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1. Introduction

In the area of model selection, various procedures have been proposed in
the literature and their some properties have been examined. In this paper we
consider a generalized information criterion (GIC) obtained by the information
theoretic approach. According to this procedure, we find the model which
minimizes

(1.1) GIC = — 2log L(0) + pcy

where L(0) is the maximized likelihood and p is the number of parameters. Akaike
[1] proposed to take cy=2, and Rissanen [12] and Schwarz [13] proposed cy=
log N where N denotes the sample size (see also [2], [8]). Recently Zhao,
Krishnaiah and Bai [14] considered the GIC such that

(1.2) limy,,cy/N =0 and limy,, cy/loglogN = + 0.

The above criterion is sometimes referred to as the efficient detection (ED)
criterion. They used the criterion for the determination of the number of signals
under a signal processing model.

In the present paper, we propose to use the ED criterion for certain problems
of multivariate analysis. Sometimes the statistician is expected to predict the
explanatory variables using some of the response variables under the multivariate
regression model. This problem is treated in Section 2 by using the ED criterion,
and its consistency is established. Here we may note that Nishii [10] pointed out
the inconsistency of Akaike’s AIC in calibration. In Section 3 we discuss the
selection of variables in discriminant analysis. Our interest is to find the variables
which contribute for discrimination between the populations. Section 4 is
concerned with canonical correlation analysis, i.e., among two sets of variables
we want to find which subsets are important for studying the association between
the two sets. The investigations for the above cases will be carried out under a
mild condition on the underlying distribution.
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2. Multivariate calibration

Let g explanatory variables x=(x,,..., x,)’ and p response variables y=
(¥15---» yp)’ have the linear relation:

(2.1) y=a+fx+e

where the error vector e follows N,(0, 2), and @: px1, B: gxp and 2: pxp
are parameters such that X is positive definite. Note that we do not assume that g
is less than or equal to p, which is the usual assumption in calibration. Suppose
we are interested in estimating x by using observed y. If all parameters are
known, the maximum likelihood estimate of the unknown explanatory variables
x will be obtained by

X = (BB (y—a),

where (BZ~!1§’)~ denotes a generalized inverse matrix of BZ~!f’. However, if
the last column of BX~! is the zero vector, the response variable y, would supply
no additional information on x (see 8c.4 of [11]). Hence, we want to obtain the
best subset of response variables such that each variable has some information.
For this problem, criteria based on information theory can be used. For a review
of the literature on multivariate calibration, the reader is referred to [4].

Let J be a subset of indices of response variables {1,..., p}, and J¢ be its
complement. We say that “the assumed model is J*” when y; provides information
on x for any index j in J, whereas y; does not for any index j’ in J¢. We assume
the existence of the true but unknown model {l,..., p,}=J, for p,<p. This is
equivalent to the following two conditions:

(2.2) B, 25} By = B, 2! B; if J includes the true model J,,

(2.3) B, 23y By < B 25 and  tr B, X5} By < tr B, X3! B,

if J does not include J,,

where B,: qx#J and Z,;: #J x #J are respectively submatrices of f: gx p and
2: px p corresponding to the subset J of indices, f,: ¢ x p, and X,,: p,x p, are
similarly defined corresponding to J,, and #J denotes the number of indices of J
(see [6], [9] for the definition of the model).

When all parameters are unknown, but N independent observations y; at
x; (i=1,..., N) with the relationship (2.1) are available, we use the estimates of
a, fand NZX as

Q4 a=y—-Bx:qx1,B=S;!S,,;qxpandS=S5, —BS,B:pxp,
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where

x Sex Sy x,—x x;—x \
(2.5) _|=N"! M, , =3r, _ -
y -4 Syx Syy yi—y yi—y

Note that S and B'S,,B follow the Wishart distribution W, (N—-g—1, X) and
the noncentral Wishart distribution W (q, Z; B’S,.p) respectively. The likelihood
ratio for the model J against the full model J,={1,..., p}, A(J; J), is expressed
by [7]. Instead of minimizing GIC of (1.1), we minimize the difference:

“|

(26) Gy(J)=GICJ) - GICJ)) = AU ;) — q(p—#))ey, Gy(Jy) =0,
where {cy} satisfies (1.2) and
(2.7 A(J;3 J) = N log{|S,11S+ B'S..Bl/|S||Sss+ B;S:Byl} »

S;,; and B are submatrices of S and B corresponding to J. Define the selected
model Jy based on N calibration samples as

(2.8) Jy minimizes Gy(J) of (2.6)

among the models under consideration.

Recall the criterion function (2.6) based on the log-likelihood ratio (2.7)
is derived when y; are normally distributed. However, we apply this procedure
when we relax the assumption of normality. Nishii [10] studied the asymptotic
behavior of the AIC for the case cy=2 in (2.6) under a weak assumption and
he showed that the AIC is not consistent in the multivariate calibration problem.
We will show that the ED criterion defined in (1.1) with (1.2) is strongly consistent
under the following mild conditions:

ASSUMPTION. (i) The error vectors e; (i=1,..., N,...) are independently
and identically distributed (i.i.d.) with

(2.9) Ee, =0, Ee,e; = 2 and E(e|e,)"'? < oo for some ye[2, 3].

(ii) The sequence of the vectors of explanatory variables {x;=(x;y,..., X;)" |
i=1,..., N,...} satisfies
(210) 0 <ml, < N7!S,, = NPT, (x;—Fn)(x;— %) < M1,
I'N'2(log log N)3/2, if 2<y<3,
2.11) 2 xu — Xul?<
I'N3/%[log N, if y=3,
(I1<k<gq)

where xy=N"' 3, x;=(Xyy,..., Xn,)s m<M and I are positive constants.
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The proof of the following lemma is given in Section 5.
LEMMA 2.1. Under Assumption, it holds that
(2.12) Ty =X, (x;—xp)ei: g x p=O(/(N loglog N)), a.s.

THEOREM 2.1. Under Assumption, the model selection procedure based on
the ED criterion is strongly consistent to the true model in the multivariate
calibration problem, i.e., limy_, . Jy=J,, a.s.

PROOF. From (ii) of Assumption, S,,=O(N). Using Lemma 2.1 we have
(2.13) N7'B'S,.B=N7'BS. B+ TuB + BTy + TS Ty
= N"1p'S,,B + O(/(N~'loglog N)), as.,

(2.14) N-1S = N-\(S,,— B'S,,B)
= N1YXK, (e,—ey)(e;—ey) — NT'TySTTy
=2 + O(/(N~!loglog N)), a.s.

where Ty: g % p is defined in (2.12) and ey=N"! 3 ¥, e;,. If J does not include
the unknown true model J,, by (2.6-7) and (2.13-14) we have almost surely

(2.15)  Gu(J) = tr {(BZ7'B' = B,Z5) B))S} — q(p—#J)ey + O({/loglog N).

Case 1: J does not include the unknown true model J,. The first term of the
right hand side of (2.15) is positive by (2.3) and it increases with the order N
by (2.10), which together with limy_, , N~'cy=0 implies

(2.16) Gy(J) > O for large N, a.s. if J does not include J,.

On the other hand Gy(J ;) =0 by the definition (2.6) of Gy, and we want to minimize
Gun(J) for given N. This yields that the ED criterion asymptotically prefers the
full model J, to J if J does not include the true model J,. If the full model J,
coincides with the full model J,, the consistency is established.
Case 2: J properly includes J,. First we examine which model will be chosen
among two models J, and J;. Define S= <§" :Sg,“ >: pXp, Su:pXp, B=
1t 1
[B,, B,1: qxp,B,: gqxp,. LetS;;..=S;1—S:S:'S;:, and define (S+ B’'S,,B);.
and X,,., in the similar way. Put U=S!2B=[U,, U,]: qxp and U,: gxp,
From [6] we know that
(S+B'S;B)yys — Sy = (S+U'U)yger — St1ee
=(U,-US5'S) I+ USHUN (U, = U,S'S1) .

By the law of iterated logarithm and Lemma 2.1, we have
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N71Si1..=Zy;. + O(/(N-'loglog N)), as.,
U SpiU; = N7ISL2 B 25! BiSHE + O/ (N1 log log N))
= 0O(1), a.s.
U, — US;'S,, = SU2B, — SU2B, 22, + O(log log N)
= O(/loglog N), a.s.

The last equality follows from the relation B, =p2;'Z,, which is obtained by
(2.3). Hence

Gn(Jy) = AUy, J) — a(p—poew
(2.17) = Nlog {I(S+U'U)yy.fl/ISy1.l} — a(p—P)en
= Nlog|l,_;+S7{.A(S+U'U)yy.—Sy1dl = 9(p—poew
= O(loglog N) — qg(p—p)ey — — ©, (N—>0), a.s.
because p—p,>0 and limy_, cy/loglog N=+00. Thus Gu(J,) takes negative
values for sufficiently large N, which implies that the ED criterion asymptotically

prefers the true model J, to the full model J,. Second when J properly includes
the true model, the smilar lines lead to that the log-likelihood ratio (2.7) is:

A(J,, J) = O(loglog N), a.s.
Hence, by (1.2) and #J > p,,
Gy(Jp) = Gy(J) = AUy, J) — AU, J) + q(p,—#J)c
= O(loglog N) — q(#J —p)cy — — o0, a.s.

This implies that the ED criterion asymptotically prefers J, to J, completing the
proof.

However, we must calculate 22 —1 G,(-)’s to obtain Jy of (2.8). When p is
large, this would involve extensive computation. To overcome this problem,
we propose an alternate procedure, which is also based on the ED criterion and
which is essentially due to [14]. Let J_; be the subset of the full model omitting
the index i (1<i<p). Choose the model:

(2.18) Ty ={ied;|Gy(J_)>0=Gy(J)}.

This subset is obtained by calculating only p Guy(-)’s, but this is still a strongly
consistent estimate of the true model J,.

THEOREM 2.2. Under Assumption, the set of the indices selected as (2.18)
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is also a strongly consistent estimate of that of the unknown true model, i.e.,
limy.,, Jy=J,, as.

Proor. If i lies in the true model J,, then J_; does not include J,. By (2.16),
Gy(J_)>0or ieJy for large N, a.s. If j does not lie in J,, then J_; includes J,.
By the similar discussion as (2.17), we know that Gy(J _ ;)<0or Jy will not contain
j for large N, a.s., and this completes the proof.

3. Discriminant analysis

The discussion on multivariate calibration can be applied to the variable
selection in multiple discriminant analysis. Consider g+ 1 p-variate normal
populations 7, with mean vector g, and common covariance matrix X (a=1,...,
q+1). Assume N, samples x,,,..., X,y, are drawn from n,. We are interested in
interpreting the differences among the g+ 1 populations in terms of only a few

canonical discriminant variates.
Let Q be the population between-groups covariance matrix as

Q=N 302 N(pt— ) (e, — 2)': p X p,
where g=N"! 3 1 N,p, and N=32tI N,. Let J be a subset of the full model
{1,..., py=J,. We say that the model is J when unknown parameters satisfy

3.1 tr271Q = tr 27}Q,, > tr 271,.Q,.,. if J' does not include J,

where Q,, and Z,, are submatrices of Q and Z of size #J x #J respectively. We
assume that the true but unknown model exists and denote it by J,={1,..., p,}.
The maximum likelihood function under the model J is known (see [6]). Hence,

we have
(3.2) Gu(J) = GIC(J) — GIC(J)
= Nlog {|Wy, | IW+V|[|IW]|W;;+Vy,l} — q(p—#J)cy

where
(33) W= Zaq:{ }iv=al (zai_zn)(zai—_z-a),: pxp,
(3.4 V=23EIN(2.—2)(2,—2)": p X p,

Za = N;l va-;l Zais z = N_l Zz:iNaza'

Here W and V denote the matrices of sums of squares and products due to within
groups and due to between groups, respectively. Note that W~ W (N—g—1, 2)

and V~W,(q, Z; NQ), and recall that S~W (N—g—1, X) and B'S,,B~W ,(q, %;
B'S..p)in (2.5). Let {S,,=S} be a sequence of matrices satisfying Assumption
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with y=2. Then we can find f=pfy: g x p such that §'S, = NQ since rank 2 <
min(p, q). Put S=W and B'S, ,B=U in (2.5). This gives the complete corre-
spondence between (2.5) and (3.2) except that f depends on N.

Let J, be a subset of J; minimizing (3.2) and let Jx be a subset of J; defined
by (2.18) in this situation.

THEOREM 3.1. Let z,,—p, (i=1,..., N a=1,..., q+1) be i.i.d. with Ez,;=
&, and E(z,,— p,N2,,— p,) =Z. Assume that thedata increases with satisfying
the condition

0<m <N'N,<1 (a=l,....,q+1), N=3X¥IN,

where m’ is a positive constant. Then both Jy and J, are strongly consistent
estimators of the unknown true model J,.

4. Canonical correlation analysis

In this section we treat the variable selection problem in canonical correlation

analysis. Letz=(x', y')' follow N, (ge, Z) where x: g x 1, y: px 1, pe=(pe5, pt,)

(P+x1, peigxl, X= (§§ §:1>:(p+q)><(p+q) and 2:gxgq. Suppose

we are interested in summarizing the relationship between x and y by using a
small number of variables. Let I,={l,...,q} and J,={l,..., p} be the sets
of the indices of x and y respectively. Consider subsets /I, and J=J,.

We say that the model is (/, J) when we suppose that using submatrix X,; of
X,y and so on,

(4.1) tr Xy XX 00 = tr Xy 2T 2,25

Further we suppose the existence of the true but unknown model (I,, J,) which
consists of the smallest number of parameters satisfying (4.1) when I,={1,..., q,}
and J,={1,..., p,}. Also, let (x}, y;) be N independent observations of z’ and put

Six Sxy x"—E Xi—X I
S=( >=Z'§’=n< )( ):(p+q)><(.ﬂ+4)-

Syx Syy yl—; yl_;

Consider the model (I, J) where I={1,..., q,} and J={1,..., p,}. Corresponding
to I and J, we partition S into 16 submatrices (S;;); i,j=1,...,4 as S,.=
(sh 53 ) e 80= (52 530 ) axp 5= (52 520 pxp Suazaxan
S13: 91X Py, S33: pyxpy and S;=S%;. (In the similar way, the submatrices
of Z are defined.) Then the log-likelihood ratio of the model (I, J) and the full
model is given by [5] as
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S22:13 S2413
(4.2) Al g, Jy3 1, J) = Nlog{ [S22.1][S4s-3l

.

Sij1s = Sijor — Si31533.185.10 = Sijos — Si3S13S150
Sijoe =Si; — SukSik Sk

42413 S44'13

where

Define X;;.,3 and X;;., in the similar way.

If I2],and J2J, or q,>q, and p, > p, then (4.1) is true, which yields (Z,,.5,
242.3)=0and (2,3.,, 2,4.1)=0. Hence, by the law of iterated logarithm, using
¢y=./(N~'loglog N),

N_]SZZ‘I = 222.1 + O(gN)’ a~S., N_IS44.3 = 244.3 + O(eN), a. S.,

S22:13 Sz4-13 22213 224013
Nt = + O(4y)

Sa2:13 Saa-13 24213 Zaaers

= + O(4y), a.s.,
0 Zys

and

+ O(4%)

4.3) Aly, Jps 1)) = Nlog[ 1Z22.41 |Z44~3|/

44+3
= O(log log N), a.s.

If q,<gq, or p,<p, (which implies 1221, or J2J,), then (Z,5.{, X;4.1)#0 or
(Z41-35 Z42-3)#0. Hence, |225.1[1244-31>1225.3111244-13].  Therefore,

44) Al Jp1,J)=N log {1255-111244-31/1222- 1311244131} + O(log log N)
=O(N) and — + o0, (N—-ow), as.

This discussion is applicable in the general case of 1221, or J2J,. In this case let
I¥=IUl,and J¥=J U J,. When we restrict the variables of x and y as x; (ie J¥),
the true model remains (/,, J,). Recalling the definition (4.2) and using (4.4),
we get
Al g, Jg; 17, J3) = O(loglog N), a.s.,
A%, J%; 1,J) = O(N) and A(I%, J%;1,J) — + o, (N—0), a.s.

Hence, if 21, or J2J,,
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(4.5) AUy, I3 1L J) = Al I3 1% J%) + A%, % 1, J) — + 0, as.

We hold the relations (4.3) and (4.5) under the assumption that z'=(x’, y’) has
the finite variance-covariance matrix.
Now we define (I, Jy), the selected model, which minimizes

Gy, J) = Ay, J g5 1, J) — (pq—#1#J)cy,
and we propose an another procedure to select the model (I, Jy):
Iy= {iel |G\ J;)>0}, Iy = {jeJ Gy, J_))>0}

where I_;=I,—{i} and J_;=J,—{j}.
Combining (4.3) and (4.5), we obtain

THEOREM 4.1. Let {z;=(x}, y3)'|i=1,..., N,...} be i.i.d. with mean vector
(£, ;) and variance-covariance matrix X. Then (Iy, Jy) and (Iy, Jy) are
strongly consistent estimators of the true model (I,, J,).

5. Proof of Lemma 2.1

To prove Lemma 2.1 it is sufficient to show that
5.1 T, (x;—Xp)e; = O(J/(N loglog N)), a.s.

if (i) random variables e,,..., ey,... are i.i.d. with Ee, =0, Ee}=1, (ii) x,..., Xy,...
satisfy m< N~ 'Y X (x;—Xy)2<M for any N>2 where m and M are positive
constants and Xy=N"1>X x, and (iii) for some ye[2, 3], (2.9) and (2.11) are
satisfied.

To show (5.1) we shall prove

(52) T PLUL {(ers..s en) | 20 (x;— Xn)e; > C\/(N loglog N)}] < o

for a constant C such that C>\/M/\/log 2+\/(2m), where \U] denotes unions
with repsect to N running through 21 +1 to 2%, i.e.,

UI = Uzk—!<stk
and M appeared in (ii). If 2kx"14+ 1< N <2k,
IX¥—%nl = INTTZX (X —x)l < {NTIZN (X —x)212 < J(2M),

where x¥=2"%¥Y %% x;, Hence (X}—X,) is bounded and by the law of iterated
logarithm, )., ;=O(/(N loglog N)), a.s. Thus

(xF—Xy) X, e, = O(/(N loglog N)), a.s.

Using the following trivial relation:
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i (=Xpe =T, (x;—Xe; + (XF—Xy) 2 e

it is necessary to show

(5.3) XX, (x;—X})e; = O({/(Nloglog N)) or X, P(E,) < oo,

where E, is the event \UJ {3}, (x;— X¥)e;> C2*/2/log k}.
Define

ei’ lf 'eil < 2k/2,
€ = . Ey = V¥, {ei#eu},
0, otherwise,
and
Ei = U{ZK, (x;—X¥)ej = C24/2 [log k} .
Then the event E, is a subset of the event E; U E}, which implies
(5.4) P(E,) < P(E}) + P(E).
So,

(5.5) T, P(E}) = Si, 2P, #€;) = Tiz, 24P(Jey| >24/2)
= TR, 25 TR, P[2Y2 < Je,| < 204+112]
= T, P[2Y2 < fey| < 204112] T E_, 2%
< T, 2HP[2Y2 < fey| < 20+012] <2 T E(edy,) < 2Ee} = 2,

where x, denotes the indicator function of the event {2¢/2<le,|<2(2*1)/2},
Using the assumption Ee, =0, we have

|Eei | = |E(ejr—ey)l < E(le;|%) < 27%/2Ee} = 274/2,

where j, denotes the indicator function of the event {|e,|>2*/2}. This relation
yields

Sy lx; — XF| |Eeyl < {N TN, (x;—X¥)2} 122702 < 202/ M,
for 2(=D/2 < N <2%/2,  Putting
ey = ey — Eejy and 1y = TN, (x;— X)ey
we obtain that for k>2

P(E}) < P[UJ {ty=C2%/2 Jlog k— I, |x;— X¥| |Eeixl}]
< P[UJ {ty=C2%2 Jlog k—2+12 /M}].
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If we take C’ such that C—./M/log 2> C’>./(2m), the last formula is domainted
by
PLUL {ty=>C2%/2 Jlog k}] < PLXE, (x;— % ¥)ey > C'2K/2 [log k].

Further the last formula is evaluated by the inequality due to [3] using the relation
m2k < 325 (x;— X¥)2 < M2k, we have
(5.6) P(E;) < 2{1 —(C"/log k)} + CoR,
where @(x) is the standard normal distribution function, C, is a constant, C"=
C'|\ym>/2,C"=C'|\/M>0 and

R, = XX, |x;— X¥3Ele3,|273%/2(1 + C"\/log k)~3.
Now employing the inequality 1 — @(x)<(2n)~'/2 exp (—x2/2) (x>1), we get
5.7 T {1=o(C"/log k)} < (2m) 12 e 3k=€"/2 < o0
because C">,/2. On the other hand, if y=3, i.e., E|e}| < oo, then
(5-8) R, < T'Eje}l/[(log 2)k{1 +C"/log k}*],

2 Ry < C 327,10 (k log k) < oo,
where C, >0 is a constant. If 2<y<3, i.e., E|e,|? < o0, then
R, < I20-3k12E|e3, | (log k +log log 2)/2/(1 + C"/log k)}
< G273 MKZEle}y |,

(5.9) Xisi Ry < G 20, 27C7R2E e3y|

<SG X 78R E(ledlx, - )+ 1}

<Gy 27 279 E(ledlx, - )+ 1)

< C3 251 E(les|"xy-1) + C4 < G3Eley]” + C4 < 0,

where the indicator function y,_, is used in (5.5) and C,, C;, C, are positive
constants and I' is used in (2.11). Thus (5.7-9) yield that > 3, P(E})<o0.
This and (5.4-5) yield (5.2). Hence the proof is completed.
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