ordered fields, there exists an extension σ' : $K_1 \simeq K_2$ of σ ; we also show that there can be infinitely many such extensions. Moreover we show that, for any extension K/F_1 such that K is a maximal ordered field, there exists an F_1 -embedding $K_1 \rightarrow K$.

§1. Maximal extensions

For an ordered field $F, A_0 := A(F, Q) = \{a \in F; |a| < b \text{ for some } b \in Q\}$ is the finest valuation ring, that is, every convex valuation ring of F is a localization of A_0 and conversely. The set $\mathscr{C}(F)$ of all convex valuation rings of F is a totally ordered set under the inclusion relation. Let G_0 be the value group of the finest valuation defined by A_0 . It is clear that $\mathscr{C}(F)$ is isomorphic to the set $\mathscr{H}(F)$ of all convex subgroups of G_0 as totally ordered sets. If K/F is an extension of ordered fields, we have a surjection $\psi_{K/F} : \mathscr{C}(K) \rightarrow \mathscr{C}(F)$ defined by $\psi(B_i) = B_i \cap F, B_i \in \mathscr{C}(K)$ (cf. [2], §1). A pair (A, B) of subsets of F is called a cut of F if $A \cup B = F$ and a < b for any $a \in A$ and $b \in B$, where A or B may be an empty set. It follows from [1], Theorem 1.2, that if F is real closed, then there is a one to one correspondence between the set of all cuts of F and the set of all orderings of F(x), where F(x)/F is a simple transcendental extension. For a subset C of F and an element a of F, we write C < a if c < a for any $c \in C$. We say that K is a maximal ordered field if $\psi_{L/K}$ is not bijective for any proper extension L/K of ordered fields (cf. [3], Definition 2.1).

DEFINITION 1.1. For an ordered field F, let K/F be an extension of ordered fields. When K is a maximal ordered field and $\psi_{K/F}$ is bijective, we say that K is a maximal extension of F.

For any ordered field F, there exists a maximal extension of F by [3], Theorem 3.3.

LEMMA 1.2. Let F be a real closed field and K be a maximal extension of F. Let

F(x)/F be a simple transcendental extension of ordered fields such that $\psi_{F(x)/F}$ is bijective. Let G_K (resp. G_F) be the value group of the finest valuation of K (resp. F); we suppose that G_F is a subgroup of G_K . If $G_F = G_K$, then there exists $\alpha \in K \setminus F$ such that the isomorphism $F(x) \simeq F(\alpha) \subset K$, sending x to α , is an order preserving isomorphism.

PROOF. We put $A = \{a \in F; a < x \text{ in } F(x)\}$ and $B = \{b \in F; x < b \text{ in } F(x)\}$; then (A, B) is the cut of F which corresponds to the ordering σ of F(x). We first show that there exists an element α of K satisfying $A < \alpha < B$.

If not, then (A_K, B_K) is a cut of K, where $A_K = \{a' \in K; a' \leq a \text{ for some } a \in A\}$ and $B_K = \{b' \in K; b \leq b' \text{ for some } b \in B\}$. Since K is real closed by [3], Proposition 2.3, we can take the ordering τ of the simple transcendental extension K(x)/K which corresponds to the cut (A_K, B_K) ; it is easy to see that τ is an extension of σ (cf. [1], Theorem 1.2). Let $G_{K(x)}$ (resp. $G_{F(x)}$) be the value group of the finest valuation of K(x)(resp. F(x)); here we suppose that $G_F = G_K \subset G_{F(x)} \subset G_{K(x)}$. The group G_K is isomorphic to a Hahn product $H(\Gamma)$ for some totally ordered set Γ by [3], Proposition 2.4. Since $\psi_{F(x)/F}$ is bijective and G_F coincides with G_K , we see $G_F = G_{F(x)}$. On the other hand, the maximality of the ordered field K implies $G_K \neq G_{K(x)}$. Let v be the finest valuation with the value group $G_{K(x)}$. By applying the similar argument to the proof of [1], Lemma 2.2, we can show that there exists an element b of K such that $v(x-b) \in G_{K(x)} \setminus G_K$. We can also show that there exists $a \in F$ such that 0 < |x-a|< |x-b|. In fact, if x > b, then $b \in A_K$ and b < a for some $a \in A$. Therefore we have 0 < x-a < x-b. If x < b, then we have x-b < x-a < 0 for some $a \in B$. Since v is compatible with τ and $v(x-b)\notin G_K = G_{F(x)}$, we have v(x-a) > v(x-b). This shows that $v(x-b) = v(x-a-(x-b)) = v(b-a) \in G_K$, a contradiction. Therefore $A < \alpha < B$ for some $\alpha \in K$. It is clear that α is transcendental over F, and we can see that the Fisomorphism $F(x) \rightarrow F(\alpha)$, sending x to α , is an order preserving isomorphism by [1], Corollary 1.7, (1). Q.E.D.

A divisible ordered group can be embedded in the Hahn product determined by its skeleton (cf. [4], A, Théorème 2). However, the embedding map is not determined uniquely. For the convenience of readers, we first give the following lemma concerning the above embedding.

LEMMA 1.3. Let $G \subset G'$ be divisible ordered groups and let ψ be the map from the set of convex subgroups of G' to that of G (cf. [3], §1). Suppose that ψ is bijective. Let (R_i) and (R'_i) , $i \in \Gamma$ be skeletons of G and G' respectively. Then for a given embedding G \rightarrow H R_i , we can find an embedding G' \rightarrow H R'_i so that the following diagram

$$\begin{array}{cccc} G & \longrightarrow & \mathbf{H}R_i \\ & & & \downarrow \\ G' & \longrightarrow & \mathbf{H}R_i' \end{array}$$

is commutative. (The map $HR_i \rightarrow HR'_i$ is the embedding induced by the canonical embeddings $R_i \rightarrow R'_i$.)

PROOF. For each $i \in \Gamma$, $R_i := H_i/H_i^*$ and $R'_i := H'_i/(H'_i)^*$ are isomorphic to subgroups of **R**. Here H_i (resp. H'_i) is a non-zero principal convex subgroup of G (resp. G') and H_i^* (resp. $(H'_i)^*$) is a maximal convex subgroup properly contained in H_i (resp. H'_i) and $H'_i \cap G = H_i$, $(H'_i)^* \cap G = H_i^*$.

Now let V be a vector space over a field K and S be a non-empty set of subspaces of V. There exists a mapping γ from S to the set of subspaces of V satisfying the following properties (cf. [4], A, Lemme).

- (1) $V = W \oplus \gamma(W)$ for any $W \in S$.
- (2) If $W_1 \subset W_2$ in S, $\gamma(W_1) \supset \gamma(W_2)$.

The embedding $G \to HR_i$ is given as follows. G is a vector space over Q. Let S be the set of all convex subgroups of G and γ be a map defined on S which satisfies the above two properties. We denote by λ_i the composition of the projection $G = H_i \oplus \gamma(H_i) \to H_i$ and the canonical homomorphism $H_i \to H_i/(H_i)^* = R_i$. The embedding $G \to HR_i$ is defined by sending $x \in G$ to $(\lambda_i(x))$, $i \in \Gamma$.

We put $S_1 := \{L \oplus \gamma(H); L \text{ is a convex subgroup of } G', H = L \cap G\}$. There exists γ_1 defined on S_1 which satisfies the properties (1) and (2). Let S' be the set of all convex subgroups of G'. For $L \in S'$ and $H = L \cap G \in S$, we have $G' = L \oplus \gamma(H) \oplus \gamma_1(L \oplus \gamma(H))$. We define γ' on S' by $\gamma'(L) = \gamma(H) \oplus \gamma_1(L \oplus \gamma(H))$. Then $G' = L \oplus \gamma'(L)$ for any $L \in S'$. For convex subgroups L and L' of G', we suppose $L \subset L'$. Then $H = L \cap G \subset H' = L' \cap G$, and $\gamma(H) \subset G \subset L' \oplus \gamma(H')$; therefore $L \oplus \gamma(H) \subset L' \oplus \gamma(H')$. Hence we have $\gamma'(L) \supset \gamma'(L')$. We have seen that γ' satisfies the properties (1) and (2). Clearly it also satisfies the following property (3).

(3) For any
$$L \in S'$$
, $\gamma'(L) \supset \gamma(H)$ where $H = L \cap G \in S$.

We now apply the embedding theorem to G' by using γ' . We put

$$\lambda'_i: G' = H'_i \oplus \gamma'(H'_i) \to H'_i \to H'_i/(H'_i)^* = R'_i.$$

By (3) the restriction of the projection $G' \rightarrow H'_i$ to G coincides with the projection $G \rightarrow H_i$, and so the following diagram commutes.

Thus the assertion is proved.

Q.E.D.

THEOREM 1.4. Let K_1 and K_2 be maximal extensions of ordered fields F_1 and F_2 respectively. If F_1 is isomorphic to F_2 as ordered fields, then there exists an order preserving isomorphism $K_1 \rightarrow K_2$ which is an extension of the isomorphism $F_1 \rightarrow F_2$.

PROOF. It is sufficient to show that if $F_1 = F_2 = F$, then there exists an order preserving F-isomorphism $K_1 \rightarrow K_2$. We consider the set $S = \{(L, f); F \subset L \subset K_1, f$ is an order preserving F-injection $L \rightarrow K_2\}$. For $(L_1, f_1), (L_2, f_2) \in S$, we write (L_1, f_1) $\leq (L_2, f_2)$ if $L_1 \subset L_2$ and $f_2 | L_1 = f_1$. Then S is an inductive set. By Zorn's lemma, we can find a maximal element (L_0, f) of S. Let M_1 (resp. M_2) be the algebraic closure of L_0 (resp. $f(L_0)$) in K_1 (resp. K_2); then M_1 (resp. M_2) is a real closure of L_0 (resp. $f(L_0)$). Then, since f can be extended to $M_1 \rightarrow M_2$, we have $L_0 = M_1$; this implies that L_0 is real closed. Let v_1 (resp. v_2) be the finest valuation of K_1 (resp. K_2). We denote by G_1 (resp. G_2) the value group of v_1 (resp. v_2). Let G_0 be the value group of the finest valuation of L_0 and G_0' be that of $f(L_0)$. We may assume that $G_0 \subset G_1$ and $G_0' \subset G_2$.

First we show that $G_0 = G_1$. Suppose to the contrary that $G_0 \neq G_1$. Take $\alpha \in K_1$ so that $v_1(\alpha) \in G_1 \setminus G_0$ and $\alpha > 0$. Then we have a cut of G_0 determined by $v_1(\alpha)$. We claim that there exists an element $0 < \beta \in K_2 \setminus f(L_0)$ such that the cut of G_0 determined by $v_2(\beta)$ is the same as the cut by $v_1(\alpha)$ (here we identify G_0' with G_0). The claim is proved as follows.

For a totally ordered set Γ , we denote by $H(\Gamma)$ the Hahn product HR'_{i} , $i \in \Gamma$, where each R'_{i} is a copy of **R**. By [3], Proposition 2.4, G_{1} and G_{2} are maximal ordered groups isomorphic to $H(\Gamma)$ for some totally ordered set Γ . Take an embedding $G_{0} \rightarrow HR_{i}$, $i \in \Gamma$, where (R_{i}) is the skeleton of G_{0} . By Lemma 1.3, there exists an embedding $G_{1} \rightarrow H(\Gamma)$ such that the following diagram (a) commutes. Here note that the above embedding is an isomorphism because G_{1} is maximal. Since G_{0} $\simeq G'_{0}$, we can take the isomorphism $G'_{0} \rightarrow HR_{i}$, which is the same as the above embedding $G_{0} \rightarrow HR_{i}$. Similarly there exists an isomorphism $G_{2} \rightarrow H(\Gamma)$ so that the following diagram (b) commutes.

For the injections $j_i: R_i \to R'_i = \mathbf{R}$ which are used to determine $\mathbf{H}R_i \to \mathbf{H}(\Gamma)$ in (a) and $j'_i: R_i \to R'_i = \mathbf{R}$ which are used to determine $\mathbf{H}R_i \to \mathbf{H}(\Gamma)$ in (b), there exists an isomorphism $h: \mathbf{R} \to \mathbf{R}$ such that $hj'_i = j_i$. This shows that we may assume $j'_i = j_i$, and so the injection $\mathbf{H}R_i \to \mathbf{H}(\Gamma)$ in (a) coincides with the injection $\mathbf{H}R_i \to \mathbf{H}(\Gamma)$ in (b). Therefore we can take $v_2(\beta)$.

It is easy to show that α and β are transcendental over L_0 and $f(L_0)$, and they determine the same cuts of L_0 and $f(L_0)$ respectively. Thus the isomorphism $L_0(\alpha) \rightarrow f(L_0)(\beta)$, sending α to β , is order preserving, and so we have a contradiction.

Therefore we get $G_0 = G_1$, and so $G_0' = G_2$.

We now proceed to the proof of the statement $L_0 = K_1$. Suppose that $L_0 \neq K_1$. Then there exists an element $x \in K_1 \setminus L_0$. It is clear that x is transcendental over L_0 and $\psi_{L_0(x)/L_0}$ is bijective. Let (A, B) be the cut of L_0 corresponding to the ordering of $L_0(x) \subset K_1$. There is an ordering of $f(L_0)(y)$ which corresponds to the cut (f(A), f(B)) of $f(L_0)$ where y is a variable. Then the isomorphism $L_0(x) \rightarrow f(L_0)(y)$, sending x to y, is order preserving (cf. [1], Corollary 1.7). We may assume that $y \in K_2$ by Lemma 1.2. We can extend f to $L_0(x) \rightarrow f(L_0)(y)$, a contradiction. Therefore we conclude that $L_0 = K_1$ and $f(L_0) = K_2$.

In Theorem 1.4, we showed that there exists an isomorphism $K_1 \rightarrow K_2$ which is an extension of the given isomorphism $F_1 \rightarrow F_2$. However such an extension is generally not unique; moreover there can be infinitely many extensions. We consider the case rank one in order to verify these situations.

EXAMPLE 1.5. Let $K = \mathbf{R}((x))^R$ and v be the canonical valuation of K. Then K is a maximal ordered field of rank 1 (cf. [2], Proposition 3.3), and moreover v is the finest valuation of K and the value group of v is \mathbf{R} . Let $\{g_i\}$, $i \in I$, be a basis of \mathbf{R} as a vector space over \mathbf{Q} . For each g_i , we fix an element $\alpha_{g_i} \in K$ so that $v(\alpha_{g_i}) = g_i$ and α_{g_i} > 0. Since K is real closed, $0 < (\alpha_{g_i})^{n/m}$ is determined uniquely for any integers m, nwith m > 0. For a rational number $r = n/m \in \mathbf{Q}$, we put $\alpha_{rg_i} = (\alpha_{g_i})^{n/m}$ and for a real number $s \in \mathbf{R}$, we put $\alpha_s = \prod \alpha_{r_i g_i}$ where $s = \sum r_i g_i, r_i \in \mathbf{Q}$. It is clear that $v(\alpha_s) = s$, and we can easily show that there exists an \mathbf{R} -isomorphism σ : $\mathbf{R}(x^s; s \in \mathbf{R}) \to \mathbf{R}(\alpha_s; s \in \mathbf{R})$, where $\sigma(x^s) = (\alpha_s)$. The map σ is an isomorphism as valued fields. It is clear that K is an immedaite extension of $\mathbf{R}(x^s; s \in \mathbf{R})$ and $\mathbf{R}(\alpha_s; s \in \mathbf{R})$ as valued fields. Since K is a maximal valued field, there exists an isomorphism $\sigma': K \to K$ which is an extension of σ (cf. [2], Proposition 3.2).

Now we write $1 = \sum r_i g_i$, $i = 1, \dots, n$, $r_i \in \mathbf{Q}$, and we put $\alpha_{g_i} = x^{g_i}, i = 1, \dots, n$. For $i \in I \setminus \{1, \dots, n\}$, we fix an element $\alpha_{g_i} \in K$ so that $v(\alpha_{g_i}) = g_i$ and $\alpha_{g_i} > 0$. We have infinitely many such sets $\{\alpha_{g_i}\}, i \in I$. Then the automorphism $\sigma': K \to K$, determined by $(\alpha_{g_i}), i \in I$, fix the element $x \in K$, and so the fixed field of σ' contains $\mathbf{R}(x)$. Thus there exist infinitely many $\mathbf{R}(x)$ -automorphisms of K.

§2. Main theorem

In [1], we studied the theory of cuts of real closed fields under the assumption that a real closed field is of finite rank. We can get similar results for a real closed field of any rank.

Let F be a real closed field and let $\mathscr{C}(F) = \{A_i; i \in \triangle'(F)\}\$ be the set of convex valuation rings of F, where the totally ordered set $\triangle'(F)$ has the initial element 0 (i.e. $A_0 = A(F, Q)$ and the final element λ (i.e. $A_{\lambda} = F$). Let X be the set of orderings of F(x),

where F(x) is a simple transcendental extension of F. Let C_F be the set of cuts of F. There exists a canonical bijection $g_F: X \rightarrow C_F$. We introduce an equivalence relation ~; namely $\sigma \sim \tau$ in X if $(F(x), \sigma)$ is F-isomorphic to $(F(x), \tau)$ as ordered fields. Then \sim induces an equivalence relation in C_F through the bijection g_F . Let X_1 be the set of orderings of F(x) such that $\psi_{F(x)/F}$ is not bijective. For $\sigma \in X_1, \psi_{(F(x),\sigma)/F}$ is not bijective at some $j \in \triangle'(F)$ and we can define the map $N: X_1 / \sim \rightarrow \triangle'(F)$ by $N(\sigma) = j$ (cf. [3], Proposition 1.2). By virtue of [1], Theorem 3.9, N is bijective. We write $X_1 = (|Y_i|)$ $j \in \triangle'(F)$, where each Y_j is an equivalence class of X_1 satisfying $Y_j = N^{-1}(j)$. Now for a cut $(C, D) \in C_F$, we put $M(C, D) := \{x \in F; \pm x \in C \text{ or } \pm x \in D\}$ and $\dot{M}(C, D)$ $:= M(C, D) \setminus \{0\}$. Let v_i be a valuation corresponding to A_i for $i \in \triangle'(F)$. It can be shown that the set $v_i(\dot{M}(C, D)) \cap v_i(\dot{F} \setminus \dot{M}(C, D))$ consists of at most one element (cf. [1], Proposition 3.2). For $i \in \triangle'(F) \setminus \{\lambda\}$, we put $T_i := \{(C, D), a \text{ proper cut of } F;$ $v_i(\dot{M}(C, D)) \cap v_i(\dot{F} \setminus \dot{M}(C, D)) = \phi$ and there exists min $v_i(\dot{M}(C, D))$ or max $v_i(\dot{F} \setminus \dot{M}(C, D))$ D))}. We also put $W_i = \{(C+a, D+a); (C, D) \in T_i, a \in F\}$ and denote by W_λ the set of non-proper cuts of F. (By [1], Proposition 1.4, a non-proper cut of F corresponds to an ordering of F(x) such that F is not cofinal in F(x).)

PROPOSITION 2.1. For a real closed field F, the following statements hold.

- (1) For any $j \in \triangle'(F)$, $g_F(Y_i) = W_i$.
- (2) *F* is a maximal ordered field if and only if $C_F = \bigcup W_i$, $j \in \triangle'(F)$.

The proof of Proposition 2.1 is similar to [1], Theorem 3.10 and Theorem 3.11, and so we omit it.

PROPOSITION 2.2 Let K/F be an extension of ordered fields. Suppose that K is a maximal ordered field and for any L, $F \cong L \subset K$, $\psi_{L/F}$ is not bijective. Then F is a maximal ordered field.

PROOF. It is clear that F is real closed. We must show that $\psi_{(F(x),\sigma)/F}$ is not bijective for any $\sigma \in X$ (cf. [3], Proposition 2.3). For $\sigma \in X$, we put $(A, B) = g_F(\sigma)$. If (A, B) is a non-proper cut, F is not cofinal in $(F(x), \sigma)$. So $\psi_{(F(x),\sigma)/F}$ is not bijective at the final element $\lambda_F \in \triangle'(F)$. We now assume that (A, B) is a proper cut of F. We consider the case when $A < \alpha < \beta$ for some $\alpha \in K$. The element α is transcendental over F and the F-isomorphism $F(x) \rightarrow F(\alpha)$, sending x to α , is order preserving (cf. [1], Corollary 1.7, (1)). Since $\psi_{F(\alpha)/F}$ is not bijective by the assumption, so is $\psi_{(F(x),\sigma)/F}$. Suppose now that there exists no element $\alpha \in K$ such that $A < \alpha < B$. In this case, we have a cut (A_K, B_K) of K which is a unique extension of (A, B) similarly to the discussion in the proof of Lemma 1.2. Obviously (A_K, B_K) is a proper cut of K. The ordering τ of K(x)corresponding to (A_K, B_K) is an extension of σ . By Proposition 2.1, (2), $(A_K, B_K) \in W_i$ for some $i \in \Delta'(K) \setminus \{\lambda_K\}$ and so $(A_K - \alpha, B_K - \alpha) \in T_i$ for some $\alpha \in K$. Let L be the algebraic closure of $F(\alpha)$ in K. Let v_i be the valuation with the valuation ring $\begin{array}{l} A_i \mbox{ of } K. \mbox{ We denote by } w_j (\mbox{resp. } B_j) \mbox{ the restriction of } v_i (\mbox{resp. } A_i) \mbox{ to } L. \mbox{ We put}(C_K, D_K) \\ := (A_K - \alpha, B_K - \alpha) \mbox{ and } (C_L, D_L) := (C_K \cap L, D_K \cap L). \mbox{ If follows from the fact } (C_K, D_K) \in T_i \\ \mbox{ that } v_i (\dot{M}(C_K, D_K)) \cap v_i (\dot{K} \setminus \dot{M}(C_K, D_K)) = \phi \mbox{ and } \max v_i (\dot{K} \setminus \dot{M}(C_K, D_K)) \mbox{ or min } v_i (\dot{M}(C_K, D_K)) \\ \mbox{ prime} v_i (\dot{M}(C_L, D_L)) \cap v_j (\dot{L} \setminus \dot{M}(C_L, D_L)) = \phi. \mbox{ Suppose } j = \lambda_L. \mbox{ Then } \\ w_j \mbox{ is a trivial valuation of } L \mbox{ and } w_j (\dot{L}) = \{0\}. \mbox{ Therefore } w_j (\dot{M}(C_L, D_L)) = \phi \mbox{ and } \\ w_j (\dot{L} \setminus \dot{M}(C_L, D_L)) = \{0\}, \mbox{ or } w_j (\dot{M}(C_L, D_L)) = \{0\} \mbox{ and } w_j (\dot{L} \setminus \dot{M}(C_L, D_L)) = \phi. \mbox{ The former} \\ \mbox{ case implies that } \max C_L = 0 \mbox{ or min } D_L = 0 \mbox{ and } w_j (\dot{L} \setminus \dot{M}(C_L, D_L)) = \phi. \mbox{ The former} \\ \mbox{ case implies that } \max C_L = 0 \mbox{ or min } D_L = 0 \mbox{ and } w_j (\dot{L} \setminus \dot{M}(C_L, D_L)) = \phi. \mbox{ The former} \\ \mbox{ case implies that } \max C_L = 0 \mbox{ or min } D_L = 0 \mbox{ and } w_j (\dot{L} \setminus \dot{M}(C_L, D_L)) = \phi. \mbox{ The former} \\ \mbox{ case implies that } \max v_i (\dot{K} \setminus \dot{M}(C_K, D_K)) = g \mbox{ and } w_j (\dot{L} \setminus \dot{M}(C_L, D_L)) = \phi. \mbox{ The former} \\ \mbox{ case implies that } \max v_i (\dot{K} \setminus \dot{M}(C_K, D_K)) = g \mbox{ and } w_j (\dot{L} \setminus \dot{M}(C_L, D_L)) = \phi. \mbox{ for mer order} \\ \mbox{ example, that } \max v_i (\dot{K} \setminus \dot{M}(C_K, D_K)) = g \mbox{ and } 0 \in C_K. \mbox{ Then there exists } y \in D_K \mbox{ and we } \\ \mbox{ put } z = b - \alpha. \mbox{ Since } z \in L, \end{array} 0 < z \leq y \mbox{ and } w_j (z) = g \mbox{ max } w_j (\dot{L} \setminus \dot{M}(C_L, D_L), \mbox{ we have } (C_L, D_L) \in T_j (L). \mbox{ In other cases, we have the same conclusions. We now put } (A_L, B_L): \\ \mbox{ = } (A_K \cap L, B_K \cap L). \mbox{ Then } (A_L - \alpha, B_L - \alpha) = (C_L, D_L) \in T_j (L) \mbox{ and } w_j (d \in M_L, B_L) \in W_j (L). \mbox{ It follows from Proposition } 2.1, (1), \psi_{L(x)/L} \mbox{$

 $\psi_{F(\alpha,x)/F(\alpha)}$ is not bijective since L/F(α) and L(x)/F(α , x) are algebraic extensions (cf. [2], Proposition 1.2). If $F \cong F(\alpha)$, then $\psi_{F(\alpha)/F}$ is not bijective by the assumption. So $\psi_{F(x)/F}$ is not bijective, since the transcendental degree of $F(\alpha, x)/F$ is two (cf. [3], Proposition 1.2). If $F(\alpha) = F$, then $\psi_{F(\alpha,x)/F(\alpha)} = \psi_{F(x)/F}$ and so $\psi_{F(x)/F}$ is not bijective. O.E.D.

COROLLARY 2.3. Let K/F be an extension of ordered fields. Suppose that K is a maximal ordered field. Then there exists an intermediate field $F', F \subset F' \subset K$, which is a maximal extension of F.

PROOF. We may assume that $\psi_{K/F}$ is not bijective. Put $S = \{F'; F \subset F' \cong K \text{ and } \psi_{F'/F} \text{ is bijective}\}$. It is easy to see that S is an inductive set; therefore there exists a maximal element F' of S by Zorn's lemma. Note that K/F' satisfies the assumption of Proposition 2.2, and so F' is a maximal ordered field and is a maximal extension of F. Q.E.D.

The following Theorem 2.4 follows from Theorem 1.4 and Corollary 2.3.

THEOREM 2.4. Let K_2/F be an extension of ordered fields and K_1 be a maximal extension of F. Suppose that K_2 is a maximal ordered field. Then there exists an F-embedding $K_1 \rightarrow K_2$.

COROLLARY 2.5. Let $\sigma: F \rightarrow L$ be an embedding of ordered fields. Let K_1 and K_2

be maximal extensions of F and L respectively. Then there exists an order preserving embedding $K_1 \rightarrow K_2$ which is an extension of σ .

EXAMPLE 2.6. In [3], Example 1.4, we considered the extension $K/F := \mathbf{Q}(x_1, x_2, \cdots)/\mathbf{Q}(x_2, x_3, \cdots)$ of ordered fields. K/F is a proper extension for which rank K = rank F but $\psi_{K/F}$ is not bijective.

Let L be a maximal ordered field. By the definition, there exists no proper extension M/L of ordered fields such that $\psi_{M/L}$ is bijective. However it is possible that there exists a proper extension M/L of ordered fields such that rank M = rankL. We give such an example. Let L and M be maximal extensions of F and K respectively. There exists an F-embedding $L \rightarrow M$ by Corollary 2.5. Since $\psi_{M/L}$ is not bijective, the extension M/L is proper, and it is clear that rank M = rank L

REMARK 2.7. Let B be an ordered field. Then the following statements are equivalent.

(a) B is a maximal ordered field.

(b) For any ordered field C for which rank B = rank C, there is an order preserving injection $C \rightarrow B$ such that $\psi_{B/C}$ is bijective. The equivalence of (a) and (b) is clear by [3], Theorem 3.4.

We give an example which shows that the bijectivity of $\psi_{B/C}$ can not be dropped from the assumptions in (b). Similarly to Example 2.6, let L and M be maximal extensions of F and K respectively. By Corollary 2.5, We can regard L as a subfield of M. We put $B:=L(x_1) \subset M$. Then rank B= rank L and B is not maximal ordered field since B is not real closed. For any ordered field C for which rank B= rank C, there is an order preserving injection $C \rightarrow B$ since $L(\subset B)$ is a maximal ordered field.

References

- [1] D. Kijima, Cuts of ordered fields, Hiroshima Math. J. 17 (1987), 337-347.
- [2] D. Kijima and M. Nishi, Maximal ordered fields of rank n, Hiroshima Math. J. 17 (1987), 157– 167.
- [3] D. Kijima, M. Nishi and M. Sakaibara, Maximal ordered fields of rank n II, Hiroshima Math. J. 18 (1988), 219–225.
- [4] P. Ribenboim, Théorie des valuations, Les Presses de l'Université de Montréal, Que., 1964.

Faculty of Engineering, Kinki University, and Department of Mathematics, Faculty of Science, Hiroshima University