Cyclic Galois extensions of regular local rings

Shiroh Iтон
(Received July 14, 1988)

§1. Introduction

Let R be a formal power series ring in d indeterminates over an algebraically closed field, and let L be a finite, abelian Galois extension of the field K of fractions of R such that the order of the Galois group is prime to the characteristic of K. Let S be the integral closure of R in L. As proved in [2], S is a free R-module of rank $n=|G|$, and hence it is a Cohen-Macaulay local ring of dimension d.

The R-algebra structure of a free R-module S defines structural constants $g\left(\chi, \chi^{\prime}\right) \in R$, where χ and χ^{\prime} run through all characters of G (see $\S 2$); our main theorem in this note, Theorem 7 in $\S 4$, gives a condition which characterizes the invertibility of $g\left(\chi, \chi^{\prime}\right)$'s, and consequently, it gives a method to calculate the embedding dimension and the Cohen-Macaulay type of S. In the case that L is a cyclic Galois extension, we shall make a detailed discussion in $\S 5$; more precisely, we can compute these two numerical invariants whenever a defining equation $z^{n}=f, f \in R$, of the extension L over K is given.

Notation and terminology.

For a commutative ring A, A^{*} will denote the group of invertible elements in A.

Throughout this paper, R will be a noetherian domain containing an algebraically closed field K, L will be a finite Galois extension of the field K of fractions of R. We denote by G the Galois group of L over K. S will be the integral closure of R in L; we say that S is a Galois extension of R. We assume that R is a unique factorization domain (UFD), G is abelian and $n=|G|$ is invertible in k.

A character of an abelian group means a group homomorphism from it to k^{*}. Since the Galois group G is abelian, the set $\operatorname{Hom}\left(G, k^{*}\right)$ of all characters of G forms a group which is isomorphic to G; we denote by $\chi_{1}, \cdots, \chi_{n}$ the characters of the Galois group G. If H is a finite abelian group such that $(|H|$, char $k)=1$, for a character χ of H, we put $e(\chi)=n^{-1} \sum_{\sigma \epsilon H} \chi\left(\sigma^{-1}\right) \sigma ; e(\chi)$ is an element in the group ring $k[H]$.

§2. Abelian Galois extensions

In this section we shall summarize some facts on abelian Galois extensions of a UFD in order to define structural constants of S over R.

The following lemma is well known.
Lemma 1. (1) $e\left(\chi_{i}\right)^{2}=e\left(\chi_{i}\right)$ for every i; (2) $e\left(\chi_{i}\right) e\left(\chi_{j}\right)=0$ if $i \neq j$; (3) $\sum_{i} e\left(\chi_{i}\right)$ $=1$.

Since L is naturally a left $K[G]$-module and S is a left $R[G]$-module, we have the following lemma.

Lemma 2. (1) $L=e\left(\chi_{1}\right) L \oplus \cdots \oplus e\left(\chi_{n}\right) L$, and therefore $\operatorname{dim}_{K} e\left(\chi_{i}\right) L=1$.
(2) $e\left(\chi_{i}\right) L=\left\{x \in L \mid \sigma x=\chi_{i}(\sigma) x\right.$ for all $\left.\sigma \in G\right\}$.
(3) $e\left(\chi_{i}\right) L e\left(\chi_{j}\right) L=e\left(\chi_{i} \chi_{j}\right) L$.
(4) $e(1) L=K$.

Proof. The assertion (1) follows from Lemma 1, and the assertion (2) follows from the fact that, for every $\sigma \in G$ and $\chi \in \operatorname{Hom}\left(G, k^{*}\right)$, $\sigma e(\chi) x$ $=(1 / n) \sum_{\tau} \chi\left(\tau^{-1}\right) \sigma \tau x=(1 / n) \sum_{\rho} \chi\left(\rho^{-1} \sigma\right) \rho x=\chi(\sigma) e(\chi) x$. The assertions (3) and (4) follow from the assertion (2).

Corollary 3. (1) $S=e\left(\chi_{1}\right) S \oplus \cdots \oplus e\left(\chi_{n}\right) S$, and $e\left(\chi_{i}\right) S$ is a free R-module of rank one for every i.
(2) $e\left(\chi_{i}\right) S e\left(\chi_{j}\right) S$ is contained in $e\left(\chi_{i} \chi_{j}\right) S$.
(3) $e(1) S=R$.

Proof. (1): The first assertion follows from Lemma 2; therefore, for every $i, e\left(\chi_{i}\right) S$ is a reflexive R-module of rank one, and hence it is a free R-module because R is a UFD. (3): Since $e(1) L=K$, we have $e(1) S \subseteq S \cap K=R$. On the other hand, we have $1 \in e(1) S$, because $e(1) 1=(1 / n) \sum \sigma 1=1$. Therefore $e(1) S=R$.

Definition. A G-base of $S($ over $R)$ is a subset $\left\{\zeta(\chi) \mid \chi \in \operatorname{Hom}\left(G, k^{*}\right)\right\}$ of S such that $\zeta(1)=1$ and, for every character χ of $G, \zeta(\chi)$ is an R-base of $e(\chi) S$. Let $\{\zeta(\chi)\}_{\chi}$ be a G-base of S. For any characters χ and χ^{\prime} of G, we define $g\left(\chi, \chi^{\prime}\right)$ to be the element in R satisfying

$$
\zeta(\chi) \zeta\left(\chi^{\prime}\right)=g\left(\chi, \chi^{\prime}\right) \zeta\left(\chi \chi^{\prime}\right) .
$$

For a character χ, we define $O(\chi)$ to be the ideal of R generated by

$$
\left\{g\left(\chi^{\prime}, \chi^{\prime \prime}\right) \mid \chi^{\prime} \chi^{\prime \prime}=\chi, \chi^{\prime} \neq 1 \text { and } \chi^{\prime \prime} \neq 1\right\} .
$$

Although $g\left(\chi, \chi^{\prime}\right)$ depends on a choice of G-bases of S, it is uniquely determined up to units of R; therefore the ideal $O(\chi)$ does not depend on a choice of G-bases of S. By definition, $g(\chi, 1)=g(1, \chi)=1$.

Assume that R and S are local rings with the maximal ideals M and N respectively such that $R / M=S / N$. Since N is also G-invariant, we have N $=e\left(\chi_{1}\right) N \oplus \cdots \oplus e\left(\chi_{n}\right) N$. By our assumption, $S / N\left(=e\left(\chi_{1}\right) S / e\left(\chi_{1}\right) N \oplus \cdots \oplus\right.$ $\left.e\left(\chi_{n}\right) S / e\left(\chi_{n}\right) N\right)=R / M$; hence $N=M+\sum_{\chi \neq 1} e(\chi) S$. Consequently,

$$
\operatorname{dim}_{k} N / N^{2}=\operatorname{dim}_{k} M /\left(M^{2}+O(1)\right)+\#\{\chi \neq 1 \mid O(\chi) \neq R\}
$$

and, if R is regular,

$$
\text { type } S=\#\left\{\chi(\neq 1) \mid g\left(\chi, \chi^{\prime}\right) \in M \text { for all } \chi^{\prime} \neq 1\right\}
$$

where type S denotes the Cohen-Macaulay type of S, i.e. type $S=$ the dimension of the socle of $S / M S$ over $k\left(=\operatorname{dim}_{k}\left(M S:{ }_{s} N\right) / M S\right)$. We shall use these equalities in later sections.

§3. $g\left(\chi, \chi^{\prime}\right) \cdots$ Part one

As we have discussed in the last part of the above section, it is very important to find good conditions which characterize the invertibility of $g(\chi$, χ^{\prime})'s. Throughout this section, we fix a G-base $\{\zeta(\chi)\}_{\chi}$ of S over R. The first fact to be remarked in this section is the following

Lemma 4. The discriminant ideal of S over R is generated by $\pm \prod_{i} n g\left(\chi_{i}, \chi_{i}{ }^{-1}\right)$, and therefore S is unramified over R if and only if $g\left(\chi, \chi^{-1}\right)$ is invertible for every character χ of G. Moreover S is unramified over R if and only if $g\left(\chi, \chi^{\prime}\right)$ is invertible for any characters χ and χ^{\prime} of G.

Proof. Since $\zeta\left(\chi_{i}\right) \zeta\left(\chi_{j}\right) \zeta\left(\chi_{i}\right)=g\left(\chi_{i}, \chi_{j}\right) g\left(\chi_{i} \chi_{j}, \chi_{l}\right) \zeta\left(\chi_{i} \chi_{j} \chi_{l}\right)$, we have $\operatorname{Tr}\left(\zeta\left(\chi_{i}\right)\right.$ $\left.\zeta\left(\chi_{j}\right)\right)=0$ if $\chi_{i} \chi_{j} \neq 1$ and $\operatorname{Tr}\left(\zeta\left(\chi_{i}\right) \zeta\left(\chi_{j}\right)\right)=n g\left(\chi_{i}, \chi_{i}^{-1}\right)$ if $\chi_{i} \chi_{j}=1$. Therefore det $\operatorname{Tr}\left(\zeta\left(\chi_{i}\right) \zeta\left(\chi_{j}\right)\right)= \pm \prod_{i} n g\left(\chi_{i}, \chi_{i}^{-1}\right)$; thus the first assertion follows. Since $g\left(\chi, \chi^{-1}\right) \zeta\left(\chi^{\prime}\right)=\zeta\left(\chi^{-1}\right) \zeta(\chi) \zeta\left(\chi^{\prime}\right)=g\left(\chi, \chi^{\prime}\right) g\left(\chi^{-1}, \chi \chi^{\prime}\right) \zeta\left(\chi^{\prime}\right)$, we have $g\left(\chi, \chi^{-1}\right)=g\left(\chi, \chi^{\prime}\right)$ $g\left(\chi^{-1}, \chi \chi^{\prime}\right)$; thus the second asserton follows.

We first consider the case that R is a DVR with the maximal ideal M and G is the inertia group of a maximal ideal of S. In this case S is, in fact, a DVR; since (n, char k) $=1$, the residue field of S is canonically isomorphic to the residue field of R and the ramification index of the maximal ideal of R is n (cf. [3, Chap. V, §10]). Let N be the maximal ideal of S. We have $\mathrm{H}^{1}(G, 1+N)$ $=1$: Let $\left(u_{\sigma}\right)_{\sigma}$ be a 1 -cocycle in $1+N$, and put $v=n^{-1} \sum_{\sigma} u_{\sigma}^{-1}$; since τv $=n^{-1} \sum_{\sigma} \tau\left(u_{\sigma}^{-1}\right)=\left(n^{-1} \sum_{\sigma} u_{\tau \sigma}^{-1}\right) u_{\tau}=v u_{\tau}$, we have $u_{\tau}=\tau v / v$; this shows that $\mathrm{H}^{1}(G$, $1+N)=1$. It then follows from the exact sequence $1 \rightarrow 1+N \rightarrow S^{*} \rightarrow(S / N)^{*}$ $\rightarrow 1$ that the natural homomorphism $\mathrm{H}^{1}\left(G, S^{*}\right) \rightarrow \mathrm{H}^{1}\left(G,(S / N)^{*}\right)$ is injective; since G acts on S / N trivially, we have $H^{1}\left(G,(S / N)^{*}\right) \cong \operatorname{Hom}\left(G,(S / N)^{*}\right)$. Moreover the natural homomorphism $\operatorname{Hom}\left(G, S^{*}\right) \rightarrow \operatorname{Hom}\left(G,(S / N)^{*}\right)$ is an isomorphism, because both groups are naturally isomorphic to $\operatorname{Hom}\left(G, k^{*}\right)$. Therefore $\mathrm{Z}^{1}(G$,
$\left.S^{*}\right)$ is generated by $\mathrm{B}^{1}\left(G, S^{*}\right)$ and $\operatorname{Hom}\left(G, S^{*}\right) \cong \operatorname{Hom}\left(G, k^{*}\right)$. Choose now an element u in S so that $N=S u$. For every σ in $G, \sigma(u)=a(\sigma)^{-1} u$ for some $a(\sigma) \in S^{*}$. It is easy to see that $\left\{a(\sigma)^{-1}\right\}_{\sigma}$ is a 1-cocycle, and hence there exist an element φ in $\operatorname{Hom}\left(G, S^{*}\right)\left(\cong \operatorname{Hom}\left(G, k^{*}\right)\right)$ and an element b in S^{*} such that $a(\sigma)^{-1}=\varphi(\sigma) \sigma b / b$ for every σ. Then $\sigma\left(b^{-1} u\right)=\sigma(b)^{-1} a(\sigma)^{-1} u=\varphi(\sigma) b^{-1} u(\mathrm{cf}$. [1]). We may thus assume that there exists a character φ of G such that $\sigma(u)$ $=\varphi(\sigma) u$ for all σ in G. Such a character φ is unique (and is called the basic character of the inertia group G at the maximal ideal of S): Assume that there exist a character φ^{\prime} of G and a generator v of N such that $\sigma(v)=\varphi^{\prime}(\sigma) v$ for all σ in G, and write $v=a u$ with $a \in S^{*}$; it is then easy to see that $\sigma(a)=\varphi(\sigma)^{-1} \varphi^{\prime}(\sigma) a$ for all σ; since G acts on S / N trivially and $\varphi(\sigma)^{-1} \varphi^{\prime}(\sigma)$ is an element in k for every σ, we must have $\varphi(\sigma)^{-1} \varphi^{\prime}(\sigma)=1$ for every σ; hence $\varphi=\varphi^{\prime}$, and, in particular, a is an element in R.

Summarizing the above argument, we have
Lemma 5. With the same notation and assumption as above, we have the following assertions.
(1) There exists a unique character φ of G such that, for some generator u of $N, \sigma u=\varphi(\sigma) u$ for all σ in G.
(2) G is cyclic and $\operatorname{Hom}\left(G, k^{*}\right)$ is generated by φ.
(3) $S=e\left(\varphi^{0}\right) S \oplus e(\varphi) S \oplus \cdots \oplus e\left(\varphi^{n-1}\right) S$, and $e\left(\varphi^{i}\right) S=R u^{i}$ for every i with $0 \leq i \leq n$. In particular,
(4) for integers i and j with $0 \leq i, j<n, g\left(\varphi^{i}, \varphi^{j}\right)$ is invertible if and only if $i+j<n$.
(5) $g\left(\varphi^{i}, \varphi^{-i}\right)$ generates the maximal ideal M of R for every $i=1, \cdots, n-1$.

Proof. The assertion (1) has been proved already. (2): If σ is an element in $\operatorname{ker} \varphi$, then $\sigma u=u$, and hence σ induces the identity mapping of the completion of S, because σ induces the identity mapping of S / N; therefore σ $=$ id. This shows that φ is an injective homomorphism. Thus G is isomorphic to a finite subgroup of k^{*}; therefore G is cyclic, and hence so is the character group of G. Let χ be any character of G. For a moment we denote by σ a generator of G. Since $\varphi(\sigma)$ is a primitive n-th root of $1, \chi(\sigma)=\varphi(\sigma)^{l}$ for some integer l; and therefore $\chi=\varphi^{l}$. (3): The first assertion follows from Lemma 2. It is clear that u^{i} is an element in $e\left(\varphi^{i}\right) S$, and this implies that $e\left(\varphi^{i}\right) S$ $=R u^{i}$ because $S=\sum_{i} R u^{i}$. (4) follows from (3). (5): We have $M S=N^{n}=u^{n} S$ because the ramification index of M is n. Since $u^{n} \in R$ and S is a free R module, u^{n} generates M, and this proves the assertion.

Consider now the case that R is not necessarily a DVR. Let P be a height one prime ideal of S at which S is ramified over R, and let H be the inertia group of $P ; H$ is not trivial. Put $S^{\prime}=S^{H}$ and $Q=P \cap S^{\prime}$. Appying Lemma 5 to S_{Q}^{\prime}, S_{Q} and H, we have a character φ of H satisfying the condition (1) of Lemma 5.

Definition. With the same notation as above, we say that φ is the basic character at P, and we define, for every character χ of G, the order of χ at P, denoted by $\operatorname{ord}_{p}(\chi)$, to be a unique non-negative integer r satisfying $\left.\chi\right|_{H}=\varphi^{r}$, $0 \leq r<|H|$.

§4. $g\left(\chi, \chi^{\prime}\right) \cdots$ Part two

Throughout this section we fix a G-base $\{\zeta(\chi)\}_{\chi}$ of S over R.
We first make some remarks: Let H be a subgroup of G, and put $S^{\prime}=S^{H}$. Then S has two representations:

$$
\begin{aligned}
S & =\sum_{\psi: \text { char.of }} e(\psi) S \\
& =\sum_{\chi: \text { char.of }} e(\chi) S .
\end{aligned}
$$

For a character ψ of H, it is easy to see that

$$
e(\psi) S=\sum_{x: \text { char. of } G \text { such that } x \mid H=\psi} e(\chi) S .
$$

It is clear that

$$
S^{\prime}=\sum_{x: \text { char. of } G \text { such that } \chi \mid H=1} e(\chi) S
$$

and, for a character χ of G with $\left.\chi\right|_{H}=1$, if we denote by χ^{*} the induced character of G / H, then

$$
e(\chi) S=e\left(\chi^{*}\right) S^{\prime}
$$

Moreover $B^{\prime}=\left\{\zeta(\chi) \mid \chi \in \operatorname{Hom}\left(G, k^{*}\right)\right.$ such that $\left.\left.\chi\right|_{H}=1\right\}$ is a G / H-base of S^{\prime} over R; therefore, for characters χ and χ^{\prime} of G such that $\left.\chi\right|_{H}=\left.\chi^{\prime}\right|_{H}=1$, we have $g\left(\chi, \chi^{\prime}\right)=g\left(\chi^{*}, \chi^{\prime *}\right)\left(\right.$ with respect to $\left.B^{\prime}\right)$.

Lemma 6. Let H be a subgroup of G such that H contains every inertia groups of the maximal ideals of S. Let χ_{1} and χ_{2} be characters of G, and assume that $g\left(\chi_{1}, \chi_{2}\right)$ is invertible. Then for any character χ of G such that $\left.\chi\right|_{H}=1$, $g\left(\chi_{1} \chi, \chi^{-1} \chi_{2}\right)$ is also invertible.

Proof. Note first that $g\left(\chi_{1}, \chi_{2}\right) g\left(\chi, \chi^{-1}\right) \zeta\left(\chi_{1} \chi_{2}\right)=\zeta\left(\chi_{1}\right) \zeta\left(\chi_{2}\right) \zeta(\chi) \zeta\left(\chi^{-1}\right)$ $=g\left(\chi_{1}, \chi\right) g\left(\chi_{2}, \chi^{-1}\right) \zeta\left(\chi_{1} \chi\right) \zeta\left(\chi_{2} \chi^{-1}\right)=g\left(\chi_{1}, \chi\right) g\left(\chi_{2}, \chi^{-1}\right) g\left(\chi_{1} \chi, \chi^{-1} \chi_{2}\right) \zeta\left(\chi_{1} \chi_{2}\right)$. Therefore it is sufficient to show that $g\left(\chi, \chi^{-1}\right)$ is invertible if $\left.\chi\right|_{H}=1$. Note next that $S^{H}=\sum_{\chi \mid H=1} e(\chi) S=\sum_{\chi \mid H=1} e\left(\chi^{*}\right) S^{H}$, where χ^{*} is the character of G / H induced from χ. Since S^{H} is unramified over R, it follows from Lemma 4 that $g\left(\chi, \chi^{-1}\right)\left(=g\left(\chi^{*}, \chi^{*-1}\right)\right)$ is invertible

For a height one prime ideal P of S at which S is ramified over R, we denote by $H(P)$ the inertia group of P.

Theorem 7. $g\left(\chi_{1}, \chi_{2}\right)$ is invertible if and only if $\operatorname{ord}_{P}\left(\chi_{1}\right)+\operatorname{ord}_{P}\left(\chi_{2}\right)$
$<|H(P)|$ for every height one prime ideal P of S at which S is ramified over R.
Proof. To prove the assertion we may assume that R is a DVR and S is ramified over R by Lemma 4 ; let M be the maximal ideal of R. Let H be the inertia group of the maximal ideals of $S ; H \neq(1)$ by our assumption. We put $S^{\prime}=S^{H}$. For simplicity, we put $r=|H|$. By Lemma 5 (4), $\operatorname{ord}_{P}\left(\chi_{1}\right)+\operatorname{ord}_{P}\left(\chi_{2}\right)$ $<r$ for every maximal ideal P of S if and only if $e\left(\left.\chi_{1}\right|_{H}\right) S e\left(\left.\chi_{2}\right|_{H}\right) S=e\left(\left.\chi_{1} \chi_{2}\right|_{H}\right) S$.

Assume first that $\operatorname{ord}_{P}\left(\chi_{1}\right)+\operatorname{ord}_{P}\left(\chi_{2}\right)<r$ for every maximal ideal P of S, that is, $e\left(\left.\chi_{1}\right|_{H}\right) \operatorname{Se}\left(\left.\chi_{1} \chi_{2}\right|_{H}\right) S$. Since $e\left(\chi_{1} \chi_{2}\right) S$ is isomorphic to R, and is a direct summand of $e\left(\left.\chi_{1} \chi_{2}\right|_{H}\right) S$, there exist characters χ^{\prime} and $\chi^{\prime \prime}$ of G such that $\left.\chi^{\prime}\right|_{H}$ $=\left.\chi_{1}\right|_{H},\left.\chi^{\prime \prime}\right|_{H}=\left.\chi_{2}\right|_{H}, \chi^{\prime} \chi^{\prime \prime}=\chi_{1} \chi_{2}$ and $g\left(\chi^{\prime}, \chi^{\prime \prime}\right)$ is invertible; since $\chi^{\prime}=\chi \chi_{1}$ and $\chi^{\prime \prime}$ $=\chi^{-1} \chi_{2}$ for some χ with $\left.\chi\right|_{H}=1$, it follows from Lemma 6 that $g\left(\chi_{1}, \chi_{2}\right)$ is invertible.

Conversely assume that $g\left(\chi_{1}, \chi_{2}\right)$ is invertible, and suppose, on the contrary, that $e\left(\left.\chi_{1}\right|_{H}\right) S e\left(\left.\chi_{2}\right|_{H}\right) S$ is properly contained in $e\left(\left.\chi_{1} \chi_{2}\right|_{H}\right) S$; since S^{\prime} is a PID, there exists a non-invertible element a in S^{\prime} such that $e\left(\left.\chi_{1}\right|_{H}\right) \operatorname{Se}\left(\left.\chi_{2}\right|_{H}\right) S$ $=a e\left(\left.\chi_{1} \chi_{2}\right|_{H}\right) S$. Write $a=\sum a_{\chi} \zeta(\chi)$ with $a_{\chi} \in R$, where χ runs through all characters of G with $\left.\chi\right|_{H}=1$. It then follows from our assumption that the ideal generated by $\left\{a_{\chi} g\left(\chi, \chi^{-1} \chi_{1} \chi_{2}\right) \mid \chi\right.$ such that $\left.\left.\chi\right|_{H}=1\right\}$ is R, and hence there exists a character χ of G such that $a_{x} g\left(\chi, \chi^{-1} \chi_{1} \chi_{2}\right)$ is invertible. Let now Q be a maximal ideal of S^{\prime} such that $a \in Q$. Since every maximal ideal of S^{\prime} is of the form σQ with σ in G, and since $e\left(\left.\chi_{1}\right|_{H}\right) S, e\left(\left.\chi_{2}\right|_{H}\right) S$ and $e\left(\left.\chi_{1} \chi_{2}\right|_{H}\right) S$ are all G stable, we see that $e\left(\left.\chi_{1}\right|_{H}\right) S e\left(\left.\chi_{2}\right|_{H}\right) S$ is contained in $J\left(S^{\prime}\right) e\left(\left.\chi_{1} \chi_{2}\right|_{H}\right) S$, where $\mathrm{J}\left(S^{\prime}\right)$ is the Jacobson radical of S^{\prime}. (Note here that $e\left(\left.\chi_{1} \chi_{2}\right|_{H}\right) S$ is a free S^{\prime}-module of rank one.) Since S^{\prime} is unramified over $R, J\left(S^{\prime}\right)=M S^{\prime}$. where M is the maximal ideal of R, and hence a is an element in $M S=\sum M \zeta(\chi)$, where χ runs through all characters of G wih $\left.\chi\right|_{H}=1$. Therefore a_{χ} is not invertible; this is a contradiction.

Corollary 8. $g\left(\chi, \chi^{-1}\right)$ is invertible if and only if $\left.\chi\right|_{H}=1$ for every inertia group H of height one prime ideal of S at which S is ramified over R. Therefore if G is the inertia group of some height one prime ideal of S at which S is ramified over R, then $g\left(\chi, \chi^{-1}\right)$ is not invertible for all non-trivial character χ of G.

Corollary 9. Assume that R and S are local rings with the maximal ideals M and N respectively such that $R / M=S / N$, and let χ be a character of G. Then the image of $\zeta(\chi)$ belongs to the socle of $S / M S$ if and only if, for every character $\chi^{\prime}(\neq 1)$ of G, there exists a height one prime ideal P of S at which S is ramified over R such that $\operatorname{ord}_{P}(\chi)+\operatorname{ord}_{P}\left(\chi^{\prime}\right) \geq|H(P)|$.

Proposition 10. Let P be a height one prime ideal of S at which S is ramified over R, and let χ be a non-trivial character of G. Assume that

$$
g\left(\chi, \chi^{-1}\right) \in \mathfrak{p}=P \cap R\left(\text { i.e., }\left.\chi\right|_{H(P)} \neq 1\right) \text {. Then } g\left(\chi, \chi^{-1}\right) R_{\mathfrak{p}}=\mathfrak{p} R_{\mathrm{p}} .
$$

Proof. To prove the assertion we may assume that R is a DVR and \mathfrak{p} is the maximal ideal of R. We put $H=H(P)$. Since S^{H} is unramified over R, $\mathfrak{p} S^{H}$ is the Jacobson radical of S^{H}. Hence, by Lemma 5(5), $e\left(\left.\chi\right|_{H}\right) S e\left(\left.\chi^{-1}\right|_{H}\right) S$ $=\mathfrak{p} S^{H}$, multiplying this with $e(1)$, we see that \mathfrak{p} is generated by $\left\{g\left\{\chi_{1}, \chi_{1}^{-1}\right) \mid \chi_{1}\right.$ such that $\left.\left.\chi_{1}\right|_{H}=\left.\chi\right|_{H}\right\}$. On the other hand it follows from the proof of Lemma 6 that $g\left(\chi_{1}, \chi_{1}^{-1}\right) g\left(\chi_{1}^{-1} \chi, \chi^{-1} \chi_{1}\right)=g\left(\chi_{1}, \chi_{1}^{-1} \chi\right) g\left(\chi_{1}^{-1}, \chi^{-1} \chi_{1}\right) g\left(\chi, \chi^{-1}\right)$; hence if $\left.\chi_{1}\right|_{H}$ $=\left.\chi\right|_{H}$, then $\left.\chi^{-1} \chi_{1}\right|_{H}=1$, and hence, by Corollary $8, g\left(\chi_{1}, \chi_{1}^{-1}\right) \in g\left(\chi, \chi^{-1}\right) R$. Thus the assertion follows.

§5. Cyclic Galois extensions

In this section we assume that G is a cyclic group (of order n). Let h be a positive integer with $h \geq 2$. We consider the case $R=k\left[\left[x_{1}, x_{2}, \cdots, x_{h}\right]\right]$, and therefore S is also a local ring. Let M and N be the maximal ideals of R and S respectively. For every $f \in R$, we put $o(f)=\min \left\{l \mid f \in M^{l}\right\}$.

Since L is a cyclic Galois extension of K, there exists an elenent z in L such that $L=K(z)$ and $z^{n} \in K$. Put $z^{n}=f$. Let ζ be a primitive n-th root of 1 , and let σ be an element in G such that $\sigma z=\zeta z$. Then σ is a generator of G. Without loss of generality we may assume that f is an element in R and has no multiple factors of order n. Let

$$
f=a f_{1}^{e(1)} f_{2}^{e(2)} \cdots f_{r}^{e(r)}, a \in R^{*},
$$

be an irredundant prime decomposition of f. It is easy to see that if \mathfrak{p} is a height one prime ideal of R such that $\mathfrak{p} \neq f_{i} R$ for all i, then S is unramified over R at \mathfrak{p} and $S_{\mathfrak{p}}=R_{p}[z]$. Throughout this section, we maintain these notations.

We first show the following
Lemma 11. Let V be a noetherian local domain of dimesion one whose maximal ideal M^{\prime} is generated by two elements x_{0} and x_{1} such that $x_{1}^{n(0)}=a x_{0}^{n(1)}$ for some invertible elemnt a. Put $d=\operatorname{GCD}(n(0), n(1))$. Assume that d is inverrible in $V, n(0)>n(1)$ and there exists an automorphism σ of V such that σa $=a, \sigma x_{0}=x_{0}$ and $\sigma x_{1}=\zeta x_{1}$, where ζ is a primitive $n(0)$-th root of 1 . Let W be the integral closure of V. Then the Jacobson radical of W is generared by an element t in W such that $\sigma t=\zeta^{v} t$, where v is an integer satisfying $v n(1) \equiv d(\bmod$ $n(0)$). Moreover the order of x_{0} at the maximal ideals of W is $n(0) / d$.

Proof. We take the continued fraction expansion

$$
n(0) / n(1)=r_{0}+1 /\left(r_{1}+1 /\left(r_{2}+\cdots+1 / r_{s}\right)\right)
$$

with $r_{s}>1$, and we define $n(2), \cdots, n(s+1)$ inductively as follows:

$$
n(i) / n(i+1)=r_{i}+1 /\left(r_{i+1}+1 /\left(r_{i+2}+\cdots+1 / r_{s}\right)\right)
$$

for $i=0, \cdots$, s. By definition $n(i)=r_{i} n(i+1)+n(i+2)$ for $i=0, \cdots, s-2$, and
moreover $\quad n(s)=n(s+1) r_{s}=d r_{s} \quad$ because $\quad d=\operatorname{GCD}(n(0), n(1))=\operatorname{GCD}(n(s)$, $n(s+1))=n(s+1)$. We then put $x_{i+1}=x_{i-1} / x_{i}^{r_{i}}-1$ for $i=1, \cdots, s+1$; inductively, we can see that $x_{i}^{n(i-1)}=c_{i} x_{i-1}^{n(i)}$, where $c_{i}=a$ or a^{-1}, for every i $=1, \cdots, s+1$; thus each x_{i} is integral over V; moreover $W=V\left[x_{2}, \cdots, x_{s+1}\right]$ is a local ring whose maximal ideal is generated by x_{s} and x_{s+1}, and $W^{\prime}\left[x_{s+2}\right]$ is a homomorphic image of $W^{\prime \prime}=W^{\prime}[T] /\left(c_{s+1} T^{d}-1\right)$. Since $W^{\prime \prime}$ is unramified over $W^{\prime \prime}$, so is $W^{\prime}\left[x_{s+2}\right]$ over W^{\prime}. Therefore $x_{s+1} W^{\prime}\left[x_{s+2}\right]$ is the Jacobson radical of $W^{\prime}\left[x_{s+2}\right]$, and hence $W=W^{\prime}\left[x_{s+2}\right]=V\left[x_{2}, \cdots, x_{s+2}\right]$. We put $v(0)$ $=0, v(1)=1$ and $v(i+1)=v(i-1)+r_{i-1} v(i)$ for $i=1, \cdots, s+1$. Moreover we put $v^{\prime}(i)=(-1)^{i+1} v(i)$ for $i=0, \cdots, s+1$. Since $x_{i+1}=x_{i-1} / x_{i}^{r_{i}}-1$, we easily see that $\sigma x_{i}=\zeta^{\nu^{\prime}(i)} x_{i}$ and $x_{0}=x_{i}^{\nu(i+1)} x_{i+1}^{\nu(i)}$ for every i by the induction on i. Therfore $\sigma x_{s+1}=\zeta^{v^{\prime}(s+1)} x_{s+1}$ and $x_{0}=x_{s+1}^{v(s+2)} x_{s+2}^{v(s+1)}$. It follows from [4, Theorem 2.2 and Theorem 2.3], that $n(0)=v(s+2) n(s+1)$ and $(-1)^{s+1} n(s$ $+1) \equiv-v(s+1) n(1)(\bmod n(0))$. Since $n(s+1)=d$, the lemma follows.

We now put $d(i)=\operatorname{GCD}(n, e(i))$ and choose a positive integer $v(i)$ so that $v(i) e(i) \equiv d(i)(\bmod n)$ for $i=1, \cdots, r$. Let ψ be the character of G satisfying $\psi(\sigma)=\zeta$. Let $H(i)$ be the inertia group of the prime ideals of S lying over $f_{i} R$, and let V_{i} be the localization of $R[z]$ with respect to $R-f_{i} R . \quad V_{i}$ is a local ring, and whose maximal ideal is generated by z and f_{i} satisfying the following conditions: $z^{n(0)}=\alpha f_{i}^{e(i)}, \alpha \in V_{i}^{*}, \sigma \alpha=\alpha$. Thus by Lemma 11 and [3, Chap. V, Theorem 24], we see that $H(i)$ is generated by $\sigma^{d(i)}$ and the basic character at the prime ideals is $\left.\psi^{v(i)}\right|_{H(i)}$.

Proposition 12. Assume that $d(i)=1$ for all i (e.g., n is a prime number), and that, if $r=1, f_{1}$ is contained in M^{2}. Then the following conditions are equivalent:
(1) S is a Gorenstein ring;
(2) S is a hypersurface;
(3) $e(1)=\cdots=e(r)$.

Proof. Note first that, for every height one prime ideal P of S at which S is ramified over R, G is the inertia group of P, and hence $\operatorname{ord}_{P}(\chi) \neq 0$ for all non-trivial characters χ of G; thus by Corollary 9 , the image of $\zeta\left(\left(\psi^{v(i)}\right)^{n-1}\right)$ in $S / M S$ is an element in the socle of $S / M S$. Therefore if S is a Gorenstein ring, then $v(1)(n-1) \equiv \cdots \equiv v(r)(n-1)(\bmod n)$, i.e. $\quad v(1)=\cdots=v(r)$; since $v(i) e(i) \equiv 1$ $(\bmod n)$ for $i=1, \cdots, r$, we have $e(1)=\cdots=e(r)$. Hence (1) implies (3). Assume now (3). Then, by definition, $v(1)=\ldots=v(r)$. We put v $=v(1)$. By Corollary $8, O(1)$ is contained in every $f_{i} R$, and therefore $O(1)$ is contained in M^{2}. By Lemma 11 above, ψ^{v} is the basic character at the prime ideal of S lying over $f_{i} R$ for every i. It then follows from Theorem 7 that $O(\chi)$ $=R$ if $\chi \neq 1, \psi^{v}$. Therefore S is a hypersurface.

We now consider the case that $d(i)>1$ for some i.

For integers i and l such that $1 \leq i \leq r$ and $0<l<n$, we denote by $w(i, l)$ the integer satisfying the conditions $0<w(i, l)<n / d(i)$ and $l e(i) / d(i) \equiv w(i, l)(\bmod$ $n / d(i)$); in other words, $w(i, l)$ is the order of ψ^{l} at the prime ideals of S lying over $f_{i} R$. We also denote by $\zeta^{\sim}\left(\psi^{l}\right)$ the image of $\zeta\left(\psi^{l}\right)$ in $S / M S$.

The next proposition then follows from Theorem 7 and Proposition 10.
Proposition 13. (1) The following two conditions are equivalent:
(E1) $O\left(\psi^{l}\right)=R$.
(E2) There exist integers l_{1} and l_{2} such that
(a) $0<l_{j}<n$ for $j=1,2$,
(b) $l_{1}+l_{2} \equiv l(\bmod n)$, and
(c) $w\left(i, l_{1}\right)+w\left(i, l_{2}\right)<n / d(i)$ for every i.
(2) Moreover the following two conditions are equivalent:
(S1) $\zeta^{\sim}\left(\psi^{l}\right)$ is an element in the socle of $S / M S$.
(S2) For any integer l^{\prime} with $0<l^{\prime}<n$, there exists an integer i such that $1 \leq i \leq r$ and $w(i, l)+w\left(i, l^{\prime}\right) \geq n / d(i)$.
(3) $g\left(\psi^{l}, \psi^{-l}\right)=a \prod_{w(i, l) \neq 0} f_{i}$ for some $a \in R^{*}$.

By using the above proposition, we can compute the embedding dimension and the Cohen-Macaulay type of S. In the rest of this section, we shall give some examples.

Example. $z^{5}=f_{1}^{2} f_{2}^{3}$.
Since $d(1)=d(2)=1, e(1) / d(1)=2, e(2) / d(2)=3$, and $n / d(1)=n / d(2)=5$, we easily have the table of $w(i, l)$'s:

l	0	1	2	3	4	$n / d(i)$
$1\left(f_{1} R\right)$	0	2	4	1	3	5
$2\left(f_{2} R\right)$	0	3	1	4	2	5

It then follows from Proposition 13 that $O\left(\psi^{l}\right) \neq R$ for all l with $0<l<5$, $\zeta^{\sim}\left(\psi^{l}\right)$ is an element in the socle of $S / M S$ and $0(1) \subseteq M^{2}$. Therefore type $S=4$ and emb. $\operatorname{dim} S=h+4$.

Example. $\quad z^{e(1) e(2)}=f_{1}^{e(1)} f_{2}^{e(2)}$ with $\left.(e(1)), e(2)\right)=1$.
Note first that $n / d(1)=e(2), n / d(2)=e(1)$ and $e(i) / d(i)=1$ for $i=1$, 2. Hence $l \equiv w(1, l)(\bmod e(2))$ and $l \equiv w(2, l)(\bmod e(1))$ for every l. Choose now positive integers r and s so that $0<r<e(2), 0<s<e(1)$ and $r e(1)$ $+s e(2) \equiv 1(\bmod e(1) e(2)) . \quad$ It is clear that, by definition, $w(1, r e(1))=w(2, s e(2))$ $=1$ and $w(2, r e(1))=w(1, \operatorname{se}(2))=0$; and moreover $w(1, \operatorname{ire}(1))=i$ and $w(2, \operatorname{ire}(1))$ $=0$ for every integer i such that $0<i<e(2)$; similarly, $w(2$, ise $(2))=i$ and $w(1$, ise(2)) $=0$ for every integer i such that $0<i<e(1)$.

We shall show that, for an integer l with $0<l<e(1) e(2), O\left(\psi^{l}\right)=R$ if and only if $l \neq r e(1)$, se(2). Let l be an integer such that $0<l<n$. Then there exist integers i and j such that $0 \leq i<e(2), 0 \leq j<e(1)$ and $\operatorname{ire}(1)+j s e(2) \equiv l$ (mode(1)e(2)). If $i j \neq 0$, we can write $\psi^{l}=\psi^{\text {ire(1) }} \psi^{\text {ise(2) ; }}$ since $w(1$, ire $(1))+$ $w(1, j s e(2))=i<e(2)$ and $w(2, \operatorname{ire}(1))+w(2, j s e(2))=j<e(1)$, it follows from Theorem 7 that $g\left(\psi^{i r e(1)}, \psi^{j s e(2)}\right)$ is invertible, and hence $O\left(\psi^{l}\right)=R$. If $i>1$ and $j=0$, we can write $\psi^{l}=\psi^{(i-1) r e(1)} \psi^{r e(1)}$; by using the same argument as above, we see that $g\left(\psi^{(i-1) r e(1)}, \psi^{r e(1)}\right)$ is invertible, and hence $O\left(\psi^{l}\right)=R$. Similarly if i $=0$ and $j>0$, we have $O\left(\psi^{l}\right)=R$. Suppose that we can write $\psi^{r e(1)}=\psi^{a} \psi^{b}$ so that $g\left(\psi^{a}, \psi^{b}\right)$ is invertible; by our assumption, $w(2, a)+w(2, b)<e(1)$. Since $w(2, r e(1))=0$, we have $w(2, a)+w(2, \mathrm{~b}) \equiv w(2, r e(1)) \equiv 0(\bmod e(1))$, and hence $w(2, a)=w(2, b)=0$. Hence we can write $a \equiv a^{\prime} r e(1)(\bmod n)$ and $b \equiv b^{\prime} r e(1)$ $(\bmod n)$ with $0<a^{\prime}, b^{\prime}<e(2)$; thus we have $1 \equiv a^{\prime}+b^{\prime}(\bmod e(2))$ and, by our assumption, $a^{\prime}+b^{\prime}<e(2)$; this is a contradiction. Therefore $O\left(\psi^{r e(1)}\right) \neq R$, and similarly $O\left(\psi^{j s e(2)}\right) \neq R$. As for $O(1)$, it is easy to see that $O(1)=\left(f_{1}, f_{2}\right) R$.

We put $t=n-1$; then $t \equiv(e(2)-1) r e(1)+(e(1)-1) \operatorname{se}(2)(\bmod n)$. Since $w(1, t)=e(2)-1$ and $w(2, t)=e(1)-1, \zeta^{\sim}\left(\psi^{t}\right)$ is an element in the socle of $S / M S$. Conversely assume that $\zeta^{\sim}\left(\psi^{l}\right)$, with $0<l<n$, is an element in the socle of $S / M S$, and choose integers i and j so that $0 \leq i<e(2), 0 \leq i<e(1)$ and ire(1) $+j s e(2) \equiv l(\bmod n)$. Since $w(1, l)=i$ and $w(2, l)=j$, our assumption on ψ^{l} implies that $w(1, l)+w(1, r e(1)) \geq e(2)$ and $w(2, l)+w(2, s e(2)) \geq e(1)$; hence i $=e(2)-1$ and $j=e(1)-1$. Therefore $l=t$.

Consequently, S is a Gorenstein local ring with emb. $\operatorname{dim} S=h$ $+\#\left\{i \mid o\left(f_{i}\right) \neq 1\right\}$.

References

[1] P. Griffith, Normal extensions of regular local rings, Journal of Algebra 105 (1987), 465475.
[2] P. Roberts, Abelian extensions of regular local rings, Proc. Amer. Math. Soc. 78 (1980), 307-310.
[3] O. Zariski and P. Samuel, Commutative Algebra vol. 1, Graduate Texts in Math. No. 28, Springer-Verlag, 1975.
[4] T. Takagi, Lectures on the Elementary Theory of Numbers (Japanese), Second edition, Kyoritu-sha Shoten, 1971.

Department of Mathematics,
Faculty of Science, Hiroshima University ${ }^{*}$)

[^0]
[^0]: *) Present address: Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University.

