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1. Introduction

For several years some authors have been studying the properties of
algebras by considering the subalgebra lattice structure. Throughout this
paper lattice conditions will be defined in an algebra context. It will become
clear that much of the earlier work will hold true for any lattice.

A subalgebra U of an algebra A is called modular in A if it is a modular
element in the lattice of subalgebras of A; that is

< 17, B y Π C = < B, U Π C y for all subalgebras B c C

and

< U9By Π C = <βp| C9 Uy for all subalgebras U c C.

(Here < X, Y > denotes the subalgebra of A generated by X and Y.) We say A is
completely modular if every subalgebra is modular in A.

Modular subalgebras were studied by Amayo and Schwarz in [1]. A
natural question to ask is, "Can the hypothesis of modularity be weakened in
such a way that useful information about the algebra can still be obtained?"
The answer to this question is "yes", but it is unclear as to what is the "best"
weakened hypothesis as there are several sensible versions and their
relationships to one another are still unclear. It is to a better clarification of
this situation and a deeper understanding of different types of modularity that
this paper is directed.

Throughout this section U will denote a subalgebra of a general algebra
A. We shall denote that U is maximal in B by U < B.

We now give some of the key definitions: We say that U is upper semi-
modular in A or u.s.m. in A if for every subalgebra B of A such that U f } B
< U, B then 17, B < < U, By. We say that A is completely upper semi-modular
or completely u.s.m if every subalgebra of A is u.s.m. in A. We say that U is
lower semi-modular in A or l.s.m. in A if for every subalgebra B of A such that
17, B < < L7, B y then U Π B < U, B. We say that A is completely lower semi-
modular or completely l.s.m. if every subalgebra of A is l.s.m. in A. (Note that
completely u.s.m. and completely l.s.m. algebras were called upper semi-
modular and lower semi-modular respectively by Kolman, Gein and Varea.)
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In [9] different conditions were defined as upper and lower semi-
modular. We shall see in §3 that these are indeed different and so we define
these conditions again but give them slightly different names: We say that U is
upper modular in A or u.m. in A if U < < £/,£> for every subalgebra B of A
such that L/Π B < B. We say that A is completely upper modular or completely
u.m. if every subalgebra of A is u.m. in A. We say that U is lower modular in A
or l.m. in A if U f } B < B for every subalgebra B of A such that U < < U9

#>. We say that X is completely lower modular or completely l.m. if every
subalgebra of >4 is l.m. in A. If L7 is both u.m. in A and l.m in A then we say
that U is semi-modular in ,4 or s.m. in A; and if every subalgebra of A is s.m. in
A then we say that A is completely semi-modular or completely s.m.

It is a surprising fact that under certain conditions modularity and semi-
modularity are equivalent and we shall use this fact several times. Thus we
give:

THEOREM 1.1. Let L be a finite dimensional Lie algebra over a field of
characteristic zero and let U be a subalgebra of L. Then U is s.m. in L if and
only if U is modular in L.

PROOF. Theorem 3.6 of [9].

Upon studying the definition of U being modular in A9 it can be seen that
it may be dualised to give a subalgebra U is modular* in A if

<C7, By Π C = <β, U Π C> for all subalgebras B <Ξ C

and

<C7 Π B, C> = <£, C> Π C/ for all subalgebras C <Ξ L/.

We say that A is completely modular* if every subalgebra of A is modular* in A.
Similarly we can define U to be u*.m., l*.m. and s*.m. in A and also A to

be completely u*.m., l*.m. and s*.m. Notice that upper semi-modularity and
lower semi-modularity are dual concepts.

If x !,..., xπ belong to A we shall denote by ((x1? ... ,xπ)) the subspace
spanned by xl9...9xn. The symbol 0 will denote an algebra direct sum,
whereas -j- will indicate a direct sum of the vector space structure alone. All
algebras will be finite dimensional unless otherwise stated.

2. Basic properties

Firstly we note that if we compare the definitions of modularity and
modularity* one of the identities occurs in both. This immediately gives us the
following from [1].
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LEMMA 2.1. Let M be modular* in A and let B be any subalgebra of

A. Then M Π-B is modular* in B.

PROOF. We need to show < M f| B, B* > f| C* = <#*, M f| B f| C* > for
all β*c=C* that are subalgebras of 5; and also that (MftBftB*, C*> =

<B*,C*>ΠMfϊ£ for all C*cMfϊβ and 5* c B. Now

<MΠ£*,C*> = <^C*>ΠM = <5*,C*>nM Πfl. Also we have

LEMMA 2.2. Le/ M &e modular* in A and let I be an ideal of A with
c M. ΓAew M// w modular* in A/I.

PROOF. Similar to Proposition 1.2 of [1].

LEMMA 2.3. Let M and N be modular* in A. Then M Π N is modular* in A.

PROOF. Since M and N are modular* in A we have:

( i ) <M, β*>ΠC* = <£*, M f ϊ C * > for all 5* s C*,

(ii) <N, £*>f|C* = <#*, N Π C * ) for all B* c C*,
(iii) < M Π 5*, C* > = < £*, C* > Π M for all C* c M,
(iv) < N Π B*, C* > = < B*, C* > Π N for all C* c TV.

We need to show that

(a) < M Π W, B > Π C = < B, M f| AT f| C > for all 5 <Ξ C,

(b) <MΠ^V(Ί^ O = <^? C > Π M p | N for all C^M

,Cyf}M by (iii) since
(iv). Also

= « M, Λ Γ Π ^ > Π ^ Π C , 5> from (i) putting

M = M; β* = AT Π #; C* = N f|

= «ΛΓΠM, Λ Γ Π 5 > Π C , B> from (iv) putting

N = N;B* = M;C* = N f } B

= « B, N Π M > Π ^ V f|C, 5 > from (iv) putting

N = N; β* = β; C* = N Π M

= < N, # > Π C Π < £, N Π M > from (ii) putting

JV = N; β* = β; C* = C Π < 5,

= < MΠ N, B > Π C since < B, Λ Γ n M > c < N , β >

and thus the lemma is proved.

LEMMA 2.4. Le/ M &e modular* in a Lie algebra L and let U be a
subalgebra of L wiίh < M, (7 } = M 4- (7. Then:
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( i ) M is permutable with all quasi-ίdeals W of U.

(ii) Every subalgebra V of L with U (~}M c= V^, U is permutable with M.

(iii) If in addition, U Π M is a quasi-ideal of £/, then M is a quasi-ideal

of M +U.

PROOF. Lemma 1.6 of [1].

LEMMA 2.5. Let M be a modular* and maximal subalgebra of a Lie algebra

L. Then άimV< 1 for every subalgebra V of L with Vf\M = 0.

PROOF. Lemma 1.9 of [1].

LEMMA 2.6. Let M be modular* and maximal in A. Then M Π U is

modular* and maximal in U for every subalgebra U of A with U $ M.

PROOF. We have M(~}U is modular* in U by Lemma 2.1. If
x e U \ (M f) U) then < x, M > = A holds and since M is modular* in A, U
= l/(V = i / n < * . M > = <x, l / D M > .

The following lemmas are straightforward and so some of the proofs are
left as simple exercises.

LEMMA 2.7. ( i) If U is modular* in A then U is u*.m., l*.m.9 l.m. and

l.s.m. in A.

(ii) If U is modular in A then U is u.m., l.m., I*.m. and u.s.m. in A.

PROOF, (i) Let £, C be subalgebras of A such that B < < 17, B > and that
U Π B £ C c= u. Then C = <l/Γ|£, C> = <B, C > f | i / since C c U and U is
modular* in A. Now B <Ξ < C, 5 > c < (7, 5 > and so < C, B > = B or < C, 5 >
= < 17, £>. If the former holds then C c B and so C c £/ Q £, contrary
to our assumption. Hence < C, £> = <£/, £>. Thus t / = ( 7 Π < ^ 5 >
= Ϊ/Π<C, B> = C. It follows that 17 Π # is maximal in 17. Thus U is
u*.m. in A. Similar arguments can be used to show that U is l*.m. and
l.m. in A. To see that U is also l.s.m. in A simply note that if we pick B to be
a subalgebra of A such that £7, B < < 17, B > then since 17 is u*.m. in ,4 we have
that U Γ\B <U and since U is l.m. in Λ, U f|5 < B. Hence U is l.s.m. in A
as required.

(ii) See [9] and similar to part (i).

LEMMA 2.8. Let U be a subalgebra of A and let I be an ideal of A contained

in U.
( i) If U is u*.m. in A then U/I is u*.m. in A/1.

(ii) If U is l*.m. in A then U/I is l*.m. in A/1.

PROOF. Straightforward.

LEMMA 2.9. (i) All minimal subalgebras of A are u*.m. in A.
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(ii) All maximal subalgebras of A are u.m. in A.

PROOF, (i) Let M be any minimal subalgebra of A and let B be a
subalgebra of A such that B is maximal in <M, By. Then clearly M f| B = 0
which is maximal in M.

(ii) Lemma 1.3 of [9].

LEMMA 2.10. Let U be u*.m. in A. Then U>U(}M for all maximal

subalgebras M of A such that U $ M.

Recall that the Frattini subalgebra of an algebra A, denoted by F(A\ is the
intersection of all the maximal subalgebras of A and also that the Frattini ideal
of A, denoted by φ(A\ is the largest ideal of A contained in F(A).

COROLLARY 2.11. Let A be any algebra such that F(A) = φ(A) and suppose
that U is u*.m. in A. Then φ(U) c φ(A).

PROOF. unΦW = un(ΓiM<ΛW = ur\(Γ\u4MW = nu4M(unM)
ID φ(U).

Notice that if L is a Lie algebra that is completely u*.m. and also satisfies
the hypothesis of Corollary 2.11 then L is an £-algebra (see [10] for results on
E-algebras). It may be hoped for that a generalization of Stitzinger's Theorem
2 of [7] (if L2 is nilpotent then L is an E-algebra) could be obtained but we
show in §5 that if L2 is nilpotent and L is completely u*.m. then L is

supersolvable.

LEMMA 2.12. Let U be a minimal subalgebra of A. Then U is modular* in
A if and only if B <<£/, By for all subalgebras B of A such that U $/?.

PROOF. (=>) Let B <Ξ M c < u, B y. Then <C7, By f| M = <£, U f| M>.
Now if U c M; this implies that <L7, By <Ξ M c <£/, J3> and so M = <C7, £>.

So suppose £7$M. Then C / Π M = 0 so B = <B, l/ΠM> = <C7, £>ΠM
= M. Thus B is maximal in <L7, £>.

(<=) Assume B c C. If U ^ B, then <C7, B> f| C = B f| C = B and
<5, (7 Π Cy = <£, 17> = B. So suppose that 17 $β. Then £ is maximal in
<17, 5> by the hypothesis. Since β c C we have that B c <L/? 5> Π C c

<C7, 5>. If <L7, B>nC = B then <L7, B> Π C c <B, C7 p| C>. Clearly <J5,
C7 Π C> c <L7, β> f|C. If <C7, By f| C = <ί7, B> then <L7, B> c C which im-

plies that U c C. Hence <B, 17 Π O = <5, C/>- Assume that C c U. If C
= L7 then (170^, C> = <L7 QB, C7> - 17. Also <B, C> Π C = <B, C7> Π U
= U. If C = 0 then <£7 f|5, C> = <L7 Π#> = U f| B. Also <β, C> Π C/
= (7 Π 5. Thus the result is proved.

We can now prove the dual to Theorem 2.3 of [9], namely
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THEOREM 2.13. Let U be a minimal subalgebra of A. Then the following

are equivalent:

( i ) U is /*.w. in A.

(i i) B <<17, By for all subalgebras B of A such that U $ B.

(iiϊ) U is modular* in A.

PROOF. (i)=>(ii): Clear since U is minimal and l*.m. in A. (ii)=>(iii):

Lemma 2.12. (iii)=>(i): Lemma 2.7(i).

3. Inter-relationships

In this section we study the question, "Under what conditions , if any, are

the various modularities equivalent or weaker versions of each other?" We start

by showing that in the case of Lie algebras they can be different conditions.

Let L be a Lie algebra such that L = A -j- ((x)) where A is a minimum

abelian ideal of L and dim A > 3. Pick any non-zero aeA. Then clearly ((a))

is not maximal in A. Now it is easily seen that <α,x> = L and also that ((x))

is a maximal subalgebra of L. Thus we have that ((x)) is u.m. and u*.m. in L
but not u.s.m. or l*.m. in L.

For our next example we shall need the following definition. We say a Lie

algebra L is semiabelian if every proper subalgebra of L is abelian.

LEMMA 3.1. Let L be a simple semiabelian Lie algebra and let U be a
proper subalgebra of L such that dim I/ > 2. Then U is u.s.m. in L.

PROOF. Suppose that B is a subalgebra of L such that U Π B is maximal
in both U and B. Then two possibilities can occur:

( i) <(/, By = L. Then there exist maximal subalgebras M and N of L

with M φ N and U <Ξ M, B <Ξ N. Then U'ftB^MftN = 0 since M Π N is
an ideal of <M, JV> = L. Therefore dimί/ = 1 which is a contradiction.

(ii) <17, By is abelian. Then <L7, By = U + B. Thus (U + £)/£-

C//(17 Π 5) and also (17 + β)/ί/ ~ B/(C7 Π B). Hence 17 and 5 are maximal in
<L7, £>. Thus U is u.s.m. in Las required.

We can now give our next example.

COROLLARY 3.2. Let L be a simple semiabelian Lie algebra of rank ^ 3
over a field of characteristic zero. Let U be a proper subalgebra of a Cartan

subalgebra of L and dim U ^ 2. Then U is u.s.m. in L but not u.m. in L.

PROOF. The fact that U is u.s.m. in L is given by Lemma 3.1. Moreover

U is not maximal in L and so by Theorem 1.6 of [9], U is not u.m. in L.

LEMMA 3.3. Let A be any algebra and let U be a subalgebra of A. Then:

(i) If U is u.m. and /*.m. in A then U is u.s.m. in A.
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(ii) If U is u*.m. and l.m. in A then U is l.s.m. in A.

PROOF. This is straightforward.

We now consider what can be said about maximal and minimal
subalgebras of a general algebra A.

LEMMA 3.4. Let M denote any maximal subalgebra of A. Then:
( i ) M is u.m. in A.
( i i) M is u.s.m. in A if and only if M is /*.m. in A.
(iii) M is l.s.m. in A implies that M is u*.m. in A.

PROOF, (i) Lemma 2.9 (ii).
(ii) ( => ) Choose B to be a subalgebra of A such that M Π B is maximal in

M. Let C be a subalgebra of A such that C c B and M Π B is maximal in
C. Then M f| C = M Π B which is maximal in M and C. So M and C are
maximal in < M, C > = < M, B > = A. Clearly then C = B and B is maximal in
<M, £>; that is M is l*.m. in A.

(<=) Part (i) and Lemma 3.3 (i).
(iii) Suppose that B is maximal in < M, £ > = A. Then M and B are

maximal in < M, 5 > and so M (~}B is maximal in M and B. Hence M is
u*.m. in A.

The proof of the above lemma uses simple lattice arguments and so the
dual result is immediately true, namely

LEMMA 3.5. Let M denote any minimal subalgebra of A. Then:
( i ) M is u*.m. in A.
(i i) M is l.s.m. in A if and only if M is l.m. in A.
(iii) M is u.s.m. in A implies that M is u.m. in A.

To get further relationships we shall (not surprisingly) restrict our attention
to certain types of algebra. We therefore introduce the following classes of
algebras. If A and B are subalgebras of an algebra L with B g; A then we say a
J-series (or Jordan-Dedekind series) for (A, B) is a series

of subalgebras such that Ai_1 is maximal in A{ for 1 < i < n. This series has
length, l(A, B\ equal to n. We call L a J-algebra if whenever A and B are
subalgebras of L with B ^ A then all J-series for (A, B) have the same finite
length. J-algebras were studied by Gein in [3]. A special J-algebra is a J-
algebra in which I (A, B) = dirndl — dim B for all subalgebras A and B of L such
that 5 s A

LEMMA 3.6. Let J be a J-algebra and let U be a subalgebra of J. Then:
( i ) If U is u.m. in J then U is u. s. m. in J.
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(i i) If U is u*.m. in J then U is l.s.m. in J.
(iii) If U is l.m. in J then U is l.s.m. in J.
(iv) If U is /*.m. in J then U is u.s.m. in J.

PROOF, (i) Let U be u.m. in J and suppose B is a subalgebra of J such
that U Π B is maximal in U and B. Then since U is u.m. in J we have that U
is maximal in <£/,£>. Hence /«17, β>, UftB) = 2. Since UftB^B^
< £7, B > is a chain from U f| B to < (7, B > it follows that it has length 2. Thus
we have B is maximal in < 17, B > and so (7 is u.s.m. in J.

(ii), (iii) and (iv) follow by similar arguments.

Putting together the previous results we have

THEOREM 3.7. Let J be a J-algebra. Then:
( i ) All maxίmals of J are u.m., l*.m. and u.s.m. in J. Furthermore if M is

a maximal subalgebra of J then M is l.s.m. in J if and only if M is u*.m. in J.
(ii) All minimals of J are u*.m., l.m. and l.s.m. in J. Furthermore if M is

a minimal subalgebra of J then M is u.s.m. in J if and only if M is u.m. in J.

4. Modularity conditions on the whole subalgebra lattice

In this section we study the effect of imposing different types of modularity
on the whole subalgebra lattice. We are able, rather surprisingly, still to obtain
important results by considering a general algebra A.

We start by showing

THEOREM 4.1. Let A be any algebra and let U be a subalgebra of A.
( i ) If U and all its subalgebras are u.s.m. in A then U is u.m. in A.
(ii) If U and all subalgebras of A containing U are u.s.m. in A then U is

l*.m. in A.

PROOF, (i) Let U and all its subalgebras be u.s.m. in A and suppose that
B is a subalgebra of A such that U f| B is maximal in B. Clearly B $ U. Let
L / Π £ = M 0 £ M 1 g g ; M f c = ί / b e a Jordan-Dedekind chain from U Π B to
U. Set B! = B and put Bi+1 = <Mίs B^ for 0 ^i ^ k. Now Mx Π#ι <Bl9

Mt. Thus we have that B2 = <Ml9 B^y >M1? Bt since Ml is u.s.m. in

A. Now consider M2 Π #2- So Ml ^ M2 Π ̂ 2 — B2. But since Mί is
maximal in B2 we have that M2 C]B2 = B2 or M2 (^]B2 = M1. If the former
holds then B2 ^ M2 and so B c u, a contradiction. Hence M2 (~]B2 = M1

and so J33 = <M2, B2 ) >M2, B2. Continuing in this way we see that Bk+1

= < Mfc, Bk > >Mfc, Bk; that is U is maximal in < 17, £ > and so ί/ is u.m. in A.
(ii) Let 17 and all subalgebras of A containing U be u.s.m. in A. Pick B

to be a subalgebra of A such that U f } B < U. Clearly U QB. Now let
B0^Bί^ " ^Bk = B be a Jordan-Dedekind chain from U Π # to
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B. Set Ul = U and put Ui + 1 = (Uί9 #;> for 0 ̂  i ̂  k. Then by an
argument similar to (i) we see that Uk+ί = < L/fc, £ fc> > Uk9 Bk; that is 5 is
maximal in < (7, B> and so L7 is l*.m. in A as required.

This immediately gives us the following corollary, namely

COROLLARY 4.2. Let A be any algebra, then the following are equivalent:
( i ) A is completely u.s.m.
(ii) A is completely u.m.
(iίi) A is completely l*.m.

THEOREM 4.3. Let A be any algebra and let U be a subalgebra of A.
( i ) If U and all its subalgebras are l.s.m. in A then U is l.m. in A.
(ii) If U and all subalgebras of A containing U are l.s.m. in A then U is

u*.m. in A.

PROOF. Similar to Theorem 4.1.

COROLLARY 4.4. Let A be any algebra, then the following are equivalent:
( i ) A is completely l.s.m.
(ii) A is completely l.m.
(iii) A is completely u*.m.

Comparing these results with that of Kolman [4] and Gein [3] we have
the following classifying theorem for the Lie algebra case.

THEOREM 4.5. Let L be a Lie algebra over a field of characteristic zero.
(a) The following four conditions are equivalent:

( i ) L is completely u.m.
(ii) L is completely u.s.m.
(iii) L is completely l*.m.
(iv) L is abelian, almost abelian or ^-dimensional non-split simple.

(b) The following four conditions are equivalent:
( i ) L is completely l.m.
(ii) L is completely l.s.m.
(iii) L is completely u*.m.
(iv) L=.R0S'1φ 0Sπ where R is super solvable and the S{s are
non-isomorphic 3-dimensional simple algebras.

PROOF, (a) Corollary 4.2 and Theorem 2.4 of [4].
(b) Corollary 4.4 and Theorem 3 of [3].

5. The Lie algebra case

In this section we concentrate on Lie algebras. We impose conditions on
only certain subalgebras and study the overall effect on the algebra. Let A be
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any algebra, then in [11] Varea defined the following: A is an M(l)-algebra if all
maximals of A are modular in A. So we define A is an M(0)-algebra if all
minimals of A are modular in A. We can also define A to be an M*(1), M*(0),
u.m.(l)-algebra etc. in the natural way.

Suppose A is an M(0)-algebra, then by Lemma 2.7 (ii) and Theorem 2.13 A
is an M*(0)-algebra. The natural question to ask is, "If A is an M*(0)-algebra
does this imply A is an M(0)-algebra?" Under certain conditions we can answer
this question, but first of all we require the following

LEMMA 5.1. Let A be any algebra. Then A is an M*(Q)-algebra if and only
if A is completely u.s.m.

PROOF. Let A be an M*(0)-algebra. Pick subalgebras H and K of A such
that H Π K is maximal in H and in K. Clearly H, K φ A and the result is
straightforward if H or K are minimal subalgebras of A. So we can assume
that H and K are not minimal subalgebras of A. Thus there exists a minimal
subalgebra M of A such that M $ H and M §Ξ K. For if every minimal
subalgebra of A contained in K were also contained in H then K ^ H which is
a contradiction to the fact that Hf\K is maximal in K. Now since M is
modular* in A, we have that M is l*.m. in A by Lemma 2.7 (i). Hence since
MΠ# = 0 then H is maximal in <H, M>. Consider <//Π^ ?

M >; this
equals K since M $H(~}K and #Πκ is maximal in X. Then <//, K>
= < H, < H Π K, M », but < /f, < H Π K, M » = < H, M >. Hence < //, K >
= < //, M >. Thus # is maximal in < H, K >. Similarly we can show that X
is maximal in </f, X). Thus ^4 is completely u.s.m.

Conversely let A be completely u.s.m. Then by Corollary 4.2, all minimals
are l*.m. in A. Thus by Lemma 2.13, all minimals are modular* in A. Hence
A is an M*(0)-algebra.

THEOREM 5.2. Let L be a Lie algebra over a field of characteristic
zero. Then the following are equivalent:

(i) L is an M(Q)-algebra.
(ii) L is an M*(ty-algebra.

PROOF. (i)=>(ii): This is shown by the remarks preceding Lemma 5.1.
(ii)=>(i): Let L be an M*(0)-algebra. Then, by Lemma 2.7 (i), all minimals

are in particular l.m. in L. Moreover, by Lemma 5.1, L is completely
u.s.m. and so, by Corollary 4.2, L is completely u.m. Thus all minimals are
s.m. in L. So, by Theorem 1.1, all minimals are modular in L; that is L is an
M(0)-algebra.

We now study the effect of imposing one type of modularity on all the
minimal subalgebras. From this point onwards L will denote a finite-
dimensional Lie algebra over a field of characteristic zero unless otherwise stated.
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LEMMA 5.3. Let L be semίsimple. If L has a minimal subalgebra that is

u.m. in L then L is ^-dimensional non-split simple.

PROOF. Suppose that ((x)) is u.m. in L. Then ((x)) cannot be an ideal of

L, since this would contradict the semisimplicity of L. So by Lemma 1.5 of

[9], ((x)) is self-idealizing. Thus ((x)) is a Cartan subalgebra of L and hence L

is 3-dimensional non-split simple.

COROLLARY 5.4. Let L be semisimple and a u.m.(ty-algebra. Then L is

completely u.m.

PROOF. Apply Lemma 5.3 and Theorem 4.5 (a).

Suppose we consider L to be a simple infinite-dimensional Lie algebra in

which all 1-dimensional subalgebras are maximal in L; then clearly L would be

a u.s.m.(0)-algebra. Such an algebra is discussed by Lashi in [5] and is

denoted by P^. However, as he states, it is still an open question as to

whether such an algebra exists. Such an algebra is the analogue of the Tarski

monster group and its existence is one of the most interesting problems in the

general theory of Lie algebras.

We continue our examination of finite-dimensional Lie algebras with

THEOREM 5.5. Let L be a Lie algebra over any field F such that L2 is

nίlpotent.

(i) If L is a u.s.m.(Q)-algebra then L is super solvable.

(ii) If L is a u.m.(Qi)-algebra then L is super solvable.

PROOF, (i) Let L be a minimal counterexample. Then L is not

supersolvable but every proper subalgebra of L is supersolvable. Thus L is

minimal non-supersolvable and is described by Theorem 1.1 of [1]. In this

case L= N + ((x)), where N is the nil radical of L, N = N2 + ((el9 9 er)), e±x

= e2, -9 e r _ i X = er, erx = c^e^ + ••• + cr^^er, adx|N

2 is split, the polynomial

p(Y) = r - c r_!Y 1 1" 1 CiY- c0 is irreducible in F[Y] and r > 1. Now

( ( e ι ) ) *&L since ((βi)) £ N §j L. Moreover < eί9 x > is not supersolvable and so

is equal to L. But ((έ?ι))f|((*)) = 0 < ((ej), ((x)) and since L is a u.s.m.(O)-
algebra we have that ((^J), ((x)) < L, a contradiction. Thus no such counter-

example exists.

(ii) Similar to part (i).

COROLLARY 5.6. Let L be a u.m.(Q)-algebra. Then L is solvable if and

only if L is supersolvable.

Here we introduce a piece of terminology. If L is abelian or almost

abelian we say that L is quasi-abelian. We now give the key theorem to the

behaviour of u.m. (O)-algebras.
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THEOREM 5.7. Let L be such that all 2-generator subalgebras are at most 2-
dίmensίonal or ^-dimensional non-split simple. Then L is quasi abelian or 3-
dimensional non-split simple. In particular L is completely u.m.

PROOF. Let L be a minimal counterexample. Clearly L cannot be
semisimple since it could be generated by two elements and thus would be of
the required form. Suppose then that L = R where R is solvable. Then all
proper subalgebras of .R are completely u.m. Let M be a maximal ideal of
R. Then R = M + ((x)) and by the minimality of R we know that M is quasi-
abelian. Now if weM then xweM and xwe<x,w> = ((x,w)) by the
hypothesis. So xmeM (~}((x,m)). Thus xm = λ(x^m)m where λ(x,m) belongs to
the underlying field of R and is dependent on x and m. So suppose that M is
almost abelian. Then there exist non-zero m1 and m2 belonging to M such
that m^m2 = m2. Now Λ(x,m2)w2 = xm2 = x(m1m2) = — m1(m2x) — m2(xm1). But
this is the same as λ(Xtm2}m^m2 + λ(Xtmί)mΐm2 = /I(jc,m2)m2 + λ(Xtmι}m2. Thus
A(x>mι)w2 = 0 so λ(Xtmι) = 0. Since λ(Xtmι) = 0 we have that xm1 = 0. Now
consider w^x + w2) = n^x + mίm2 = w2. But m 2 e<m 1 ,x + w2> = ((m1? x
+ w2)) and so m2 = Am! + μ(x + m2). But this implies that μ = 0 and 1
simultaneously which is impossible. Thus M is abelian. Now consider x(m±
+ m2) = xmx + xw2 for any m1 and w2 in M. Thus Λ(χ,mι+m2)(wι + w2)

= Λ ίJc.mO'Hl + Λ (*.m2)m2 Sθ WC haVC A(χ,m1+m2)^l + ^m1+m2)^2 = ^m!^!

H- A(x,m2)m2 and it follows that λ(Xtmι) = A(x,m2) for all m1 and m2 in M. So xm
= λ(x}m for all meM where A(JC) is independent of m. Since # = M + ((x)) we
have that R, and so L, is quasi-abelian. Suppose now that L is neither solvable
nor semisimple. Then L = R 4- S where S is 3-dimensional non-split
simple. Pick any non-zero seS, then R + ((5)) is a proper solvable subalgebra
of L and hence it is quasi-abelian; in particular R is abelian. Now as above we
have sr = λsr for all sεS and all rεR. Choose basis elements sl9 s2 and s3 of S
such that s^ = 53. Then λS3r = s3r = (s1s2)r = — (s2r)s1 — (rs^ = — λS2rsl

+ λsιrs2 — λS2λSίr — λSίλS2r = 0. Thus λS3 = 0 and so s3r = 0 for all
reR. Similarly we can show that λsι, λS2 = Q and so sxr = s2r = 0 for all
re#. Hence L = R 0 S with R2 = 0. Now consider the subalgebra <s1? s2

+ r>. This is not two dimensional since 5 is contained in it. Moreover it is
not 3-dimensional non-split simple. But this is a contradiction, so L cannot be
of this form and thus the theorem is established.

LEMMA 5.8. If all maximal subalgebras of L are \-dimensional then L is 2-
dimensional quasi-abelian or ^-dimensional non-split simple.

PROOF. Suppose L is simple. Then the Cartan subalgebras are 1-
dimensional so L has rank 1 and hence is 3-dimensional. If L were split
simple then it would have a 2-dimensional subalgebra which contradicts the
hypothesis. If L is semisimple then L must be simple and so is of the required
form. Let L = R + S where R ^Q and solvable then S = 0 otherwise not all
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maximal subalgebras would be 1-dimensional. So if L is solvable then it is 2-
dimensional since it has a maximal subalgebra of codimension one in
L. Hence L is quasi-abelian. The result follows.

We are now able to give

COROLLARY 5.9. L is a u.m.(Q)-algebra if and only if L is completely u.m.

PROOF. Let L be a u.m. (O)-algebra and let x be any non-zero element of
L. Choose a non-zero y e L such that y is linearly independent of x. Then 0
= ((x)) Π ((y)) which is maximal in ((y)) and so ((x)) is maximal in
<x,j;>. Clearly all maximals of <x,y> are 1-dimensional. Now apply Lemma
5.8 and then Theorem 5.7 which gives that L is completely u.m. The converse
is obvious and thus the result is proved.

THEOREM 5.10. L is a u.s.m.(Q)-algebra if and only if L is completely u.s.m.

PROOF. If L is a u.s.m.(0)-algebra then L is a u.m.(0)-algebra by Lemma
3.5, and L is completely u.m. by Corollary 5.9. Hence L is completely
u.s.m. by Corollary 4.2. The converse is obvious and the result is proved.

Collecting together many of our previous results we can show

THEOREM 5.11. Let L be a finite-dimensional Lie algebra over a field of
characteristic zero, then the following conditions are equivalent:

( i ) L is completely u.s.m.
(ii) L is a u.s.m.(0)-algebra.
(in) L is an M(0)-algebra.
(iv) L is an M*(Q)-algebra.
(v) L is a u.m.(0)-algebra.
(vi) L is an l*.m.(Q)-algebra.

PROOF, (i)o(ii): Theorem 5.10. (iii)<^>(iv): Theorem 5.2. (i)<s>(iv):
Lemma 5.1. (i)o(v): Corollary 5.9 and Corollary 4.2. (iv) o (vi): Theorem
2.13.

For our final result we give the following

LEMMA 5.12. L is an l.s.m.(Q)-algebra if and only if L is an l.m.(Q)-algebra.

PROOF. Let L be an l.s.m. (O)-algebra and suppose that <x> is maximal in
<x, By for some subalgebra B of L. We must show that <x> Π B is maximal in
B, so we can clearly assume that <x> $ B. So suppose B c β* which is
maximal in <x, By. Then since <x> is l.s.m. in L, B* must be 1-dimensional
and so B = B*. Hence <x> is l.m. in L. Conversely let L be an l.m. (0)-
algebra with <x> and B maximal in <x, By for some subalgebra B of L. Since
<x> is l.m. in L, 0 = <x>Π# is maximal in B. Hence B is 1-
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dimensional. Thus L is an l.s.m.(0)-algebra which completes the proof.
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