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1. Introduction

In the area of model selection, various procedures have been proposed in

the literature and their some properties have been examined. In this paper we

consider a generalized information criterion (GIC) obtained by the information

theoretic approach. According to this procedure, we find the model which

minimizes

(1.1) G I C = - 2 log L(Θ) + pcN

where L0) is the maximized likelihood and p is the number of parameters. Akaike

[1] proposed to take cN = 2, and Rissanen [12] and Schwarz [13] proposed cN =

logN where N denotes the sample size (see also [2], [8]). Recently Zhao :

Krishnaiah and Bai [14] considered the GIC such that

(1.2) Hnv-^ cN/N = 0 and l i m ^ ^ cN/log log N = + oo.

The above criterion is sometimes referred to as the efficient detection (ED)

criterion. They used the criterion for the determination of the number of signals

under a signal processing model.

In the present paper, we propose to use the ED criterion for certain problems

of multivariate analysis. Sometimes the statistician is expected to predict the

explanatory variables using some of the response variables under the multivariate

regression model. This problem is treated in Section 2 by using the ED criterion,

and its consistency is established. Here we may note that Nishii [10] pointed out

the inconsistency of Akaike's AIC in calibration. In Section 3 we discuss the

selection of variables in discriminant analysis. Our interest is to find the variables

which contribute for discrimination between the populations. Section 4 is

concerned with canonical correlation analysis, i.e., among two sets of variables

we want to find which subsets are important for studying the association between

the two sets. The investigations for the above cases will be carried out under a

mild condition on the underlying distribution.
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2. Multivariate calibration

Let # explanatory variables x = (xί9..., xq)
f and p response variables y =

( j l v . . , ypy have the linear relation:

(2.1) y = a + β'x + e

where the error vector e follows Np(0, I ) , and α : p x l , β: qx p and Σ: pxp

are parameters such that Σ is positive definite. Note that we do not assume that q

is less than or equal to /?, which is the usual assumption in calibration. Suppose

we are interested in estimating x by using observed y. If all parameters are

known, the maximum likelihood estimate of the unknown explanatory variables

x will be obtained by

where {βΣ~ιβ')~ denotes a generalized inverse matrix of βΣ~λβ'. However, if

the last column of βΣ~ι is the zero vector, the response variable yp would supply

no additional information on x (see 8c.4 of [11]). Hence, we want to obtain the

best subset of response variables such that each variable has some information.

For this problem, criteria based on information theory can be used. For a review

of the literature on multivariate calibration, the reader is referred to [4].

Let J be a subset of indices of response variables {1,..., p}, and Jc be its

complement. We say that "the assumed model is J " when yj provides information

on x for any index j in J, whereas yj does not for any index / in Jc. We assume

the existence of the true but unknown model {1,..., pt}=Jt for pt<p. This is

equivalent to the following two conditions:

(2.2) βj Σ~j} β'j = βt I " 1 β't if J includes the true model J,,

(2.3) βjΣj}βfj<βtΣ^βf

t and tr βd Σj} ft < tr βt Σ' > β't%

if J does not include Jt,

where βj\ qx$J and ΣJJ\ %Jx%J are respectively submatrices of β: qxp and

Σ: pxp corresponding to the subset J of indices, βt: qxpt and Σtt: ptxpt are

similarly defined corresponding to J r, and #J denotes the number of indices of J

(see [6], [9] for the definition of the model).

When all parameters are unknown, but N independent observations yt at

Xι (/=1,. . . , N) with the relationship (2.1) are available, we use the estimates of

α, β and NΣ as

(2.4) a = 7 - B ' x : q x 1 , B = S ~ } S x y : q x p a n d S = S y y - B ' S X X B : p x p ,
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where

' x \ I x \ I Sxx Sxy \ ( JCf-jc
(2.5)

y J \ y J \ Syx Syy J \ yi-y J\ yi-y
Note that 5 and B'SXXB follow the Wishart distribution Ψp(N-q-\, Σ) and

the noncentral Wishart distribution Wp(g, Γ; β'Sxxβ) respectively. The likelihood

ratio for the model J against the full model ^ = {1,..., p}, Λ(Jf; J), is expressed

by [7]. Instead of minimizing GIC of (1.1), we minimize the difference:

(2.6) GN(J) = G I C . ( J ) - GIC (Jf) = λ(Jf9 J) - q(p-*J)cN9. GN(Jf) = 0,

where {cN} satisfies (1.2) and

(2.7) Λ(Jf; J) =

SJJ and Bj are submatrices of S and B corresponding to J. Define the selected

model JN based on N calibration samples as

(2.8) JN minimizes GN(J) of (2.6)

among the models under consideration.

Recall the criterion function (2.6) based on the log-likelihood ratio (2.7)

is derived when yt are normally distributed. However, we apply this procedure

when we relax the assumption of normality. Nishii [10] studied the asymptotic

behavior of the AIC for the case cN = 2 in (2.6) under a weak assumption and

he showed that the AIC is not consistent in the multivariate calibration problem.

We will show that the ED criterion defined in (1.1) with (1.2) is strongly consistent

under the following mild conditions:

ASSUMPTION, (i) The error vectors e{ (/= 1,..., N,...) are independently

and identically distributed (i.i.d.) with

(2.9) Eet = 0, Eexe[ = Σ and Έie^^i2 < oo for some y e [2, 3] .

(ii) The sequence of the vectors of explanatory variables {jct = (xπ,..., xiq)' \

i= 1,..., N,...} satisfies

(2.10) 0 < ml, < ΛΓ-' S,, = N~ι ΣΓ-i (x,-xN)(x,-xNY < Mlv

ΓN?ι2(log log JV)3'2, if 2 < γ < 3,
( 2 . 1 1 ) Σ V i \ t t N k \ .

3/2/l if y = 3,
(1 < k < q)

N~ι Σf=i J c i = ( % i r J *Ng)'» *n<M and Γ are positive constants.
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The proof of the following lemma is given in Section 5.

LEMMA 2.1. Under Assumption, it holds that

(2.12) TN = ΣUiXi-XNWt' q*P = OQ(N log log ΛΓ», a.s.

THEOREM 2.1. Under Assumption, the model selection procedure based on

the ED criterion is strongly consistent to the true model in the multivariate

calibration problem, i.e., l im^^ JN = Jt, a.s.

PROOF. From (ii) of Assumption, SXX — O(N). Using Lemma 2.1 we have

(2.13) N-*B'SXXB = N~*β'Sxxβ + T'Nβ + β'TN + ΓNS^TN

= N-iβ'Sxxβ + O(V(N-i log log ΛΓ», a.s.,

(2.14) N~ιS = N'l(Syy-B'SxxB)

= N-1 Σf=i (ei-eN)(e^eNy - N^TNS^XTN

= I + 0(v/(N-1loglogiV)), a.s.

where TN: qxp is defined in (2.12) and ~eN = N~ι Σ ί U et- If J ^ o e s n o t include

the unknown true model Jt, by (2.6-7) and (2.13-14) we have almost surely

(2.15) GN(J) = tr{(βΣ->β'-βjΣj}β'j)Sxx} - q(p-*J)cN + O(VloglogN).

Case 1: J does not include the unknown true model Jt. The first term of the

right hand side of (2.15) is positive by (2.3) and it increases with the order N

by (2.10), which together with l i m ^ ^ N~ίcN = 0 implies

(2.16) GN(J) > 0 for large N, a.s. if J does not include Jt.

On the other hand GN(Jf) = 0 by the definition (2.6) of GN, and we want to minimize

GN(J) for given N. This yields that the ED criterion asymptotically prefers the

full model Jf to J if J does not include the true model Jt. If the full model Jt

coincides with the full model Jf, the consistency is established.

Case 2: J properly includes Jt. First we examine which model will be chosen
/ S S \

among two models Jt and Jf. Define S= ί -" ~n ): pxp, Stt: ptxpt, B =

iBt9Bί']:qxp9Bt:qxpt. Let Sxι.t = S1 i-SuSγ/Sn, and define (S + B'SXXB)1 w

a n d Σllu in t h e s i m i l a r w a y . P u t U = S x x

2 B = [Ut, L ^ ] : qxp a n d Ut: qxpt.

F r o m [ 6 ] w e k n o w t h a t

' I / ) n . f - S t l . t

= (Uι - UtS7t

ιSn)'(lq+UtS7t* U'tY\Ux - UtS7<x

By the law of iterated logarithm and Lemma 2.1, we have
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N'ιSn.t = Σn.t + OQ(N-i log log N)), a.s.,

Ut 5" 1 Ό\ = N-WJ* βt IΓ/ β'tSg2 + OiJiN-i log log N))

= O(1), a.s.

Ux - UtS-*Stl = S^β, - SU*βtΣτϊΣtl + O(Vlog log N)

= O(yJ\o%\ogN), a.s.

The last equality follows from the relation βί=βtΣjt

iΣn which is obtained by

(2.3). Hence

GN(Jt) = Λ(Jf9 Jt) - q(p-pt)cN

(2.17) = NlogίKS+I/'I/ϊπ.J/ISn.J} - q(p-pt)cN

= O(loglogN) - q(p-pt)cN > - oo, (JV->oo), a.s.

because p — pt>0 and lim^^^ c N / loglogN=+ oo. Thus GN(Jt) takes negative

values for sufficiently large JV, which implies that the ED criterion asymptotically

prefers the true model Jt to the full model Jf. Second when J properly includes

the true model, the smilar lines lead to that the log-likelihood ratio (2.7) is:

Λ(Jf9 J) = O(loglogN), a.s.

Hence, by (1.2) and U>pt,

GN(Jt) - GN(J) = Λ(Jf9 Jt) - Λ(Jf9 J) + q(pt-*J)cN

= O(loglogN) - q(%J-Pt)cN > - oo, a.s.

This implies that the ED criterion asymptotically prefers Jt to J, completing the

proof.

However, we must calculate 2^-1 GN( )'s to obtain JN of (2.8). When p is

large, this would involve extensive computation. To overcome this problem,

we propose an alternate procedure, which is also based on the ED criterion and

which is essentially due to [14]. Let J_ f be the subset of the full model omitting

the index i (1 < i < p). Choose the model:

(2.18) JN = {i e Jf I GuiJ.i) > 0 = GN(Jf)}.

This subset is obtained by calculating only p GN(Ύs, but this is still a strongly

consistent estimate of the true model Jt.

THEOREM 2.2. Under Assumption, the set of the indices selected as (2.18)
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is also a strongly consistent estimate of that of the unknown true model, i-e ,

linitf^ JN = Jt, a.s.

PROOF. If i lies in the true model J f, then J_ f does not include Jt. By (2.16),

G N (J_ ί )>0 or ieJN for large JV, a.s. If j does not lie in J f, then J _ 7 includes Jt.

By the similar discussion as (2.17), we know that GN(J_y)<0 or JN will not contain

j for large TV, a.s., and this completes the proof.

3. Discriminant analysis

The discussion on multivariate calibration can be applied to the variable

selection in multiple discriminant analysis. Consider q + 1 p-variate normal

populations πα with mean vector μΛ and common covariance matrix Σ ( α = l , . . . ,

q +1). Assume NΛ samples * α l , . . . , xaNχ are drawn from πα. We are interested in

interpreting the differences among the q + 1 populations in terms of only a few

canonical discriminant variates.

Let Ω be the population between-groups covariance matrix as

β = N"1 Σαϋ NλμΛ-μ)(μΛ-μ)'' v x p,

where μ = N~{ Σ ? ί i NΛμa and N = Σ2i} Nβ. Let J be a subset of the full model

{1,..., p}=Jf. We say that the model is J when unknown parameters satisfy

(3.1) t r l ^ Ω = tτΣj}Ωjj > trX ^ Ω / >r if J ' does not include J,

where ΩJt/ and Σ5i are submatrices of Ω and Σ of size #J x #J respectively. We

assume that the true but unknown model exists and denote it by J f = {l,..., pt}.

The maximum likelihood function under the model J is known (see [6]). Hence,

we have

(3.2) GN(J) = GIC (J) - GIC (Jf)

= Nlog{\Wjj\\W+V\l\W\\Wjj+Vjj\} - q(p-9J)cN

where

(3.3) W = ΣSi Σ?= i (zΛi-Zr)(zai-zJ: p x p,

(3.4) K= Σ 2 i ί ^ α ( z α - ϊ ) ( z α - z ) ' : .p x p,

Here W and K denote the matrices of sums of squares and products due to within

groups and due to between groups, respectively. Note that W~Wp(N — q — \, Σ)

and V~Ψp(q, Σ; NΩ), and recall that S~Ψp(N-q-\, Σ) and B'SxxB~Ψp(q9 I ;

β'Sxxβ) in (2.5). Let {£^ = 5 ^ } be a sequence of matrices satisfying Assumption
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with γ = 2. Then we can find β = βN: qxp such that β'Sxxβ = NΩ since rank Ω<

min(p, q). Put S = Wand B'SXXB=U in (2.5). This gives the complete corre-

spondence between (2.5) and (3.2) except that β depends on N.

Let JN be a subset of Jf minimizing (3.2) and let JN be a subset of J f defined

by (2.18) in this situation.

THEOREM 3.1. Let zΛi-μa (/ = 1,..., N α ; α = l , . . . , g + 1) be i.i.d. with EzΛi =

μa and E(zai — μjiz^ — μΛϊ — Σ. Assume that the data increases with satisfying

the condition

0 < m ' <N-ιNΛ<\ ( α = l , . . . , 4 + l ) , N = Σ«=! Nα

where m! is a positive constant. Then both JN and JN are strongly consistent

estimators of the unknown true model Jr

4. Canonical correlation analysis

In this section we treat the variable selection problem in canonical correlation

analysis. Let z = (*', y ' ) f follow Np+q(μ9 Σ) where x:qx\,y:pxl, μ = (μχi μ'y)
r:

(p + q)x\9 μx:qx\, Σ=(^xx | ^ ) : (p + q)x(p + q) a n d Σxx:qxq. Suppose
\Δyx Δyy/

we are interested in summarizing the relationship between x and y by using a

small number of variables. Let If = {\,..., q} and Jf = {U..., p} be the sets

of the indices of x and y respectively. Consider subsets / £ / / and J^Jf.

We say that the model is (/, J) when we suppose that using submatrix Σu of

Σxy and so on,

(4.1) tr Σ Σ~ιΣ Σ~ι = tr Σ Σ~~ιΣ Σ~ι

Further we suppose the existence of the true but unknown model (/„ Jt) which

consists of the smallest number of parameters satisfying (4.1) when /,= {1,..., qt}

and Jt = {1,..., pt}. Also, let (JC , y\) be N independent observations of z' and put

/ Sxx Sxy \ ί Xi-x \( Xi-x V

\ Syx Syy J \ yi-y ) \ yt-j J

Consider the model (/, J) where / = {1,...,^1} and J = {1,..., px}. Corresponding

to / and J, we partition S into 16 submatrices (5 i y); /, 7 = 1,..., 4 as Sxx =

ί 11 12 i C / 13 14 i C1 I *^33 *^34 1 C*

I c1 Q i' q q^ xv^~ I c c i' q p^ w ~ ~ ι c c* J * p p^ 1 1 * q i qι*
S ^ ^ x ^ , ^33 P i χ P i and S l7 = 5}f. (In the similar way, the submatrices

of Σ are defined.) Then the log-likelihood ratio of the model (/, J) and the full

model is given by [5] as
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°22 13 °24 i:
(4.2) Λ(If, J,;I,J) = N log | S 2 2 . , | | S 4 4 . 3

where

13 ""

Define Σij.xι and Σij.k in the similar way.

If I^It and JΏ.Jt or q1 >qt and pt>pt then (4.1) is true, which yields (Z"41.3,

^42 3) = 0 and (£23-!, Σ24.Ί) = 0. Hence, by the law of iterated logarithm, using

a. s.,1 - ^ 2 2 - 1

22-13 -^24-

+ O(^),

: ) • (

a.

Γ 2 2 .

^ 4 2

^ 2 2

0

s.,

13

13

•1

N-

Σ2*

I 4 4 .

0

Σ«.

- 5 4 4

1
13 /

\

J

|. 3 — -^44*3

+ O(^)

a.s.,

and

(4.3) Λ(I,, Jf; I, J) = Nlog\ | I 2 2 . , | | I 4 4 . 3 |

= O(log log N), a.s.

0 I 4 4 . 3

+ O(^)

If 4i<<7ί 0 Γ Pi<Pt (which implies I^lt or J^Jt), then (Γ23.1 ? Σ24.1)φO or

(Γ 4 1 . 3 , Γ42.3)7*0. Hence, \Σ22.ί\\Σ44.3\>\Σ22.31\\Σ44.l3l Therefore,

(4.4) Λ(If, Jf; /, J) = N l o g ί | I 2 2 . 1 | | I 4 4 . 3 | / | Σ 2 2 . 1 3 | | I 4 4 . 1 3 | } + O(loglogN)

= O(N) and > -f 00, (N-*oo), a.s.

This discussion is applicable in the general case of /=£U o r ^ ί Λ ^n ̂ ι s c a s e l e t

IJ==I \J It and J* = J U J f. When we restrict the variables of JC and j ; as xf (/ e J J),

the true model remains (ft9 Jt). Recalling the definition (4.2) and using (4.4),

we get

Λ(If9 Jf;I%J}) = O(loglog N), a.s.,

Λ(I% JJ; /, J) = O(N) and Λ(I% JJ; /, J) > + 00, (N->oo), a.s.

Hence, if /=£/f or
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( 4 . 5 ) Λ(lf9 Jf; /, J) = Λ(lf9 Jf; 1% J}) + Λ(l% J}',I,J) > + oo, a.s.

We hold the relations (4.3) and (4.5) under the assumption that Z' = (JC', y') has

the finite variance-covariance matrix.

Now we define (ίN9 J N ), the selected model, which minimizes

GN(I9J) = ΛVf9Jf 9I9J)-{pq-i

and we propose an another procedure to select the model (7N, J N ) :

IN = {ieIj\GN(I.h Jf)>0}9 JN = {jεJf\GN(If, J _ , )>0}

where I_. = If — {i} and J_j = Jf — {j}.

Combining (4.3) and (4.5), we obtain

THEOREM 4.1. Let {zι = (x'i9 yd' I ' = !>•••> N9...} be i.i.d. with mean vector

(μ'χ9 μ'y)' and variance-covariance matrix Σ. Then (IN, J/ V) and (IN, JN) are

strongly consistent estimators of the true model (It, Jt).

5. Proof of Lemma 2.1

To prove Lemma 2.1 it is sufficient to show that

(5.1) ΣU (xt-xN)et = O(V(N log log N))9 a.s.

if (i) random variables el9...9 eN,... are i.i.d. with E^ 1 =0, Ee? = l, (ii) x t x ^

satisfy m<N~ίΣ7=ι(Xi — *N)2<M for any N > 2 where m and M are positive

constants and xN = N~ίΣ1i=iXh a n ( * (iϋ) for some ye [2, 3], (2.9) and (2.11) are

satisfied.

To show (5.1) we shall prove

(5.2) Σ?«i P[Wί {(el9..., eN) \ ΣU ( ^ ~ ^ M > Cj(N log log N)}] < oo

for a constant C such that C> λ /M/ λ /log2 + λ/(2m), where wj denotes unions

with repsect to N running through 2k~ι +1 to 2Λ, i.e.,

and M appeared in (ii). If 2 fe"1 +

V(2M),

where x* = 2~kΣl=ixi' Hence (xj — 3cN) is bounded and by the law of iterated

logarithm, Σ"=i ei = O(yJ(N log log JV)), a.s. Thus

(xf-XN) Σf=i *, = O(V(NloglogN)), a.s.

Using the following trivial relation:
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ΣU (.χ,-χN)et = Σf=, (xt-xfr, + (χt-χN) ΣU et,

it is necessary to show

(5.3) Σ{ί.i(*c-*f)β| = O(V(MoglogW)) or Σ?

where Ek is the event wj {Σf=i (x i -xf)e, >C2*/2

λ/log/c}.
Define

f et, if \et\ < 2*/*,
e'ik=\ E.l = \jf=x

[ 0, otherwise,

and

E'k = Wί {Σί . i (*ι

Then the event Ek is a subset of the event E'k U E'k\ which implies

(5.4) P(Ek)<P(E'k) + P(E'k').

So,

(5-5) Σf-i HE'D = Σ?-i 2"P(eiΦe'ik) = Σ?-i

< Σf-i 2 ί + 'P[2 '/ 2 ^ |e, | < 2<1+ >/2] < 2 Σf-i E(e2χ£) < 2Ee2 = 2,

where χ s denotes the indicator function of the event {2i/2<\e1\<2a+ί)/z}.

Using the assumption Ee, =0, we have

|Eβ'u| = |Eie' u-e,)l < Ede,|zt) < 2"*/2Ee? = 2-*/2,

where χ t denotes the indicator function of the event {\e1\>2k/2}. This relation

yields

ΣJL, I*, - xfl \Ee'ik\ < {NΣΪ-ι (Xt-xt

for 2<*-I>/2<7V<2*/2. Putting

«ι» = e'tk ~ Ê 'i* and tN = Σί^i (Xi-x*)eik

we obtain that for fe> 2

<

< P[Wί {ίw > C2*/2 Vlog k - 2k'2
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If we take C such that C-%/M/log2>C/>λ/(2m), the last formula is domainted

by

Further the last formula is evaluated by the inequality due to [3] using the relation

m2k < Σ ? i i ( * / - * ? ) 2 <M2*, we have

(5.6) ?{E'k) < 2{ 1 - Φ(C"Vlog k)} + C0Rk

where Φ(x) is the standard normal distribution function, Co is a constant, C" =

C7 v

/ m> > /2, C" = CrlyjM>0 and

Now employing the inequality 1 — Φ(x)<(2π)~1/2 exp( — x2/2) (x> 1), we get

(5.7) Σ?= 3 {l-Φ(CVlog/c)} < (2π)- 1 / 2 Σ?=3^ c / / 2 / 2 < oo

because C">yj2. On the other hand, if y = 3, i.e., E|ef|<oo, then

(5.8) Rk

where C1>0 is a constant. If 2<y<3, i.e., E|^ 1 | y<oo, then

Rk

(5.9)

< C3 Σΐ=i E d e J ^ . O + C4 < CaEI^I" + C4 < oo,

where the indicator function χ£_i is used in (5.5) and C2, C3, C 4 are positive

constants and Γ is used in (2.11). Thus (5.7-9) yield that Σ*°=i P(£i)<oo.

This and (5.4-5) yield (5.2). Hence the proof is completed.
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