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In the present paper we are concerned with integration of functions with
values in mixed topological spaces. The theory of Lebesgue integral on a
general measure space has been extended to the case of functions taking their
values in Banach spaces by Birkhoff [1], Bochner [3], Pettis [17] and others
[12]. These vector integration theories have been extended further to the case
of locally convex spaces by Phillips [18] and Rickart [20]. Mixed topological
spaces form an important class of locally convex spaces. These spaces have
many interesting properties and are very abundant. The mixed topological
structures often appear in various problems from analysis as well as the theory
of partial differential equations, and it is expected that the theory of integration
in mixed topological spaces is not only significant from the theoretical point of
view, but also it has considerable practical applicability.

A mixed topological space is a locally convex space (E, ) equipped with a
bornology on E. A subset B of E is called a ball in E if it is an absolutely
convex subset which does not contain a nontrivial subspace. By a bornology
on E we mean a family 4 of balls in E with the four properties below: (a) & is
a covering of E, (b) ABe # for Be # and A >0, (c) for B, C € # there exists
De % with B+ Cc D, and (d) if Be # and C is a ball contained in B then
Ce %. If in particular there exists a countable subfamily {B,} of # such that
any element B e 4 is contained in some B,, then £ is said to be of countable
type. To the locally convex space (E,t) there corresponds a bornology 4,
called the von Neumann bornology on E that is the family of all t-bounded,
absolutely convex subsets of E. In this paper we restrict ourselves to a
bornology # on E satisfying the compatibility condition

B<R.,

and assume that there exists a countable subfamily {B,} of # such that any
element B e &£ is contained in some B, and any B, is 1-closed. Now to the
triplet (E, 4, 7) one can introduce a new locally convex topology that is finer
than the original topology 7 and denote it by y = y[4, t]. This topology 7 is
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defined as the finest locally convex topology on E which coincides with 7 on
each set belonging to 4. The y is called the mixed topology and, in this sense,
(E, 4, 1) is called a mixed topological space. The space (E, y) inherits various
topological properties from (E, 7), while there are interesting differences between
y and 7. One of the significant properties of y is for instance property (B) in
the sense of Pietsch, and these properties make the mixed topological spaces
abundant.

This work is strongly affected by the recent results due to Thomas [23]
and Blondia [2]. In general, it is hardly possible to develop an integration
theory for weakly measurable functions. However, in the case of locally con-
vex Souslin spaces, the concept of weak measurability is equivalent to that of
strong measurability. Noting this fact, Thomas gave useful criteria for Pettis
integrability of functions with values in locally convex Souslin spaces. He also
introduced a new notion of integrability called total summability and showed
that Fubini’s theorem is valid for the class of such integrable functions. We
shall advance our integration theory from the same point of view as in his
work. On the other hand, Blondia considered a notion of integral by semi-
norm and developed an integration theory in connection with the works
of Schmets [8], Grothendieck [10] and Saab [21]. He studied in [2] the
relationships between the strong (Bochner type) integrals, the integrals by
seminorm and the Pettis integrals. We shall also treat this problem in mixed
topological spaces.

The objective of this paper is therefore threefold. First we advance an
integration theory in mixed topological spaces. Secondly, we investigate the
relationships between the above-mentioned three kinds of integrals in both of
mixed topological spaces and mixed topological Souslin spaces. Thirdly, we
exhibit how the three kinds of notions of integrability as well as measure
theoretic properties of the integrals in mixed spaces can be interpreted in terms
of the original topology 7 and the bornology 4.

Section 1 contains preliminaries and some fundamental facts which are
used in the subsequent sections. In particular, it is shown that every mixed
topological space has property (B) in the sense of Pietsch; this fact plays an
important role in our argument. In Section 2 we state some fundamental
theorems such as Nikodym’s boundedness theorem and the Vitali-Hahn-Saks
theorem for locally-convex-space-valued measures. Here we also study vector
measures with values in mixed topological spaces. Section 3 presents a Vitali
type convergence theorem and its consequences for integrals by seminorm and
Pettis integrals in locally convex spaces. Our results here extend the results
obtained by Musiatl [16] for vector measures with values in Banach spaces.
Section 4 is the main section of this paper. Here, we develop an integration
theory in a mixed topological space (E, y[4, t]) and investigate properties of
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the three kinds of integrals in (E, y[4, t]) under various assumptions on the
system (E, 4, 1).

1. Preliminaries

Throughout this paper, only standard terminologies in the theory of locally
convex spaces are used. Also, we assume without further mention that locally
convex spaces under consideration are Hausdorff.

Let E be a vector space. A ball in E means an absolutely convex subset of
E which does not contain a nontrivial subspace. If B is a ball in E, we write
Eg for the linear space | )iz, nB of B in E. On Ej one can define a natural
norm |-|| by

[xllg=inf {1 >0:xeAB} for xeEg.

If in particular (Eg, |‘|/5) is a Banach space, B is called a Banach ball. If Bis a
closed ball in E with a locally convex topology, the Hahn-Banach theorem
implies that |x| 5 = sup {|<x, x'>|: x" € B°} for all x € E, where B° denotes the
polar of B. Hence we see that the function x — ||x||z is lower semi-continuous
on E.

For a vector space E, a (convex) bornology on E is a family £ of balls in E
such that (a) 4 is a covering of E; (b) for Be # 1 >0, ABe %, (c) for B, Ce #
there exists D € # with B+ C = D; (d) if Be # and C is a ball contained in B,
then Ce 4. We call such a pair (E, #) a bornological space. A subset B of E
is #-bounded if it is contained in some ball in #. A basis for # is a subfamily
#, of # such that each Be & is contained in some B, € #,. A bornological
space (E, 4) is said to be complete if # has a basis consisting of Banach balls.
2 is said to be of countable type if # has a countable basis. If (E, 1) is a
locally convex space, then the family 4%, of all t-bounded, absolutely convex
subsets of E forms a bornology on E. This 4, is called the von Neumann
bornology. In many applications & is taken as the von Neumann bornology
defined by an appropriate norm on E. This # is of countable type, since the
family (nB),.n, B being the unit ball of E, gives a basis.

We often denote by E, a vector space E equipped with a locally convex
topology t. In this paper we consider a vector space E with a locally convex
topology t which is compatible with a bornology # of countable type in the
following sense:

(*) B < $, and £ has a basis of t-closed sets .
In this case we can choose a basis (B,) for # with the following two properties:

(a) B, + B, < B,,, for each n; (b) each B, is t-closed .
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Let % = (U,),.n be a sequence of absolutely convex t-neighbourhoods of zero
and let
%)=\ )2 (UnB +--+U,NnB,).

Then the set of all such sets y(%) forms a base of neighbourhoods of zero for a
locally convex structure on E and this is denoted by y[4, 1] (or simply by y if
no confusion arises). In the case where & is the bornology defined by a norm
on E, we write y[||, ] for the structure y[4, t]. In this paper a triplet
(E, 4, 1) satisying the compatibility condition (x) is called a mixed space and the
locally convex topology y[4, t] is called a mixed topology. The following
statements give characteristic and useful properties of y (as for the proof and
more about the mixed topology, we refer to the book of Cooper [5]): (1) y is
the finest linear topology on E which coincides with t on the sets of #; (2) a
subset B of E is #-bounded if and only if it is y-bounded; (3) a sequence (x,) in
E converges to x in E, if and only if (x,) is #-bounded and x, — x in E,.

A Saks space is a triplet (E, ||-|, t) of a vector space, a locally convex
topology t on E, and a norm ||| on E such that the unit ball B, of (E, |-|) is
7-bounded and t-closed. A Saks space (E, |||, 7) is complete if By is 1-
complete; in this case (E, ||-||) is a Banach space. Let (E, ||, ) be a Saks space
and let &% be a defining family of seminorms for t which is closed for finite
suprema and is such that ||-|| =sup & (See [5, Lemma 3.1]). Then for any
pair of sequence (p,) in & and (4,) in (0, c0) with 4,1 o0, p(x) = sup, p,(x)/4, is
a seminorm on E. The family of all such seminorms defines a locally convex
topology J[|‘ll, ©T] on E. The following result states the relationship between
the topologies y[ |-, =] and F[| -], =]

ProposITION 1.1 ([5, Proposition 1.4.4]). Let (E, ||, ) be a Saks space and
suppose that either

(a) for every x e E, ¢ > 0, p € &, there are elements y, z € E so that x = y + z,
p(z) = 0 and |yll < p(x) + ¢, or

(b) By.; is T-compact.
Then FL1-1l, <] = LI, 7.

We next consider the duality theory for (E, y). A mixed space E has three
dual spaces: the topological dual of the locally convex space (E, 1), E;; the
topological dual of the locally convex space (E, y), E; the space of linear forms
on E which are bounded on the sets of &, Eg. It is obvious that E; c E|,
E and these spaces are regarded as a locally convex space with the topology of
uniform convergence on the t-bounded sets, that on the y-bounded sets, and
that on the sets of 4%, respectively. Since # is of countable type, Ej is
metrizable and it is also complete. Hence it is a Fréchet space. Moreover we
have the following result:



Integration in mixed topological spaces 145

ProposITION 1.2 ([S, Proposition 1.1.17]).
(i) E is a locally convex subspace of Eg;
(i) E; is the closure of E, in Eg and so is a Fréchet space.

A locally convex space (E, 1) is said to be a (df)-space if it is sequentially
evaluable (i.e., every null sequence in (E’, B(E’, E)) is equicontinuous) and admits
a fundamental sequence of bounded sets. It is known [15, Theorem 12.4.1]
that the strong duals of such spaces are Fréchet spaces. A locally convex space
(E, ) is said to be Ny-evaluable, if every bornivorous barrel in E that can be
represented as the intersection of a sequence of closed and abolutely convex
0-neighbourhoods in (E, 1) is itself a 0-neighbourhood in (E, ). A (df)-space
which is also N,-evaluable is traditionally said to be (DF)-space. Let (E, 7) be a
locally convex space possessing a fundamental sequence ¥ = (B,) of bounded
sets. The symbol % stands for the finest locally convex topology on E which
coincides with t on every B,, ne N. 1If in particular 7 = t%, then (E, 7) is called
a (gDF)-space (for “generalized (DF)-space”). Every (DF)-space is a (gDF)-
space and it is easily verified [15, p. 257] that every (gDF)-space is also a
(df)-space. Let (E, 8, 1) be a mixed space. Since y[4, 7] is the finest locally
convex topology on E which coincides with 7 on the sets of %, we see that
y = 7%, where % denotes a countable basis of 4. Hence y is a (gDF)-space, and
so a (df')-space.

Let (E, 7) be a locally convex space and £(r) the family of 7-continuous
seminorm on E. We denote by Iy{E,} the space of absolutely summable
sequences in E, regarded as a locally convex space with the family of seminorms
{p:peP(r)}, where p:(x,) > ,enp(x,). A locally convex space (E, 7) is said
to have property (B) if for each bounded subset B of the space IV{E.}
there exists an absolutely convex closed bounded subset B in E such that
Y Ixllg £ 1, for each (x,),.yeB. It is known ([19, Theorem 1.5.8]) that
metrizable locally convex spaces and (df)-spaces have property (B). Since
mixed topological spaces are (df)-spaces, we obtain the following result which
plays an important role in the subsequent discussions.

ProrosiTION 1.3.  Let (E, %, 1) be a mixed space. Then E, has property
(B).

For Saks spaces, it is already known in [5, Proposition I1.6.9] that the
mixed topology y has property (B).

A topological space P is said to be Polish if there is a metric on P defining
the topology of P and P, equipped with this metric, forms a complete separable
metric space. A Hausdorff topological space E is said to be Souslin if there is a
Polish space P and a continuous mapping from P onto E. The following are
Souslin spaces (see L. Schwartz [22] and M. De Wilde [6] for the detailed
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arguments: (a) Borel subsets of a Souslin space, (b) a product (hence a projective
limit) of a sequence of Souslin spaces, (c) countable intersections or countable
unions of Souslin subspaces of a Hausdorff topological space, (d) countable
topological sums (hence an inductive limit) of a sequence of Souslin spaces, and
(e) continuous images of a Souslin space (hence a quotient of a Souslin space).
Since a Polish space is separable, every Souslin space is separable. In fact,
many of well-known separable linear topological spaces are Souslin spaces.
Separable Banach or Fréchet spaces are Polish. The topological dual E' with
the topology of uniform convergence on compact sets of a separable Fréchet
space E is a Souslin space. In particular, (E, 6(E’, E)) is Souslin. Most of
function spaces and their strong duals which appear in the distribution theory
are Souslin. Souslin spaces have the following useful properties: (1) If E is a
Souslin space and E, is the space E equipped with a weaker Hausdorff topology
17, E, (which incidentally is a Souslin space) have the same Borel sets as those
in E; (2) any finite positive Borel measures on a Souslin space are Radon
measures; (3) any separating family (f;);.; of continuous functions on a Souslin
space has a countable subfamily which still separate the points of the space.

The following fact is elementary but important for our subsequent
discussions.

PropPoSITION 1.4. Let (E, 8, 1) be a mixed space. Then the following are
equivalent:

(1) % has a basis (B,) such that B, equipped with the relative topology
induced from t is a Souslin space for n e N,

(2) E, is Souslin;

(3) E, is Souslin.

Proor. The implication (1) =>(2) is obvious from the third stability prop-
erty (c) of Souslin spaces mentioned above. We then prove the implication
(2)=(3). Let E, be a Souslin space and (B,),.ny a countable basis of the
bornology 4. Since B, are all t-closed, each one is also a Souslin space with
the topology induced by t. Since y and t coincide on each B,, B, equipped
with the relative topology induced from y is a Souslin space for ne N. Since
(B,) is a covering of E, E, is also a Souslin space. Finally, we show that (3)
implies (1). Since B, are t-closed, they are y-closed, and hence Souslin with
respect to the relative topology induced on B, by y. Again, using the fact that
y and 7 coincide on each B,, we see that each B, is Souslin with respect to the
relative topology induced by 7. q.e.d.

2. Vector measures in mixed topological spaces

Fundamental results in measure theory can be extended to vector measures
in locally convex spaces. In this section we make an attempt to investigate
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some basic properties of mixed-space-valued measures in terms of the borno-
logy and the original topology.

Let (E,y) be a locally convex space and E) its topological dual. We
denote by 2(y) the family of all y-continuous seminorms on E. Let U, be the
p-unit y-closed ball, that is, U, = {x € E: p(x) < 1} for pe 2(y). The polar of a
set V of E is denoted by V°, namely, V° = {x' € E,:|[{x,x')| < 1 for all xe V}.

A function v from a field & of subsets of a set S to a locally convex space
E is said to be a finitely additive vector measure, or simply a vector measure, if
A, and A, are disjoint members of & then v(4, U 4,) = v(4,) + v(4,). Ifin
addition v(| )iz, 4,) = Y%, v(A,) holds in the original topology y of E for all
sequences (A4,) of disjoint members of & such that | )2, A, € &, then we say
that v is a y-countably additive vector measure, or simply, v is y-countably
additive.

Let A € & and let II(A4) denote the set of all finite measurable partitions of
A. If A=S, we simply write IT for II(S). Furthermore, let v: & - E be a
vector measure and let pe 2(y). Then the p-variation of v is the extended
nonnegative function |v|,(-) whose value at 4 € & is defined by

lvl,(4) = Sup(Ai)eH(A)Zip(v(Ai)) .

Moreover, v is said to be of y-bounded variation if |v|,(S) < co for all p € 2(y).
The p-semivariation of v is the extended nonnegative function |[|v|[,(-) whose
value at 4 € & is given by

Ivll,(4) = sup {I<v, x'>|(4): x" € U,'},

where [{v, x’>|(*) is the variation of the scalar-valued measure (v, x’>. More-
over, v is said to be of y-bounded semivariation if ||v||,(S) < +oo for all p € 2(y).

Let & be a field of subsets of the set S and let v: & — E be a vector
measure. The measure v is said to be y-strongly additive if for any sequence
(A,) of disjoint members of & the series Y »_; v(4,) converges with respect to
the topology y. A family {v,:a e A} of y-strongly additive vector measures
from & to E is said to be uniformly y-strongly additive, if for any sequence (4,)
of disjoint members of & and any p € 2(y) one has lim,_, p(} 5=, Vu(An)) =0
uniformly for o € 4.

Let v: % — E be a vector measure and p a finite nonnegative real-valued
measure on #. If lim,,_¢[v|,(4) =0 for each p e Z(y), then v is said to be
absolutely p-continuous with respect to y; if lim, 4, p(v(4)) = 0, then v is said to
be p-continuous with respect to y.

We now give some results concerning (E,y)-valued measures which
extend basic results for the case of normed spaces given for instance in [7] and

[13].
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PROPOSITION 2.1. Let v: % — E be a vector measure. Then for A€ % and
for p € P(y), one has

vl ,(A) = sup {p(}_:&;v(4)): (4;) € IT(A), |&;] < 1},
and

sup {p(v(B)): A > Be F} < ||| (A)
<4sup {p(v(B):A>BeZF}.

Consequently a vector measure is of y-bounded semivariation on S if and
only if its range is y-bounded in E.

PrOOF. Since p(x) =sup {|[<x,x'>|:x" e U} for xe E and pe 2(y), we
can apply the same argument as in [4, Proposition 1.1.11] to get the desired
assertion. q.ed.

In view of this proposition a vector measure of y-bounded semivariation
may be called a y-bounded vector measure.

PROPOSITION 2.2. Any one of the following statements about a collection
{v,: o€ A} of E-valued measures defined on a field & implies the others.

(i) The set {v,:a € A} is uniformly y-strongly additive.

(ii) For every equicontinuous subset H of E, the set {{v,x'):a€ A,
x' € H} is uniformly y-strongly additive.

(iii) For every sequence (A,) of disjoint members of %, lim,p(v,(4,)) =0
holds uniformly in o € A for every p € P(y).

(iv) For every sequence (A,) of disjoint members of %, lim, |v,|,(4,) =0
uniformly in o € A for every p € 2(y).

(v) For every equicontinuous subset H of E. the set {|{v,,x')|:a€ 4,
x' € H} is uniformly y-strongly additive.

Proor. It is obvious that (i) implies (ii) and (ii) implies (iii). To prove
that (iii) implies (iv), suppose (iv) fails under (iii). Then there exists p € 2(y),
6 >0 and a sequence (4,) of pairwise disjoint members of & for which
sup, [|v,ll ,(4,) > 56 > 0 holds for all n. Hence for each n there is a(n) € 4 such
that

(1) ”vu(n)“p(An) > 56 > 0 .
On the other hand, for each n, there is B, € # such that 4, o B, and
(2) 4 sup {p(vat(n)(B) :Bc An} —-0< 4p(va(n)(Bn)) .

By Proposition 2.1, the above relations (1) and (2), we have é < sup, p(v,(B,)),
which contradicts (iii). This shows that (iii) implies (iv).
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We next prove that (iv) implies (v). Suppose that {|<v,, x')|(*):a€ 4,
x'e U} is not uniformly strongly additive for some pe 2(y). Then there
exists a disjoint sequence (4,) in & and a é > 0 such that for each m one has

Sup {3 7m[Ve» X' D|(A4,) 1€ 4, x" € U} 226> 0.

Thus there is an increasing sequence (m(j)) of positive integers such that for
all j

sup {Y mYn+1 1<V X' D(4,) 1€ 4, x" € UP}
= sup {|<v, X DI(Unbrids1 4,):0e A, x' e U2} 26>0.
Therefore the sequence (B;) of pairwise disjoint members of & defined by
B = Ui Apforj=1,2,...,
satisfies
sup {|Ivll ,(B;)) : o € A} = sup {|<v,, x'D|(B): €A, x' e U2} 26>0forj=1,...

This contradicts (iv), and thus (iv) implies (v). It is obvious from Proposition
2.1 that (v) implies (i). q.e.d.

COROLLARY 2.3. The following statements about a vector measure v defined
on a field F are equivalent:

(1) v is y-strongly additive.

(ii) For every equicontinuous subset H of E., {{v,x'):x"e H} is uniformly
y-strongly additive.

(iii) v is y-strongly bounded, i.e., lim,v(A4,) =0 for any sequence (A,) of
disjoint members of .

(iv) |lvll, is y-strongly bounded for every p € 2(y). Namely, if (A,) is a
sequence of mutually disjoint members of %, then lim,|v|,(4,) =0 for every
pe2(y).

(v) For every equicontinuous subset H of E, {|<{v,x'>|:x'€H} is
uniformly y-strongly additive.

(vi) The limit lim,v(A,) exists for every nondecreasing monotone sequence
(A,) of members of Z.

(vii) The limit lim,v(A,) exists for every nonincreasing monotone sequence
(A,) of members of Z.

Proor. The equivalence (i) through (v) is clear from Proposition 2.2.
The equivalence between (vi) and (vii) follows from the identity v(4) + v(S\A4) =
v(S). To see that (i) implies (vi), let (4,) be a nondecreasing sequence of
members of #. Then lim,v(4,) = v(4,) + lim, Y %2 V(A1 \A,) exists since
the sequence (4,,,, \ A4,,) consists of disjoint members of &#. This proves that (i)
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implies (vi). Finally, we demonstrate that (vi) implies (i). Suppose (vi) holds.
Let (A4,) be any sequence of disjoint members of &#. Then lim,,v(U’,'FlAm)
exists by (vi). Thus lim,v(4,) = lim,[v({Jn=; 4n) — v(Jmzs 4n)] = 0. This
proves that (i) holds. q.ed.

COROLLARY 24. A y-strongly additive vector measure on a field ¥ is
y-bounded.

Proor. Let & be a field of sets and v:%# — E a y-strongly additive
measure. Suppose |[|[v]|,(S) = +oo for some pe Z(y). Then one can choose
B, e # such that p(v(B;)) =1+ 2p(v(S)). Since v(B;)= v(S) — v(S\B,), it
follows that p(v(B,)) — p(v(S)) < p(v(S\B,)). Thus p(v(S\B,))= 1. Now |v|,
is subadditive on disjoint sets so either |v|,(B;) or [v|[,(S\B,) is infinite.
If |lv|l,(B;) = +o, put 4, = B;; otherwise, let 4; = S\B,. In ecither case,
[vll,(4;) = +c0 and p(v(4,)) 2 1. Replacing S by A, in the above line of
reasoning, we see that there is an element 4, of # contained in A; such that
vl (A;) = +co and p(v(A4;)) = 2. Iterating this procedure, we obtain a non-
increasing sequence (A4,) of member of % such that |v|,(4,) = +o and
p(v(4,)) = n. Thus lim, v(4,) does not exist, and an appeal to Corollary 2.3(vii)
shows that v is not y-strongly additive. q.e.d.

THEOREM 2.5. Suppose {v,:a € A} is a uniformly y-bounded and uniformly
y-countably additive family of E-valued measures defined on a o-field X. If
u:2 - [0, ) is a countably additive measure and v, is p-continuous with respect
to y for each o € A, then for every p € #(y) we have

lin'lu(A)—bo SupmeAp(va(A)) = 0 ¢

Proor. First we note that {v,:a € A} is uniformly y-countably additive if
and only if the family {(v,, x'):x'€ U?, a € A} is uniformly y-countably addi-
tive for every pe 2(y). Hence it suffices to prove the statement on scalar-
valued countably additive measures. To this end, assume that {y,:a € A} is a
bounded family of uniformly countably additive scalar-valued measures defined
on 2. Define v:2 — [®(A) by the equation

v(A)(x) = pu,(4), forAeX and ae 4.

By the uniform countable additivity of {u,:a € A}, it is readily seen that v is a
countably additive vector measure. Moreover, v(4) =0 whenever u(A4)=0.
Hence by [7, Theorem 1.2.1] v is u-continuous, i.e.,

lim, 40 sup,|u,(4)| =0,

which is the desired result. q.ed.
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THEOREM 2.6 (Nikodym’s Boundedness Theorem). Let {v,:a€ A} be a
family of E-valued bounded vector measures defined on a o-field 2. If
SUpP,e 4 P(V(A)) < +o0 for AeZ and pe P(y), then the family {v,:a€ A} is
uniformly y-bounded, i.e.,

SUPye 4 1Vl ,(S) < 400 for each p e 2(y).

PrOOF. For pe?(y), aeAd and Ae X the identity sup {|<v,(4), x'D|:
x" € U} = p(v,(4)) holds. Hence we can apply the same argument as in [7,
Theorem 1.3.1] to the family {{v,, x'>:a€4,x"eUJ} of scalar-valued mea-
sures on 2. q.e.d.

THEOREM 2.7 (Vitali-Hahn-Saks-Nikodym). Let X be a o-field of a set S and
(v,) a sequence of y-strongly additive E-valued measures on X. If lim,v,(A)
exists in y-topology for each A € X, then the sequence (v,) is uniformly y-strongly
additive.

Proor. Since lim, v,(A4) exists for each A € X, an appeal to Theorem 2.6
implies that the sequence (v,) is uniformly y-bounded. Assume for the moment
that lim,v,(4) =0 for all AeZX. If (v,) is not uniformly y-strongly additive,
then there exists an equicontinuous sequence (x,) in E’, such that the sequence
of scalar measures (<v,, x,,») is not uniformly strongly additive. Moreover, (x,)
is a o(E;,, E)-bounded sequence, and so lim, {v,(4), x,> = 0 for A€ 2. We then
define v: 2 — ¢, by

v(4) = ((v(4), x,)

for all AeX. The set function v is a ¢y-valued bounded measure on 2. From
[7, Theorem 1.4.2] it follows that the measure v is strongly additive. We see
from the definition of the norm of ¢, that ({v, x,>) is a uniformly strongly
additive sequence, a contradiction. We now consider the general case in which
lim, v,(A) exists for all 4 e 2. If the sequence (v,) is not uniformly y-strongly
additive, then by Proposition 2.2 there exist a sequence (4,) of disjoint members
of Z and p € 2(y) such that

lim, sup,, p(vm(4,)) > 0.

By choosing an appropriate subsequence and relabeling, one may assume that
p(v,(4,)) > 6 for all n and some 6 > 0. Furthermore, by making use of the fact
that each v, is y-strongly additive, we have (by choosing another subsequence if
necessary)

p(vn(An)) > 5 and p(vn(An+1)) < 5/2

for all n. Now set 6, = v,4; — v,. Since lim,v,(A4) exists for all 4 € Z, one has
lim, 0,(4) =0 for all 4 € 2. On the other hand,
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P(04(An+1)) Z POns1(4ps1)) — PVp(Aps1))
>0—906/2=96/2.

Hence lim, sup,, (6,,(4,)) > 0 and (o,) is not uniformly y-strongly additive. But

according to the first past of the proof, (s,) must be uniformly y-strongly

additive because it tends setwise to 0. This contradiction completes the proof.
q.ed.

CoroOLLARY 2.8 (Vitali-Hahn-Saks). Let (v,) be a sequence of E-valued
y-countably additive measures such that lim,v,(A) = v(A) exists for each A€ X.
If u is a nonnegative real-valued countably additive measure such that each v, is
u-continuous with respect to y, then the sequence (v,) is uniformly p-continuous
with respect to 7y in the sense that lim, 4,0 p(v,(A)) = O uniformly in ne N for
each p € #(y). Consequently v is u-continuous with respect to 7.

Proor. By Theorem 2.6 the sequence (v,) is uniformly y-strongly additive.
Since v, is y-countably additive, the sequence (v,) is uniformly y-countably
additive. Theorem 2.5 can then be applied to obtain the desired assertion.

q.ed.

Now we assume that the locally convex topology y on E is the mixed
topology associated with a mixed space (E, %,t). We aim to characterize
various properties of E,-valued vector measures in terms of & and r.

PROPOSITION 2.9. Let v: ¥ — E be a vector measure defined on a field &.
Then v is y-strongly additive if and only if W(F) is #-bounded and v is t-strongly
additive.

ProOOF. Assume that v is y-strongly additive. Then v is t-strongly addi-
tive and we see from Corollary 2.4 that v(¥) is y-bounded. Therefore v(%) is
#-bounded in virtue of the property (2) of mixed topologies explained in
Section 1. Conversely, assume that v(#) is %#-bounded and v is t-strongly
additive. Let (4,) be any sequence of disjoint members of #. Then in virtue
of Corollary 2.3 we have lim,v(4,) =0 with respect to 7. Since v(&F) is
%#-bounded, lim,v(4,) =0 with respect to y by the property (3) of mixed
topologies. Hence, we see from Corollary 2.3 again that v is y-strongly
additive. q.ed.

Similarly, we obtain the following resuit.
PROPOSITION 2.10. Let v: % — E be a vector measure defined on a field .

Then v is y-countably additive if and only if v(¥) is PB-bounded and v is
T-countably additive.
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PROPOSITION 2.11. Let {v,:a € A} be a family of E-valued vector measures
defined on a field #. Then {v,:o € A} is uniformly y-bounded if and only if
Uae 4 ValF) is B-bounded.

Proor. Since the sufficiency is obvious, we prove the necessity. To the
contrary, assume that | J,.4v,(%) is not %#-bounded. Then for every n there
exists a(n)je 4 and A,e # such that v,,(4,) ¢ B,. Thus {v,,(4,)} is not
Z%-bounded, i.e., it is not y-bounded and hence sup, p(v,,(4,)) = +o for some
pe€ Z(y). Consequently we have sup, ||v,||,(S) = +co. This is a contradiction.

q.ed.

PROPOSITION 2.12. Let v: ¥ — E be a vector measure defined on a field .
Then v is of y-bounded variation if and only if there exists an absolutely convex
t-closed and %B-bounded subset B of E such that B contains v(¥) and v: ¥ — Eg
is of ||| g-bounded variation. If in particular (E, |||, T) is a Saks space, then v is
of y-bounded variation if and only if v is of |-||-bounded variation.

ProoF. Assume that v is of p-bounded variation. Then the set
{(W(A)gen:meIl} is bounded in IN{E,}. Since E, has property (B) by
Proposition 1.3, there exists a t-closed Be £ such that Y ,..[lv(4)|z <1 for
each me Il. This means that v:# — Eg is of ||-||p-bounded variation. Con-
versely, suppose that there exists an absolutely convex t-closed and #-bounded
subset B of E such that B contains v(¥) and v: % — Eg is of || g-bounded
variation. Then the inclusion map I:(Eg, ||'||z) = (E, y) is bounded. Hence
for each p e Z(y) there exists M, > 0 such that p(x) £ M, ||x| p for each x € Ep.
This means that if v is of || g-bounded variation, then v is of y-bounded
variation. g.e.d.

3. Integration and convergence theorems

In this section, we treat the Vitali type convergence theorems from the
point of view of the three types (defined below) of integrals of functions which
take values in locally convex spaces. Throughout this section (S,Z, u) is
supposed to be a fixed complete nonnegative finite measure space and (E, y) a
locally convex space.

We begin by introducing four notions of measurability of functions from S
into E.

(1) A function f:S — E is said to be y-strongly measurable if there exists
a sequence (f,),eny of measurable simple functions such that lim,_ f,(s)
= f(s) p-a.e. in 7.

(IT) (1) Let pe 2(y). A function f:S — E is said to be measurable by p
if there exist S, , = S with u(S, ,) =0, and a sequence (f,”),.n of measurable
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simple functions such that lim,_,, p(fF(s) — f(s)) = 0 for all se S\S, .
(2) A function f:S — E is said to be measurable by y-seminorm if f

is measurable by each p € 2(y).
(IIT) A function f:S— E is said to be y-weakly measurable if for each

x' € E,, {f(s), x") is measurable.

The integral of a measurable simple function f = ), x;x,,, 4; € 2 is defined
as usual by

Lfdﬂ = Zixi,u(A NA4;).

We then introduce three kinds of definitions of integrability corresponding
to the notions of measurability introduced above.

(I) A function f:S — E is said to be y-strongly integrable if there exists a
sequence (f,), y of measurable simple functions such that

1. f.(s)— f(s) p-ae. in y, ie., f is y-strongly measurable;
2. p(f.(s) — f(s)) € L'(p) for each ne N, and

lim, f p(fu(s) — f(s)) dp =0 for each pe2(y);

3. jAf,, du converges in (E, y) for each A € X.

In this case -we write (B),-[,fdu for the limit lim,_, |, f, du and call it the
y-strong integral of f over A.

(II) A function f:S— E is said to be integrable by y-seminorm if for
each p e 2(y) there exists a subset S, , of § with u(S, ,) =0 and a sequence
(fiP), e~ of measurable simple functions such that

1. for each se S\S, ,, lim,_,, p(f,7(s) — f(s)) = 0;
2. lim,.q, [sP(£F(s) — f(s) du = O for each p € 2(y);
3. for each A e Z, there exists x, € E such that x, is independent of p

and
lim,_, p<f fP(s) du — x,,> =0 foreach pe2(y).
4

In this case we write x, = (y)-[, fdu and call x, the integral by y-seminorm of f
over A.

(IIT) A function f: S — E is said to be y-Pettis integrable if

1. fis y-weakly integrable in the sense that <f(s),x’)> € L*(u) for every
x' € E};
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2. for each AeZ, there exists x,€E such that (x,, x'>=[,<{f(s),x') du
for every x' € E;,.

The value x, is written as X, =(P)y-jA fdu and is called the y-Pettis integral
of fon A.

If in the definition (I) (E, y) is sequentially quasi-complete, then the third
condition in (I) is not necessary. As seen from the above definitions of inte-
grals that the y-strong integrability implies the integrability by y-seminorm and
the integrability by y-seminorm also implies the y-Pettis integrability. In [23]
Thomas treats Pettis integral in quasi-complete locally convex Souslin spaces,
and gave interesting criteria for the integrability of vector valued functions.
Obviously, if T is a continuos linear map from a locally convex space (E, 1) to
another locally convex space (F, y), and if f: S — E is t-Pettis integrable, then
Tof is also y-Pettis integrable and (P),-f,T ofdu= T((P)-[,fdp for all
A e 2. Blondia [2] investigated the relationship between the above-mentioned
three types of integrability.

The following three theorems are directly derived from the results due to
Blondia [2]. The first two theorems give crucial relationships between Pettis
integrability and integrability by seminorm.

THEOREM 3.1. Let f be measurable by y-seminorm. Then f is integrable by
y-seminorm if and only if f is y-Pettis integrable and p(f(s)) € L*(u) for each
peP(y). Moreover (y)-[,fdu = (P),-[,fdu for each A€ X.

THEOREM 3.2. Let f be y-Pettis integrable and measurable by y-seminorm.
Then the induced measure v, defined by v(A)=(P)y-jA fdu for AeZX, has
y-bounded variation if and only if f is integrable by y-seminorm. Moreover,

[v[(A) = [4p(f(5)) du for each A € Z.

THEOREM 3.3. Let (E,y) be a complete locally convex space and let f:
S — E be measurable by y-seminorm. If p(f(s)) € L*(u) for each p € P(y), then f
is integrable by y-seminorm.

We now establish a convergence theorem for Pettis integrals in locally
convex spaces.

THEOREM 3.4 (Vitali Convergence Theorem for Pettis Integrals). Let (E,?y)
be a complete locally convex space and let f:S — E. If there exists a sequence
(fi)nen Of E-valued y-Pettis integrable functions on S satisfying

(a) for every equicontinuous subset H of E., the set {{f,,x'):x"€H,
n € N} is uniformly integrable;

(b) lim,. o <{fss XD = {f, X" in measure for every x’ € E,,
then f is y-Pettis integrable and lim,,_.ao(P)y-j'A Sfudu=(P),-[fdu y-weakly
in E for every A€ 2.
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The above theorem was given by Musiat [16] for the case of Banach
spaces. We here prove the theorem based on his argument. First, we need
the following lemma.

LemMA 3.5. Let (E,y) be a locally convex space. Let H be a subset of E|
which is absolutely convex and o(E), E)-compact. Assume that f:S—E is a
function such that {f, x'> € L'(u) for every x' € H. Then we have

Supx'eHJ [{fyx'>ldu < +00 for every AeX.
A

Proor. First we consider a normed space Ej generated in E, by H.
Namely, E} is the linear space generated by H and the norm on Ej is defined
by ||x'||g =inf {4 > 0:x"e AH} for each x' € E;. Hence H is exactly the unit
ball of the normed space Ey. Since H is a(E’, E)-compact, Ey is a Banach
space. Let Ae 2. Then it follows from the closed graph theorem that the
map x' — {f, x’) from E} to L!(p) is continuous. Thus there exists M(4) > 0
such that [,|(f,x'>|du < M(A)|x'|ly for every x'e Ey. This means that
SUPyep fal<fy X' D du < +o0. qed.

ProoF oF THEOREM 3.4. First, assume that E is a complete locally convex
space over the real field R. Fix any 4 € 2, and let C be the weak closure of
the set {(P),{4f,du:ne N}. Since Vitali’s convergence theorem guarantees
that lim, ., (4 {fp, X'> du = [,{f,x'> du for every x'eE,, we see that C is
bounded and C\{(P),-[,fdu:ne N} consists of at most one point. In order
to prove our assertion it is sufficient to show that C is weakly compact. In
fact, if C would be weakly compact, then there would exist a weak limit of
((P)y~fafudWyen in E. Clearly the limit must coincide with (P),-{,fdpu,
and so we could conclude that f is y-Pettis integrable on A. To the contrary
suppose that C is not weakly compact. Then, by a well-known result due to
James ([14, Theorem 1]), there exist an equicontinuous subset {x,:n € N}, a set
{x,;ne N} = C, and 6 >0, such that x;(x,) =0 for k >n and x;(x,) > 0 for
k < n. Consequently, we can then choose a subsequence (gn)men Of (fi)nen

and a subsequence (¥,,)men Of (X,)sc N> SUch that
r

(1) {Gm> V1> dup=0 fork>m,
A

"

@ $Gm> Yi» du >0 fork =m,

»

3) lim, .o | <gm x'>du= f {fyx')du forevery x' € E,.
A A
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We then consider the set {{f, y,,> :me N}. Since the set {y, :me N} is equi-
continuous, it follows from Lemma 3.5 that

Supmezvf I<fs ympldp < +o0.
s

From this and (a) we see that {{f, y,>:me N} is uniformly integrable (i.e.,
lim,z)- SUPmen [81<f; Ym>| dp=0) and bounded. Hence it is relatively weakly
compact. This yields the existence of a function h e L'(u) and a subsequence
(2])je N Of (Vm)men such that lim;_ {f, zj> = h weakly in L'(n). Applying (3) to
every zj we get an inequality [,<f,z}) du = 6 and hence [,hdu = 6. We now
appeal to the theorem of Mazur. Let af, ..., a5, me€ N, be non-negative
numbers such that ) ;a" =1 and lim,, Y ;a"<{f, zj+,» = h in L*(n). Without
loss of generality, we may assume that this convergence holds u-a.e. Let z; be
a o(E;, E)-cluster point of the sequence (3;a"z},m)men> then h = {f, zo)> p-ae.
In particular, we have

@ j Gozoyduz 0.

On the other hand, each g, is y-Pettis integrable, and also the function
x> (4{gn x'> du is o(E,, E)-continuous. Hence, if (w,,) is a subnet of
(04"} m)m>n converging to z; in o(E, E), then the application of (1) implies

0= lima J‘ <gm Wr:,a> dﬂ = lima <(P)y'J‘ In d:u’ wt:,a>
A A

= <(P)y-j gn du, 26> = J (Gns 207 dpt .
A A

Since this holds for every ne N, we see from (3) that jA {f,zo>du=0. But
this contradicts the inequality (4). Thus it follows that C is weakly compact
and so the real case of the theorem is proved.

Next assume that E is a complete locally convex space over the complex
field. Let Eg be a locally convex space E restricted over the real field R. If
f:8 > Eg is y-Pettis integrable in (Eg, y), then f is also y-Pettis integrable in
(E,y) and {v(A4),x') = jA {f,x"> du for every x' € E' and A € X, where v(A) is
the indefinite y-Pettis integrable of f on A in (Eg,y). To show this, we have
only to note that if f:S — Eg is y-Pettis integrable in (Eg, y), then i- f(-) (“i”
means the imaginary unit) is also y-Pettis integrable in (Eg, y) and

(P),- J i f(s) dp = i+ (P),- J fdu in Eg
A A

for every Ae 2. But this is clear since the multiplier i is continuous on
(Eg> 7). qe.d.
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As a direct consequence of Theorem 3.4 we get the following generalization
of the Lebesgue dominated convergence theorem for Bochner integrals:

THEOREM 3.6 (Lebesgue Dominated Convergence Theorem for Pettis Inte-
grals). Let f:S — E be a function satisfying the following two conditions:

() There exists a sequence of v-Pettis integrable functions f,:S — E,
ne N, such that lim, {f,, x') = {f, x") in measure, for every x’ € E,.

(B) There exists a vy-Pettis integrable function g:S— E such that
[{fus X' DI £ 1£g, X'D| p-a.e. for each x' € E, and ne N (the exceptional set may
depend on x').

Then f is y-Pettis integrable and

lim,, (P)y-f fudu= (P)y-f fdu y-weakly in E for all Ae X .
A A

Proor. It suffices to show that condition (a) of Theorem 3.4 is induced
from (B). Let H be any equicontinuous subset of E,. Then there exists a
closed and absolutely convex neighborhood U of 0 so that H < U°. Put
p(x) =inf{A >0:xe AU}. Then p defines a y-continuous seminorm on E.
Given x' € U° and 4 € X, (B) implies

LI(me’>|du§j 1<g, x">] dp = |<v, x">|(A)
A

<4sup {|<v(B),x'>|:Bc A,Be X}
<4sup{p(v(B):Bc A,Be X},

where v is the indefinite y-Pettis integral of g and |{v, x')|(A) means the
variation on A4 of the measure (v, x’>. Thus

SUPx'eUOI |<f;xa xl>' dﬂ =< 4 sup {p(V(B))B < A’ Be Z} .
A

Consequently, it follows from the absolute continuity of v (see [23]) that
lim, 4.0 SUPy ¢ yo IA [{fus X'>| dp = 0. q.ed.

Next we state a convergence theorem for integrals by seminorm.

THEOREM 3.7 (Vitali Convergence Theorem for Integrals by Seminorm). Let
(E, y) be a complete locally convex space. Let f:S — E and suppose that there
exists a sequence (f,),.n of E-valued functions on S which are integrable by
y-seminorm and satisfies

(c) for every p € P(y), the set {p(f,):ne N} is uniformly integrable;

(d) lim,_., p(f, — f) =0 in measure for p € 2(y),
then f is integrable by y-seminorm and
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limn_,w(y)-j fadp= (y)-f fdu iny for every AeX.
4 4

Proor. By Vitali’s convergence theorem, we see that for every p € Z(y),

(1) fis measurable by p, and

() lim, ., {sp(fu— f)dp=0.
The formula (2) implies that ((y)-[, f, dw) is Cauchy in E for every A € X, and
) (y)-j,, f, du converges to some x, in E. Making use of (2) again, we have

(x4, x'> =1lim,_ <(y)-J £, du, x’> = J {f,x") du for each x' € E}, .
A A

This shows that f is y-Pettis integrable. Thus f is measurable by y-seminorm
and y-Pettis integrable. Furthermore p(f)e L!(u) for every pe 2(y). Hence
by Theorem 3.1 f is integrable by y-seminorm. By (2) we conclude that
lim,_, o ()[4 fo dpt = ()-[4fdp in y for every A € X. g.ed.

The following result is an immediate consequence of Theorem 3.7.

THEOREM 3.8 (Lebesgue Dominated Convergence Theorem for Integrals by
Seminorm). Let f:S — E be a function satisfying the following two conditions:

(y) There exists a sequence (f,),.n of E-valued functions on S which are
integrable by y-seminorm such that lim,p(f, — f) =0 in measure for every
p € 2(y).

(6) For every p € 2(y), there exists an integrable function g,:S — [0, +)
such that p(f,) < g, p-a.e. for every ne N.
Then f is integrable by y-seminorm and

lim,,_.w(y)-j fodp = (y)-f fdu invy for every Ae X .
A A

4. Integration in Souslin mixed topological spaces

In this section we advance an integration theory in mixed topological
spaces y[4, 1] under the assumption that (E, 1) is a locally convex Souslin
space. Let (S,2,u) be a fixed complete nonnegative finite measure space.
This is one of our main objectives.

The following lemma due to Thomas states a characteristic property of
weakly measurable functions which take their values in locally convex quasi-
complete Souslin spaces.

LeMMA 4.1. Let (E, 1) be a locally convex quasi-complete Souslin space and
f:S— E a t-weakly measurable function. Then there exists a countable parti-
tion S = | Ji=o S, of S into measurable subsets such that u(S,), u(S,) > 0 and f(S,)
is relatively compact for n e N.
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Using this lemma, Thomas [23, Theorem 3] gave the following theorem.

THEOREM 4.2. Let (E, 1) be a locally convex quasi-complete Souslin space.
Let f:S — E be a t-weakly measurable function such that [sp(f(s)) du < +oo for
every p€ P(t). Then f is t-Pettis integrable.

If in Theorem 4.2 the function f is bounded, then we obtain stronger
integrability.

ProrosiTION 4.3. Let (E,t) be a quasi-complete locally convex Souslin
space. Then every bounded t-weakly measurable function is t-strongly integrable.

Proor. Let f:S — E be bounded and t-weakly measurable. Then there
exists a 7-closed bounded subset B such that f(S) = B. Therefore B is Souslin,
and hence we see in the same way as in the proof of [2, Proposition 2.3] that
we can take a sequence (f,) of simple measurable functions such that f,(S) = B
for ne N and lim,_, f,(s) = f(s) for each se€S. Thus the Lebesgue bounded

convergence theorem implies that lim, Is p(f, — f)du = 0 for every p € (7).
q.e.d.

C. Blondia showed in [2] that weak measurability, measurability by semi-
norm and strong measurability are all equivalent in locally convex Souslin
spaces. Using this fact, we have immediately the following proposition.

PrOPOSITION 44. Let (E,7) be a locally convex Souslin space. Let
(E, 8, ©) be a mixed space. For a function f:S — E the following conditions are
equivalent:

(1) fis t-weakly measurable;

(2) f is y-weakly measurable;

(3) f~Y(B)e X for every t-Borel subset B of E;

(4) f~YB)eZX for every y-Borel subset B of E;

(5) f~YC)e X for every t-Souslin subset C of E;

(6) f~Y(C)e X for every y-Souslin subset C of E;

(7) f is measurable by t-seminorm;

(8) f is measurable by y-seminorm;

(9) fis t-strongly measurable;

(10) f is y-strongly measurable.

PrOOF. Suppose that (E, 1) is Souslin. Then, by Proposition 1.4, (E, y) is
also Souslin. Hence by [2, Proposition 2.3], we have the implications (1)<
(B)<=(5) <= (7)< (9) and (2)<>(4) <> (6)<>(8)<>(10). Thus it is sufficient to show
that (3)<>(4). Since y is finear than t and a countable union of Souslin spaces
is again Souslin, it follows that the Borel o-fields with respect to t and 7y
coincide. g.ed.
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The following theorem shows that in the mixed spaces 7-Pettis integrability
is equivalent to y-Pettis integrability. It would be noted, however, that integr-
ability by z-seminorm is not always equivalent to integrability by y-seminorm
(see Remark 4.12).

THEOREM 4.5. Let y be the mixed topology associated with a mixed space
(E, #B,7t). Then f:S— E is t-Pettis integrable if and only if it is y-Pettis
integrable.

Proor. Since the sufficiency is obvious, we show the necessity. Let v be
the infefinite t-Pettis integral of f. Let x’ be any element of E}. Since E), with
the strong dual topology is Fréchet and E; is dense in E!, by Proposition 1.2 (ii),
there exists a sequence (x,) of E, such that x, - x’ in E,. Since {f(s), x,) —
(f(s), x"y pointwise and {v(4), x') = lim, {v(A), x> = lim, [, {f, x> dp, it fol-
lows from the Vitali-Hahn-Saks theorem that {f(s), x’) is integrable, and

v(A), x") = limnf foxp dp = J fox'ydp
A A

for any A € 2. This shows that f is y-Pettis integrable. q.ed.

PRrROPOSITION 4.6. Let (E,%#,1t) be a mixed space such that (E,7) is a
quasi-complete locally convex Souslin space. Then every %-bounded t-weakly
measurable function is y-strongly integrable.

This is obvious from the property of y that the %-boundedness is equi-
valent to the y-boundedness, Proposition 4.3 and Proposition 4.4.

COROLLARY 4.7. Let (E, 1) be a quasi-complete locally convex Souslin space.
Then every t-weakly measurable function is locally t-strongly integrable, i.e., for
every A€ X with u(A) > O there exists a Be X with u(B) > 0 such that B< A
and f is t-strongly integrable on B. Therefore, if (E, 8, 1) is a mixed space, then
every 1-weakly measurable function is locally y-strongly integrable.

PrOOF. Let f:S — E be t-weakly measurable. We see from Lemma 4.1
that there exists a partition S = | Ji2, S, of S into measurable subsets such that
u(Sy) =0, u(S,) > 0 and f(S,) is relatively compact for ne N. Take any A€ X
with u(4) > 0. Then there exists n e N such that u(4nS,) >0. We put B=
AN S,. Then we see easily from Proposition 4.3 that f is t-strongly integrable
on B. As to the latter part of the assertion it is enough to note that t-weak
measurability and y-weak measurability are equivalent. q.ed.

Let E and F be locally convex spaces. A continuous linear map u: E > F
is nuclear if it is of the form

X = u(x) = ch?:l ln<x’ x"l>yn >
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where Y 7., |4,| < +00, (x,) is an equicontinuous sequence in E’, and (y,) is a
sequence contained in a closed bounded Banach ball B of F. A locally convex
spaces E is nuclear if for every continuous seminorm p on E, the canonical map
E— Ep is a nuclear map. Here EI, stands for the completion of the quotient
space E/p~!(0) with the norm ||%||, = p(x), where X denotes the coset containing
x. It is known [8, p. 257] that if E is nuclear, every weakly integrable function
f:S — E satisfies the condition that p(f)e L'(u) for every continuous seminorm
pon E.
E. Thomas gave the following theorem.

THEOREM 4.8 ([23, Theorem 7]). Let (E, 1) be a Souslin space such that E is
the topological dual of a quasi-complete barrelled nuclear space F and E, = F.
If f:S — E is t-weakly measurable, then there exist a t-bounded Banach ball B in
E and S, € X with u(S\S,) = 0 such that f(s)e Eg for all se Sy and f: S, — Eg is
Bochner integrable in the usual sense.

The following result is obtained in the case of Souslin spaces as mentioned
in Theorem 4.8. This contrasts with Proposition 4.3.

THEOREM 4.9. Let (E, 1) be as in the above Theorem 4.8. Then t-weakly
integrable function f:S — E is 1-strongly integrable.

Proor. Using the previous theorem we can take a 7-bounded Banach ball
B in E such that f(s)e Eg p-ae. (ie, s€S,e X2 with u(S\Sy)=0) and f:
So — Eg is Bochner integrable. Hence there is a sequence (f,) of Eg-valued
simple functions such that | f,(s) — f(s)lls — 0 p-ae. and [s|f, — flpdu—0. If
p € P(r) and M = sup {p(x): x € B}, then p(x) < M ||x| g for all x € E, whence

Lp(f,.—f)duéML Ifo = Sllp dp.

Thus we have lim,, [sp(f, — f) du = 0 for all p € 2(1). q.ed.

Nuclear Fréchet spaces and the function spaces 2, &', &, &', & and
&', which appear in distribution theory are all Souslin spaces satisfying the
assumption of the above Theorem. See for instance [23].

THEOREM 4.10. Let (E, 4, 1) be a mixed space such that (E, 1) is a quasi-
complete locally convex Souslin space. If (E,y) is nuclear, a function f:S — E is
integrable by t-seminorm if and only if it is integrable by y-seminorm.

PrOOF. Since y is finer than 7, the sufficiency is obvious. We show the
necessity. To this end, let f:S — E be integrable by t-seminorm. Then, in
view of Proposition 4.4, f is measurable by y-seminorm. As f is t-Pettis
integrable, f is y-Pettis integrable by Theorem 4.5. By the nuclearity of (E, 7),
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p(f(s)) € L'(p) for each p e 2(y) as mentioned before Theorem 4.8. Thus we
see from Theorem 3.1 that f is integrable by y-seminorm. q.e.d.

REMARK 4.11. If E is an infinite dimensional Saks space, then (E,y) is
never nuclear. In fact, suppose that (E, y) is nuclear. Then (E, y) has property
(B) by Proposition 1.3, and so its strong dual E; is also nuclear (see [19, 4.3.1]).
This is a contradiction because E/, is in this case an infinite dimensional Banach
space. In general, the class of complete nuclear spaces of the form (E, y[4, 1])
coincides with the class of the strong duals of nuclear Fréchet spaces. Let
(E,y) be a complete nuclear space. Then (E,7y) is Montel, and so reflexive.
Hence (E, y) is the strong dual of the nuclear Fréchet space E’, by Proposition
1.3 and [19, 4.3.1]. Conversely, let F be a nuclear Fréchet space and denote
its topological dual by E. Let # be the family of absolutely convex, equi-
continuous subsets of E and let 1 = 6(E, F). Then we see from [5, Corollary
4.2] and the Banach-Dieudonné theorem [15, p. 181] that y[4, 1] is equivalent
to each of the following topology: the finest topology on E which coincides with
7 on each equicontinuous subset of E, the topology of precompact convergence,
B(E, F) (= the strong topology on E). This shows that (E, y) is the strong dual
of the nuclear Fréchet space.

ReMARK 4.12. If (E, y) is not nuclear, integrability by t-seminorm is not
always equivalent to integrability by jy-seminorm even if (E,7) is nuclear.
Indeed, let (S, Z, u) be the Lebesgue measure space with S = [0, 1] and let E be
a separable Hilbert space. Let 7 be the weak topology on E. Then it is
obvious that (E, t) is a quasi-complete locally convex Souslin space and that
(E, IIll, ) is a Saks space. Let (e,) be an orthonormal basis on E. Take any
(4,) € co\I? with 1, >0. Then there exists (&,)el?® with £, >0 (n=1,2,...)
such that Y %, 4,6, = +o0. We define f(s) = 2"¢,e, on (1/2",1/2""), n=1, 2,
..., and f(s) = 0 elsewhere. Then it is easily verified that f is t-Pettis integr-
able, and hence f is integrable by t-seminorm since f is norm-measurable. Put
pa(x) = (e, X)l, n=1, 2, ... Let p(x) = sup,A,p,(x). Since By, is t-compact
(i.e., weakly compact), Proposition 1.1 implies that p is y-continuous, and
p(f(s) = 4,¢,2" on (1/2%,1/2"'), n=1, 2, ... Thus we have [sp(f(s))du =

©_ Ané, = +o0, and so p(f(s)) ¢ L'(u). Consequently we see from Theorem
3.1 and Theorem 4.5 that f is not integrable by y-seminorm.

The integrability by y-seminorm can be characterized in terms of born-
ology # and t-Pettis integrability.

THEOREM 4.13. Let (E, %, t) be a mixed space such that (E, ) is a quasi-
complete locally convex Souslin space. If f:S — E is t-Pettis integrable, then f
is integrable by y-seminorm if and only if there exists a t-closed B € # such that
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Bov(Z) (= {v(4): A€ X}) and the indefinite t-Pettis integral of f is of |ll5-
bounded variation.

Proor. Let f:S — E be 1-Pettis integrable. Then it follows from Pro-
position 4.4 and Theorem 4.5 that f is measurable by y-seminorm by y-Pettis
integrable. Hence we see from Theorem 3.1 and Proposition 2.12 that f is
integrable by y-seminorm if and only if there exists a z-closed Be % with
B o v(X) and the indefinite t-Pettis integral of f is of ||-||zg-bounded variation.

q.e.d.

Let (E, 1) be a locally convex Souslin space. First we note that if B is a
closed ball in E, then | f(s)||; is measurable for any t-weakly measurable
function f:S — E. See Proposition 4.4. The following definition is intro-
duced by E. Thomas [23] and originated in the concept of totally summable
sequences introduced by A. Pietsch. Let (E,t) be a locally convex Souslin
space. A 1-weakly measurable function f:S — E is said to be t-totally integr-
able (smmmable) if there exists a t-closed and t-bounded ball B in E such that
(sl f(s)llpdu < +o0. Let B be a bornology on E (satisfying the compatibility
condition (x) stated in Section 1). Let y be the mixed topology y[%, t]. Then
7-weakly measurable function f:S— E is said to be %-integrable if there
exists a t-closed set Be # such that [s|f(s)|zdu < +co. Therefore, if in
particular # is the bornology defined by a norm |-|| on E, ie., (E, ||'|l,7) is a
Saks space, then %-integrability just implies [s[lf(s)l| du < +o0. It is easy
to verify that every t-totally integrable function f: S — E satisfies the following
condition:

(xx) f p(f(s))du < +o00 for every p e (7).
s

Thus if (E, 1) is quasi-complete, then it follows from Theorem 4.2 that f is
7-Pettis integrable. According to Thomas [23], functions satisfying condition
(*#) is said to be t-absolutely summable (integrable).

PROPOSITION 4.14. Let (E,t) be a quasi-complete locally convex Souslin
space. If f is t-totally integrable, then it is integrable by t-seminorm.

Proor. This is obvious from the above observation, Theorem 3.1 and
Proposition 4.4.

We here recapitulate the types of integrability considered so far. Let (E, 1)
be a quasi-complete locally convex Souslin space. Then for a function f:
S — E, each of the following conditions is more restrictive than the next: (1) f is
t-totally integrable; (2) f is integrable by z-seminorm; (3) f is t-absolutely
integrable; (4) f is t-Pettis integrable.
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ProrosITION 4.15. Let (E, %,t) be a mixed space such that (E,t) is a
locally convex Souslin space. Let f:S — E be t-weakly measurable. Then f is
y-totally integrable if and only if it is #B-integrable.

ProoF. Let f:S—> E be 7-weakly measurable. Then we see from Pro-
position 4.4 that f is y-weakly measurable. Thus | f(s)|p is measurable for
every y-closed and y-bounded ball B. Assume that f is y-totally integrable.
Then there exists a y-closed and y-bounded ball B in E such that js If)pdu <
+o00. Since B is y-bounded, there exists a 7-closed B’ € # with B < B'. Hence
I /)llg < [1f(9)llp for s€ S, and so [s | f(s)llp du< +o0. Thus f is #-integrable.
The converse is obvious since 7-closed set & is y-closed and y-bounded.  q.e.d.

Finally, we give a result concerning Fubini’s theorem. It is known that
Fubini’s theorem is not valid for Pettis integrable functions even though they
take values in a separable Hilbert space. But it is seen that Fubini’s theorem is
valid for totally integrable functions.

Let (S,2, ) be the completion of the product measure space of two
complete nonnegative finite measure spaces (S;, Z;, i;), i =1, 2. Then by
Theorem 4.15 and the result of Thomas [23, Theorem 8] together imply the
following type of Fubini’s theorem for #-integral in mixed spaces.

THEOREM 4.16. Let (E,%#,t) be a mixed space such that (E,1) is a
locally convex Souslin space. Let f:S— E be t-weakly measurable. If f is
PB-integrable, then we have the following properties:

(1) s, > f(s4, 8,) is B-integrable with respect to u, for almost all s, € S,.

?2) s1—>(y)-jszf(s1, S,) duy(s,) is AB-integrable over S;\N,, where N, is the

set of points excluded in (1).

(3) (V)‘jsfd# = (V)‘js, d#l(sl)(y)'jszf(sla $3) du,(s;).
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