Integral representations of Beppo Levi functions and the existence of limits at infinity

Dedicated to Professor Hisao Mizumoto on the occasion of his 60th brthday

Yoshihiro Mizuta
(Received June 2, 1988)

1. Introduction

Our main aim in this paper is to study the behavior at infinity of Beppo Levi functions $u \in B L_{m}\left(L_{\text {loc }}^{P}\left(R^{n}\right)\right)$ such that

$$
\begin{equation*}
\sum_{|\lambda|=m} \int\left|D^{\lambda} u(x)\right|^{p} \omega(|x|) d x<\infty, \tag{1}
\end{equation*}
$$

where m is a positive integer, $1<p<\infty, D^{\lambda}=(\partial / \partial x)^{\lambda}$ and ω is a positive monotone function on the interval $[0, \infty)$; for the definition and properties of Beppo Levi functions, see Deny-Lions [1]. For this purpose we need an integral representation of u as a generalization of [7; Theorem 1], where the case $\omega(r) \equiv 1$ was discussed.

We recall the following integral representation of $\varphi \in C_{0}^{\infty}\left(R^{n}\right)$ (see Wallin [8; p.71]):

$$
\begin{equation*}
\varphi(x)=\sum_{|\lambda|=m} a_{\lambda} \int D^{\lambda} k_{m}(x-y) D^{\lambda} \varphi(y) d y \tag{2}
\end{equation*}
$$

where $\left\{a_{\lambda}\right\}$ are constants independent of φ, k_{m} denotes the Riesz kernel of order $2 m$, which is defined by

$$
k_{m}(x)= \begin{cases}|x|^{2 m-n} & \text { if } 2 m<n \text { or if } 2 m>n \text { and } n \text { is odd }, \\ -|x|^{2 m-n} \log |x| & \text { if } 2 m \geqq n \text { and } n \text { is even. }\end{cases}
$$

If φ does not have compact support, then the integrals of (2) may fail to be absolutely convergent at any x. This requires us to modify the kernel functions $D^{\lambda} k_{m}$, in such a way that all the integrals, which will appear in the representations, are absolutely convergent at almost every x. To do so, we introduce the following kernel functions $K_{m, \lambda, \ell}$ (cf. Hayman-Kennedy [2], Mizuta [6]):

$$
\mathbf{K}_{m, \lambda, \ell}(x, y)= \begin{cases}D^{\lambda} k_{m}(x-y)-\sum_{|\mu| \leqq \ell}\left(x^{\mu} / \mu!\right)\left(D^{\lambda+\mu} k_{m}\right)(-y) & \text { if }|y| \geqq 1, \\ D^{\lambda} k_{m}(x-y) & \text { if }|y|<1 .\end{cases}
$$

Our aim is to find an integer ℓ such that the functions $\int K_{m, \lambda, \ell}(x, y) D^{\lambda} u(y) d y$ are
absolutely convergent at almost every x and the equality

$$
u(x)=\sum_{|\lambda|=m} a_{\lambda} \int K_{m, \lambda, \ell}(x, y) D^{\lambda} u(y) d y+P(x)
$$

holds for almost every $x \in \boldsymbol{R}^{n}$, where P is a polynomial which is polyharmonic of order m in \boldsymbol{R}^{n} (see Theorems 1 and 1^{\prime}).

By using the above integral representation, we can give extensions of the results in the papers [5], [6] and [7] about the existence of radial limits.

2. Preliminary lemmas

Let k_{m} be the Riesz kernel of order $2 m$, which is defined as above. Then, for a multiindex λ with length $|\lambda|$, we see that $D^{\lambda} k_{m}(x)$ is of the form $\left(\sum b_{\mu} x^{\mu}\right) h(|x|)+\left(\sum c_{\nu} x^{\nu}\right)|x|^{2 m-n-2|\lambda|}$, where $b_{\mu}(|\mu|=2 m-n-|\lambda|), c_{v}(|\nu|=|\lambda|)$ are constants and

$$
h(r)= \begin{cases}\log r & \text { in case } m \geqq n \text { and } n \text { is even } \\ 1 & \text { otherwise }\end{cases}
$$

in case $2 m-n<|\lambda|, \sum b_{\mu} x^{\mu}$ is understood to be zero.
We first state some elementary facts concerning the properties of $K_{m, \lambda, \ell}$ (cf. [6; Lemmas 1 and 4], [7; Lemma 1]).

Lemma 1. (i) The function $K_{m, \lambda, \ell}(\cdot y)$ is polyharmonic of order m in $R^{n}-\{y\}$, that is, $\Delta^{m} K_{m, \lambda, \ell}(\cdot, y)=0$ on $R^{n}-\{y\}$.
(ii) If $2 m-|\lambda|-n-\ell \leqq 0$, then

$$
K_{m, \lambda, \ell}(r x, r y)=r^{2 m-n-|\lambda|} K_{m, \lambda, \ell}(x, y) \quad \text { for } r>0,
$$

whenever $|y| \geqq \max \left\{r^{-1}, 1\right\}$.
Lemma 2. If $\ell \geqq \max \{-1,2 m-n-|\lambda|\}$, then there exists a positive constant M such that

$$
\left|K_{m, \lambda, \ell}(x, y)\right| \leqq M|x|^{\ell+1}|y|^{2 m-n-|\lambda|-\ell-1}
$$

whenever $|y| \geqq 2|x|$ and $|y| \geqq 1$.
Remark. If $\ell \leqq-1$ or $y \in B(0,1)$, then

$$
\left|K_{m, \lambda, \ell}(x, y)\right|=\left|D^{\lambda} k_{m}(x-y)\right| \leqq M|x-y|^{2 m-n-|\lambda|}[|h(|x-y|)|+1]
$$

for any x, where $B(x, r)$ denotes the open ball with center at x and radius $r>0$, and M is a positive constant independent of x and y.

Lemma 3. If $\ell \geqq \max \{0,2 m-n-|\lambda|\}$, then there exists a positive constant M such that

$$
\begin{aligned}
& \left|K_{m, \lambda, \ell}(x, y)\right| \leqq M|x|^{\ell}|y|^{2 m-n-|\lambda|-\ell} h(4|x| /|y|) \\
& \quad \text { whenever } 1 \leqq|y|<2|x| \text { and }|x-y| \geqq|x| / 2
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|K_{m, \lambda, \ell}(x, y)\right| \leqq M\left[|x|^{2 m-n-|\lambda|}+|x-y|^{2 m-n-|\lambda|} h(|x| /|x-y|)\right] \\
& \quad \text { whenever } 1 \leqq|y|<2|x| \text { and }|x-y|<|x| / 2 .
\end{aligned}
$$

Proof. For a function $K(x, y)$, we write $K^{(\ell)}(x, y)=K(x, y)-\sum_{|\mu| \xi \ell}\left(x^{\mu} / \mu!\right)$ $\left[(\partial / \partial x)^{\mu} K\right](0, y)$. We know that $\left(D^{\lambda} k_{m}\right)(x-y)$ is of the form

$$
\begin{aligned}
& \left(\sum_{|\mu|}=2 m-n-|\lambda|{ }_{\mu}(x-y)^{\mu}\right) h(|x-y| /|y|) \\
& \quad+\left(\sum_{|\mu|=2 m-n-|\lambda|} b_{\mu}(x-y)^{\mu}\right) h(|y|)+\left(\sum_{|\mu|=|\lambda|} c_{\mu}(x-y)^{\mu}\right)|x-y|^{2 m-n-2|\lambda|} \\
& \quad=K_{1}(x, y)+K_{2}(x, y)+K_{3}(x, y) .
\end{aligned}
$$

Since $K_{2}^{(\ell)}(x, y) \equiv 0, K_{m, \lambda, \ell}(x, y)=K_{1}^{(\ell)}(x, y)+K_{3}^{(\ell)}(x, y)$ for $|y| \geqq 1$, from which we can derive the desired result.

For simplicity, we set $\Omega(x)=\omega(|x|)$ for a positive monotone function ω on the interval $[0, \infty)$. Further, fixing m and p, we let ℓ_{ω} be the smallest integer ℓ satisfying

$$
\int_{1}^{\infty} r^{p^{\prime}(m-n / p-\ell-1)} \omega(r)^{-p^{\prime} / p} r^{-1} d r<\infty,
$$

if it exists, where $1 / p+1 / p^{\prime}=1$; and for $\ell \geqq \max \left\{\ell_{\omega}, m-n\right\}$, let

$$
\omega_{\ell}(r)=\left(\int_{r}^{\infty} s^{p^{\prime}(m-n / p-\ell-1)} \omega(s)^{-p^{\prime} / p_{S}} S^{-1} d s\right)^{1 / p^{\prime}}
$$

Remark. If ω is a positive monotone function on the interval $[0, \infty)$ for which there exists $A>0$ such that

$$
A^{-1} \omega(r) \leqq \omega(2 r) \leqq A \omega(r) \quad \text { for } r>0
$$

then ℓ_{ω} exists and $\ell_{\omega} \leqq m-n / p+\alpha / p$, where $\alpha=\log _{2} A$. In case $\omega(r)=r^{-\delta}$ for $r>1$, we note that $\ell_{\omega} \leqq m-n / p+\delta / p<\ell_{\omega}+1$.

Throughout this paper, let ω be a positive monotone function on $[0, \infty)$ satisfying condition $(\omega 1)$.

Lemma 4. If $\ell \geqq \max \left\{-1, \ell_{\omega}, m-n\right\}$ and f is a nonnegative measurable function on R^{n} satisfying $\int_{R^{n}} f(y)^{p} \Omega(y) d y<\infty$, then

$$
\int_{R^{n}-B(0,2|x|)}\left|K_{m, \lambda, \ell}(x, y)\right| f(y) d y \leqq M|x|^{\ell+1} \Omega_{\ell}(x) F(x)
$$

whenever $|\lambda|=m$ and $x \in R^{n}-B(0,2)$, where M is a positive constant independent of $x, \Omega_{\ell}(x)=\omega_{\ell}(|x|)$ and

$$
F(x)=\left(\int_{R^{n}-B(0,2|x|)} f(y)^{p} \Omega(y) d y\right)^{1 / p}
$$

Proof. By Lemma 2 we have

$$
\begin{aligned}
& \int_{R^{n}-B(0,2|x|)}\left|K_{m, \lambda, \ell}(x, y)\right| f(y) d y \\
& \leqq M|x|^{\ell+1} \int_{R^{n}-B(0,2|x|)}|y|^{m-n-\ell-1} f(y) d y
\end{aligned}
$$

By Hölder's inequality, we see that the right hand side is dominated by

$$
\begin{aligned}
& M_{1}|x|^{\ell+1}\left(\int_{R^{n}-B(0,2|x|)}\left(|y|^{m-n-\ell-1} \Omega(y)^{-1 / p}\right)^{p^{\prime}} d y\right)^{1 / p^{\prime}} F(x) \\
& \leqq M_{2}|x|^{\ell+1} \omega_{\ell}(|x|) F(x)
\end{aligned}
$$

with positive constants M_{1} and M_{2}. Thus the lemma is proved.
Lemma 2'. If $2 m-n-|\lambda|>\ell \geqq-1$, then

$$
\left|K_{m, \lambda, \ell}(x, y)\right| \leqq M|x|^{\ell+1}|y|^{2 m-n-|\lambda|-\ell-1} h(2|y|)
$$

whenever $|y| \geqq 2|x|$ and $|y| \geqq 1$, where M is a positive constant independent of x and y.

Lemma 3'. If $2 m-n-|\lambda|>\ell \geqq-1$, then

$$
\left|K_{m, \lambda, e}(x, y)\right| \leqq M|x|^{2 m-n-|\lambda|} h(4|x|) \quad \text { whenever } 1 \leqq|y| \leqq 2|x| \text {, }
$$

where M is a positive constant independent of x and y.
Let ℓ_{ω}^{\prime} be the smallest integer ℓ satisfying

$$
\int_{1}^{\infty} r^{p^{\prime}(m-n / p-\ell-1)} h(r)^{p^{\prime}} \omega(r)^{-p^{\prime} / p} r^{-1} d r<\infty .
$$

We note that $\ell_{\omega}^{\prime}=\ell_{\omega}$ or $\ell_{\omega}+1$. If $\ell_{\omega}^{\prime} \leqq \ell<m-n$, then we set

$$
\omega_{\ell}(r)=\left(\int_{r}^{\infty} s^{p^{\prime}(m-n / p-\ell-1)} h(s)^{p^{\prime}} \omega(s)^{-p^{\prime} / p^{-1}} S^{-1} d s\right)^{1 / p^{\prime}}
$$

(compare it with that defined for $\ell \geqq \max \left\{\ell_{\omega}, m-n\right\}$).
Remark. If $\omega(r)=r^{-\delta}$ on the interval $(1, \infty)$, then $\ell_{\omega}=\ell_{\omega}^{\prime}$ and, for ℓ_{ω} $\leqq \ell<m-n$, we have

$$
\omega_{\ell}(r) \leqq M r^{m-n / p-\ell-1+\delta / p} \log r,
$$

where M is a positive constant independent of $r>2$.
Lemma 4'. If $|\lambda|=m, \max \left\{-1, \ell_{\omega}^{\prime}\right\} \leqq \ell<m-n$ and f is a nonnegative measurable function on R^{n} satisfying $\int_{R^{n}} f(y)^{p} \Omega(y) d y<\infty$, then

$$
\int_{R^{n}-B(0,2|x|)}\left|K_{m, \lambda, \ell}(x, y)\right| f(y) d y \leqq M|x|^{\ell+1} \Omega_{\ell}(x) F(x)
$$

for every $x \in R^{n}-B(0,2)$, where M is a positive constant independent of $x, \Omega_{\ell}(x)$ $=\omega_{\ell}(|x|)$ and F is as in Lemma 4.

3. L^{p}-estimates with weight

In this section we give L^{p}-estimates with weight of $D^{\mu} \int K_{m, \lambda, \ell}(x, y) f(y) d y$, $|\mu|=m$, for functions f satisfying $\int|f(y)|^{p} \Omega(y) d y<\infty$.

We begin with showing the following technical lemma.
Lemma 5. Let f be a nonnegative measurable function on R^{n} such that $\int f(y)^{p} \Omega(y) d y<\infty$. Let ℓ be an integer such that $\ell \geqq \max \left\{-1, \ell_{\omega}, m-n\right\}$ or $\max \left\{-1, \ell_{\omega}^{\prime}\right\} \leqq \ell<m-n . \quad$ For $R>1$, we write

$$
U_{\ell} f(x)=\int K_{m, \lambda, \ell}(x, y) f(y) d y
$$

and

$$
U_{\ell, R} f(x)=\int_{B(0,2 R)} K_{m, \lambda, \ell}(x, y) f(y) d y .
$$

Then $U_{\ell} f \in B L_{m}\left(L_{\text {loc }}^{p}\left(R^{n}\right)\right)$ and $U_{\ell, R} f$ tends to $U_{\ell} f$ in $B L_{m}\left(L_{\text {loc }}^{p}\left(R^{n}\right)\right)$ as $R \rightarrow \infty$.
Proof. If we set $V_{\ell, R} f(x)=\int_{R^{n}-B(0,2 R)} K_{m, \lambda, \ell}(x, y) f(y) d y$, then Lemmas 4 and 4^{\prime} imply that $V_{\ell, R} f(x)$ is absolutely convergent for every $x \in B(0$, R). Further, since $(\partial / \partial x)^{\mu} K_{m, \lambda, \ell}(x, y)=K_{m, \lambda+\mu, \ell-|\mu|}(x, y)$, we see, in view of Lemmas 2 and 2^{\prime} (cf. the proof of Lemma 4), that $V_{\ell, R} f$ is infinitely differentiable and $(\partial / \partial x)^{\mu} V_{\ell, R}(x)=\int_{R^{n}-B(0,2 R)} K_{m, \lambda+\mu, \ell-|\mu|}(x, y) f(y) d y$ on $B(0, R)$. On the other hand, by Lemma 3.3 in [4], we find that $U_{\ell, R} f \in B L_{m}\left(L_{\text {loc }}^{p}\left(R^{n}\right)\right)$,
because $\quad U_{\ell, R} f(x)=\int_{B(0,2 R)} D^{\lambda} k_{m}(x-y) f(y) d y+$ a polynomial. Consequently, $U_{\ell} f \in B L_{m}\left(L_{l o c}^{p}\left(R^{n}\right)\right)$. By Lemmas 2 and 2^{\prime} again, we see that $(\partial / \partial x)^{\mu} V_{\ell, R}(x)$ are all convergent to 0 locally uniformly as $R \rightarrow \infty$ on R^{n}, so that $U_{\ell, R} f(x) \rightarrow U_{\ell} f(x)$ in $B L_{m}\left(L_{\text {loc }}^{p}\left(R^{n}\right)\right.$) as $R \rightarrow \infty$. Thus Lemma 5 is proved.

Remark. We can also prove that $\int\left|K_{m, \lambda, \ell}(x, y)\right| f(y) d y \in L_{\text {loc }}^{p}\left(R^{n}\right)$, since $\int_{B(0,2 R)}\left|D^{\lambda} k_{m}(x-y)\right| f(y) d y \in L_{\text {loc }}^{p}\left(R^{n}\right) \quad$ and $\quad \int_{R^{n-B(0,2 R)}}\left|K_{m, \lambda, e}(x, y)\right| f(y) d y \quad$ is bounded in $B(0, R)$.

Proposition 1. Let $\ell \geqq m$ and ω be a positive nonincreasing function on the interval $[0, \infty)$ satisfying ($\omega 1$) and the following conditions:
(i) There exists a number α such that $\alpha>n+\ell-m$ and

$$
\int_{1}^{r} s^{-\alpha p^{\prime}+n} \omega(s)^{-p^{\prime} / p} S^{-1} d s \leqq M_{1} r^{-\alpha p^{\prime}+n} \omega(r)^{-p^{\prime} / p} \quad \text { for any } r>1 .
$$

(ii) There exists a number β such that $\beta<n+\ell-m+1$ and

$$
\int_{r}^{\infty} s^{-\beta p^{\prime}+n} \omega(s)^{-p^{\prime} / p} S^{-1} d s \leqq M_{2} r^{-\beta p^{\prime}+n} \omega(r)^{-p^{\prime} / p} \quad \text { for any } r>0
$$

Here M_{1} and M_{2} are positive constants independent of $r . \quad$ If $|\lambda|=|\mu|=m$, then

$$
\int\left|D^{\mu} \int K_{m, \lambda, \ell}(x, y) f(y) d y\right|^{p} \Omega(x) d x \leqq M \int f(y)^{p} \Omega(y) d y
$$

for any nonnegative measurable function f on R^{n}, where M is a positive constant independent of f.

Remark. If (ii) is fulfilled, then, since $-\beta p^{\prime}+n>p^{\prime}(m-n / p-\ell-1)$, we see that $\ell \geqq \ell_{\omega}^{\prime}\left(\geqq \ell_{\omega}\right)$.

Proof of Proposition 1. By Lemma 5 we may assume that f vanishes outside a compact set in R^{n}. Then it follows from [4; Lemma 5.1] that $(\partial / \partial x)^{\mu} U_{\ell} f(x)$ is of the form

$$
\begin{aligned}
& a f(x)+\int D^{\mu+\lambda} k_{m}(x-y) f(y) d y \\
& \quad-\sum_{|v| \leqq \ell-m}(v!)^{-1} x^{v} \int_{R^{n}-B(0,1)} D^{\lambda+\mu+v} k_{m}(-y) f(y) d y
\end{aligned}
$$

with a constant a. Here $\int D^{\mu+\lambda} k_{m}(x-y) f(y) d y$ is understood to be $\lim _{r \downharpoonright 0} \int_{R^{n}-B(x, r)} D^{\mu+\lambda} k_{m}(x-y) f(y) d y$, which exists almost everywhere on R^{n} and,
since $f \in L^{p}\left(R^{n}\right)$, it belongs to $L^{p}\left(R^{n}\right)$ because of [4; Lemma 3.3]. For $x \in R^{n}$ and $|\mu|=m$, we set

$$
\begin{aligned}
& u_{1}(x)=\int_{B(0,2|x|)} D^{\mu+\lambda} k_{m}(x-y) f(y) d y \\
& \quad-\sum_{|v| \leq \ell-m}(\nu!)^{-1} x^{\nu} \int_{B(0,2|x|)-B(0,1)} D^{\lambda+\mu+\nu} k_{m}(-y) f(y) d y
\end{aligned}
$$

and

$$
\begin{aligned}
u_{2}(x)= & \int_{R^{n}-B(0,2|x|)} D^{\mu+\lambda} k_{m}(x-y) f(y) d y \\
& -\sum_{|v| \leq \ell-m}(v!)^{-1} x^{v} \int_{R^{n}-B(0,2|x|)-B(0,1)} D^{\lambda+\mu+\nu} k_{m}(-y) f(y) d y \\
= & \int_{R^{n}-B(0,2|x|)} K_{m, \lambda+\mu, \ell-m}(x, y) f(y) d y .
\end{aligned}
$$

If $x \in B\left(0,2^{j+1}\right)-B\left(0,2^{j}\right)$, then

$$
\begin{aligned}
\left|u_{1}(x)\right| \leqq & M_{1}\left(\left|\int_{B\left(0,2^{j+2}\right)-B\left(0,2^{j-1}\right)} D^{\mu+\lambda} k_{m}(x-y) f(y) d y\right|\right. \\
& +\int_{A(x)}\left|D^{\mu+\lambda} k_{m}(x-y)\right| f(y) d y \\
& \left.+|x|^{\ell-m} \int_{B(0,2|x|)-B(0,1)}|y|^{m-n-\ell} f(y) d y\right) \\
= & M_{1}\left[u_{11}(x)+u_{12}(x)+u_{13}(x)\right]
\end{aligned}
$$

with a positive constant M_{1} independent of x, where $A(x)=B\left(0,2^{j-1}\right) \cup[B(0$, $\left.\left.2^{j+2}\right)-B(0,2|x|)\right]$. First we have by Lemma 3.3 in [4]

$$
\begin{aligned}
\int u_{11}(x)^{p} \Omega(x) d x & \leqq \sum_{j} \omega\left(2^{j}\right) \int\left|\int_{B\left(0,2^{j+2}\right)-B\left(0,2^{j-1}\right)} D^{\mu+\lambda} k_{m}(x-y) f(y) d y\right|^{p} d x \\
& \leqq M_{2} \sum_{j} \omega\left(2^{j}\right) \int_{B\left(0,2^{j+2}\right)-B\left(0,2^{j-1}\right)} f(y)^{p} d y \\
& \leqq M_{3} \int f(y)^{p} \Omega(y) d y
\end{aligned}
$$

with positive constants M_{2} and M_{3} independent of f. Next, since $|x-y|$ $\geqq|x| / 2$ for $y \in A(x), u_{12}(x) \leqq M_{4}|x|^{-n} \int_{B(0,4|x|)} f(y) d y$ with a positive constant M_{4} independent of x. Since $\Omega(x) \leqq A^{2} \Omega(y)$ whenever $y \in B(0,4|x|)$, letting 0 $<\delta<n / p^{\prime}$, we have

$$
\begin{aligned}
\int u_{12}(x)^{p} \Omega(x) d x \leqq & M_{4}^{p} \int|x|^{-n p}\left(\int_{B(0,4|x|)}|y|^{-\delta p^{\prime}} d y\right)^{p / p^{\prime}} \\
& \times\left(\int_{B(0,4|x|)}|y|^{\delta p} f(y)^{p} d y\right) \Omega(x) d x \\
\leqq & M_{5} \int\left(|x|^{-\delta p-n}\left(\int_{B(0,4|x|)}|y|^{\delta p} f(y)^{p} \Omega(y) d y\right) d x\right. \\
= & M_{5} \int|y|^{\delta p} f(y)^{p} \Omega(y)\left(\int_{R^{n}-B(0,|y| / 4)}|x|^{-\delta p-n} d x\right) d y \\
\leqq & M_{6} \int f(y)^{p} \Omega(y) d y
\end{aligned}
$$

with positive constants M_{5} and M_{6}. Similarly, using ($\omega 2$), we see that

$$
\begin{aligned}
& \int u_{13}(x)^{p} \Omega(x) d x \leqq \int|x|^{(\ell-m) p}\left(\int_{B(0,2|x|)-B(0,1)}|y|^{-\alpha p^{\prime}} \Omega(y)^{-p^{\prime} \mid p} d y\right)^{p / p^{\prime}} \\
& \times\left(\int_{B(0,2|x|)}|y|^{(\alpha-n-\ell+m) p} f(y)^{p} \Omega(y) d y\right) \Omega(x) d x \\
& \leqq M_{7} \int\left(|x|^{-\alpha p+n p / p^{\prime}+(\ell-m) p}\left(\int_{B(0,2|x|)}|y|^{(\alpha-n-\ell+m) p} f(y)^{p} \Omega(y) d y\right) d x\right. \\
&=M_{7} \int|y|^{(\alpha-n-\ell+m) p} f(y)^{p} \Omega(y)\left(\int_{R^{n}-B(0,|y| / 2)}|x|^{-\alpha p+n p / p^{\prime}+(\ell-m) p} d x\right) d y \\
& \leqq M_{8} \int f(y)^{p} \Omega(y) d y
\end{aligned}
$$

with positive constants M_{7} and M_{8}.
On the other hand, by Lemma 2 we obtain

$$
\begin{aligned}
\left|u_{2}(x)\right| \leqq & M_{9} \int_{R^{n}-B(0,2|x|)}|x|^{\ell-m+1}|y|^{-n-(\ell-m)-1} f(y) d y \\
& +M_{9} \int_{B(0,1)-B(0,2|x|)}|y|^{-n} f(y) d y=M_{9}\left[u_{21}(x)+u_{22}(x)\right]
\end{aligned}
$$

with a positive constant M_{9}. It follows from condition ($\omega 3$) that

$$
\begin{aligned}
\int\left|u_{21}(x)\right|^{p} \Omega(x) d x \leqq & \int|x|^{(\ell-m+1) p}\left(\int_{R^{n}-B(0,2|x|)}|y|^{-\beta p^{\prime}} \Omega(y)^{-p^{\prime} / p} d y\right)^{p / p^{\prime}} \\
& \times\left(\int_{R^{n}-B(0,2|x|)}|y|^{(\beta-n-\ell+m-1) p} f(y)^{p} \Omega(y) d y\right) \Omega(x) d x \\
\leqq & M_{10} \int\left(|x|^{-\beta p+n p / p^{\prime}+(\ell-m+1) p}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \times\left(\int_{R^{n}-B(0,2|x|)}|y|^{(\beta-n-\ell+m-1) p} f(y)^{p} \Omega(y) d y\right) d x \\
\leqq & M_{11} \int|y|^{(\beta-n-\ell+m-1) p} f(y)^{p} \Omega(y) \\
& \times\left(\int_{B(0,|y| / 2)}|x|^{-\beta p+n p / p^{\prime}+(\ell-m+1) p} d x\right) d y \\
\leqq & M_{12} \int f(y)^{p} \Omega(y) d y
\end{aligned}
$$

with positive constants $M_{10} \sim M_{12}$. Letting $n / p^{\prime}<\gamma<n$ and noting that $u_{22}(x)=0$ for $x \in R^{n}-B(0,1 / 2)$ and both $\Omega(x)$ and $\Omega(x)^{-1}$ are bounded on $B(0,1)$, we establish

$$
\begin{aligned}
\int\left|u_{22}(x)\right|^{p} \Omega(x) d x \leqq & \int_{B(0,1 / 2)}\left(\int_{R^{n}-B(0,2|x|)}|y|^{-\gamma p^{\prime}} d y\right)^{p / p^{\prime}} \\
& \times\left(\int_{B(0,1)-B(0,2|x|)}|y|^{(\gamma-n) p} f(y)^{p} d y\right) \Omega(x) d x \\
\leqq & M_{13} \int_{B(0,1 / 2)}|x|^{-\gamma p+n p / p^{\prime}} \\
& \times\left(\int_{B(0,1)-B(0,2|x|)}|y|^{(\gamma-n) p} f(y)^{p} d y\right) d x \\
\leqq & M_{13} \int_{B(0,1)}|y|^{(\gamma-n) p} f(y)^{p}\left(\int_{B(0,|y| / 2)}|x|^{-\gamma p+n p / p^{\prime}} d x\right) d y \\
\leqq & M_{14} \int_{B(0,1)} f(y)^{p} d y \leqq M_{15} \int f(y)^{p} \Omega(y) d y
\end{aligned}
$$

with positive constants $M_{13} \sim M_{15}$. Thus Proposition 1 is proved.
Proposition 2. Let $\ell<m$ and ω be a positive nonincreasing function on $[0, \infty)$ satisfying ($\omega 1$) and (ii) in Proposition 1. Then the same conclusion as in Proposition 1 holds.

The proof can be carried out in the same way as that of Proposition 1. In fact, in this case, $D^{\mu} \int K_{m, \lambda, \ell}(x, y) f(y) d y$ is of the form

$$
a f(x)+\int D^{\mu+\lambda} k_{m}(x-y) f(y) d y
$$

with a constant a, and $\left|\int D^{\mu+\lambda} k_{m}(x-y) f(y) d y\right| \leqq M\left[u_{11}(x)+u_{12}(x)+v(x)\right]$,
where u_{11} and u_{12} are as in the proof of Proposition 1 and $v(x)$ $=\int_{R^{n}-B(0,2|x|)}|y|^{-n} f(y) d y$. Since u_{11} and u_{12} are evaluated in the proof of Proposition 1, we have only to treat the function v. By noting that β in $(\omega 3)$ is smaller than n, we establish

$$
\begin{aligned}
\int v(x)^{p} \Omega(x) d x \leqq & \int\left(\int_{R^{n}-B(0,2|x|)}|y|^{-\beta p^{\prime}} \Omega(y)^{-p^{\prime} \mid p} d y\right)^{p / p^{\prime}} \\
& \times\left(\int_{R^{n}-B(0,2|x|)}|y|^{(\beta-n) p} f(y)^{p} \Omega(y) d y\right) \Omega(x) d x \\
\leqq & M_{1} \int\left(|x|^{-\beta p+n p / p^{\prime}}\left(\int_{R^{n}-B(0,2|x|)}|y|^{(\beta-n) p} f(y)^{p} \Omega(y) d y\right) d x\right. \\
\leqq & M_{2} \int|y|^{(\beta-n) p} f(y)^{p} \Omega(y)\left(\int_{B(0,|y| / 2)}|x|^{-\beta p+n p / p^{\prime}} d x\right) d y \\
\leqq & M_{3} \int f(y)^{p} \Omega(y) d y
\end{aligned}
$$

with positive constants M_{1}, M_{2} and M_{3}.
Remark. Let $\omega(r)=r^{-\delta}$ for $r>1$, where $\delta \geqq 0$. If $-1 \leqq \ell<m-n / p$ $+\delta / p<\ell+1$, then ω satisfies conditions ($\omega 1$), (i) and (ii). If $\ell=m-n / p$ $+\delta / p \geqq-1$, then ω satisfies ($\omega 1$) and (ii), but not (i).

In view of the proof of Proposition 1, we can establish the following variant of Proposition 1.

Proposition 3. Let ω be a positive nonincreasing function on the interval $[0, \infty)$ satisfying condition ($\omega 1$) together with (ii) in Proposition 1. If ω_{ℓ}^{*} is a positive nonincreasing function on $[0, \infty)$ such that

$$
\omega_{\ell}^{*}(r)=r^{(m-\ell-n / p) p}\left(\int_{1}^{r} s^{p^{\prime}(m-n / p-\ell)} \omega(s)^{-p^{\prime} / p} S^{-1} d s\right)^{-p / p^{\prime}} \quad \text { for } r>2,
$$

then

$$
\int\left|D^{\mu} \int K_{m, \lambda, \ell}(x, y) f(y) d y\right|^{p} \Omega_{\ell}^{*}(x) d x \leqq M \int f(y)^{p} \Omega(y) d y
$$

for $|\mu|=m$, where $\Omega_{\ell}^{*}(x)=\omega_{\ell}^{*}(|x|)$ and M is a positive constant independent of f.
Remark. If ω satisfies condition ($\omega 1$), then we can find a positive constant M_{1} such that $\omega_{\ell}^{*}(r) \leqq M_{1} \omega(r)$ for $r \geqq r_{0}>1$. If $\ell \geqq \ell_{\omega}$, then $\omega_{\ell}^{*}(r)$ $\geqq M_{2} r^{p(m-n / p-\ell-1)}$ for $r>1$ with a positive constant M_{2}.

Proposition 1'. Let $\ell \geqq m$ and ω be a positive nondecreasing function on
the interval $[0, \infty$) satisfying ($\omega 1$), (i), (ii) in Proposition 1 and

$$
\int_{1}^{\infty} r^{-n p+n} \omega(r) r^{-1} d r<\infty
$$

If $|\lambda|=|\mu|=m$, then

$$
\int\left|D^{\mu} \int K_{m, \lambda, e}(x, y) f(y) d y\right|^{p} \Omega(x) d x \leqq M \int f(y)^{p} \Omega(y) d y
$$

for any nonnegative measurable function f on R^{n}, where M is a positive constant independent of f.

Proof. Let f be a nonnegative measurable function on R^{n} such that $\int f(y)^{p} \Omega(y) d y<\infty$. As in the proof of Proposition 1, we may assume that f vanishes outside a compact set in R^{n}, and write $D^{\mu} \int K_{m, \lambda, \ell}(x, y) f(y) d y=a f(x)$ $+u_{1}(x)+u_{2}(x)$, where a is a positive constant, $x \in R^{n}$ and $|\mu|=m$. As in the proof of Proposition 1, $\left|u_{1}(x)\right| \leqq M_{1}\left[u_{11}(x)+u_{12}(x)+u_{13}(x)\right]$, and we can prove that

$$
\int u_{11}(x)^{p} \Omega(x) d x \leqq M_{2} \int f(y)^{p} \Omega(y) d y
$$

and

$$
\int u_{13}(x)^{p} \Omega(x) d x \leqq M_{2} \int f(y)^{p} \Omega(y) d y
$$

with a positive constant M_{2} independent of f. Also, $\left|u_{12}(x)\right| \leqq M_{3}\left[u_{12}^{\prime}(x)+\right.$ $\left.u_{12}^{\prime \prime}(x)\right]$ with a positive constant M_{3}, where $u_{12}^{\prime}(x)=|x|^{-n} \int_{B(0,4|x|)-B(0,1)} f(y) d y$ and $u_{12}^{\prime \prime}(x)=|x|^{-n} \int_{B(0,4|x|) \cap B(0,1)} f(y) d y$. We derive from $(\omega 2)$

$$
\begin{aligned}
\int u_{12}^{\prime}(x)^{p} \Omega(x) d x \leqq & \int|x|^{-n p}\left(\int_{B(0,4|x|)-B(0,1)}|y|^{-\alpha p^{\prime}} \Omega(y)^{-p^{\prime} \mid p} d y\right)^{p / p^{\prime}} \\
& \times\left(\int_{B(0,4|x|)}|y|^{\alpha p} f(y)^{p} \Omega(y) d y\right) \Omega(x) d x \\
\leqq & M_{4} \int\left(|x|^{-\alpha p-n}\left(\int_{B(0,4|x|)}|y|^{\alpha p} f(y)^{p} \Omega(y) d y\right) d x\right. \\
= & M_{4} \int|y|^{\alpha p} f(y)^{p} \Omega(y)\left(\int_{R^{n}-B(0,|y| / 4)}|x|^{-\alpha p-n} d x\right) d y
\end{aligned}
$$

$$
\leqq M_{5} \int f(y)^{p} \Omega(y) d y
$$

Moreover, letting $0<\delta<n / p^{\prime}$ and using ($\omega 4$), we find

$$
\begin{aligned}
\int \mathrm{u}_{12}^{\prime \prime}(x)^{p} \Omega(x) d x \leqq & \int_{B(0,1 / 4)}|x|^{-n p}\left(\int_{B(0,4|x|)}|y|^{-\delta p^{\prime}} d y\right)^{p / p^{\prime}} \\
& \times\left(\int_{B(0,4|x|)}|y|^{p p} f(y)^{p} d y\right) \Omega(x) d x \\
& +\int_{R^{n}-B(0,1 / 4)}|x|^{-n p}\left(\int_{B(0,1)} f(y) d y\right)^{p} \Omega(x) d x \\
\leqq & M_{6} \int_{B(0,1 / 4)}|x|^{-\delta p-n}\left(\int_{B(0,4|x|)}|y|^{\delta p} f(y)^{p} d y\right) d x \\
& +M_{6}\left(\int_{R^{n}-B(0,1 / 4)}|x|^{-n p} \Omega(x) d x\right)\left(\int_{B(0,1)} f(y)^{p} d y\right) \\
\leqq & M_{6} \int_{B(0,1)}|y|^{\delta p} f(y)^{p}\left(\int_{R^{n}-B(0,|y| / 4)}|x|^{-\delta p-n} d x\right) d y \\
& +M_{7} \int_{B(0,1)} f(y)^{p} d y \\
\leqq & M_{8} \int_{B(0,1)} f(y)^{p} d y \leqq M_{9} \int f(y)^{p} \Omega(y) d y
\end{aligned}
$$

with positive constants $M_{6} \sim M_{9}$.
Since the same evaluations as in the proof of Proposition 1 are true for u_{2}, we complete the proof of Proposition 1^{\prime}.

Proposition 2'. Let $-1 \leqq \ell<m$ and ω be a positive nondecreasing function on $[0, \infty)$ satisfying ($\omega 1$), ($\omega 2$) with $\alpha>0,(\omega 4)$ and (ii) in Proposition 1. Then the same conclusion as in Proposition 1 holds.

Proposition 3'. Let ω be a positive nondecreasing function on the interval $[0, \infty)$ satisfying conditions ($\omega 1$), ($\omega 2$) with $\alpha>0,(\omega 4)$ and (ii) in Proposition 1. Suppose $\omega_{\ell}^{*}(r)=r^{(m-\ell-n / p) p}\left(\int_{1}^{r} s^{p^{\prime}(m-n / p-\ell)} \omega(s)^{-p^{\prime} / p} S^{-1} d s\right)^{-p / p^{\prime}}$ is nondecreasing on some interval $\left[r_{0}, \infty\right)$; and set $\omega_{\ell}^{*}(r)=\omega_{\ell}^{*}\left(r_{0}\right)$ for $r<r_{0}$. Then

$$
\int\left|D^{\mu} \int K_{m, \lambda, \ell}(x, y) f(y) d y\right|^{p} \Omega_{\ell}^{*}(x) d x \leqq M \int f(y)^{p} \Omega(y) d y
$$

for $|\mu|=m$, where $\Omega_{\ell}^{*}(x)=\omega_{\ell}^{*}(|x|)$ and M is a positive constant independent of f.

4. Integral representation

Now we establish the integral representation of Beppo Levi functions as given in the Introduction.

Theorem 1. Let ω be a positive monotone function on the interval $[0, \infty)$ satisfying condition ($\omega 1$), and suppose further $\ell_{\omega} \geqq m-n$. If u is a function in $B L_{m}\left(L_{\text {loc }}^{p}\left(R^{n}\right)\right.$) satisfying (1), then there exists a polynomial P, which is polyharmonic of order m in R^{n}, such that

$$
u(x)=\sum_{|\lambda|=m} a_{\lambda} \int K_{m, \lambda, \epsilon \omega}(x, y) D^{\lambda} u(y) d y+P(x) \quad \text { a.e. on } R^{n} .
$$

Remark. We recall that $\ell_{\omega} \leqq m-n / p+\alpha / p$ with $\alpha=\log _{2} A$ (see the Remark given before Lemma 4). We shall show below that the degree of P is at most $\max \left\{m-1, \ell_{\omega}+1\right\}$.

Proof of Theorem 1. For $\ell \geqq \max \left\{-1, \ell_{\omega}\right\}$, set $U_{\ell}(x)=\sum_{|\lambda|=m}$ $a_{\lambda} \int K_{m, \lambda, \ell}(x, y) D^{\lambda} u(y) d y$. By Lemma 5 and its Remark, $U_{\ell} \in B L_{m}\left(L_{l o c}^{p}\left(R^{n}\right)\right)$ and, moreover,

$$
\iint\left|K_{m, \lambda, \ell}(x, y) D^{\lambda} u(y) \varphi(x)\right| d y d x<\infty
$$

for any $\varphi \in C_{0}^{\infty}\left(R^{n}\right)$. By (2), there exists a number c_{m} such that Δ^{m} $=c_{m} \sum_{|\lambda|=m} a_{\lambda} D^{2 \lambda}$ (cf. [4; §4]). Hence we have by Fubini's theorem and the fact that $\Delta_{x}^{m}\left[K_{m, \lambda, \ell}(x, y)-D^{\lambda} k_{m}(x-y)\right]=0$,

$$
\begin{aligned}
\int U_{\ell}(x) \Delta^{m} \varphi(x) d x & =\int \sum_{|\lambda|=m} a_{\lambda}\left(\int K_{m, \lambda, \ell}(x, y) \Delta^{m} \varphi(x) d x\right) D^{\lambda} u(y) d y \\
& =\int \sum_{|\lambda|=m} a_{\lambda}\left(\int D^{\lambda} k_{m}(x-y) \Delta^{m} \varphi(x) d x\right) D^{\lambda} u(y) d y \\
& =\int \sum_{|\lambda|=m} a_{\lambda}\left((-1)^{|\lambda|} \int k_{m}(x-y) D^{\lambda} \Delta^{m} \varphi(x) d x\right) D^{\lambda} u(y) d y \\
& =\int \sum_{|\lambda|=m} a_{\lambda}\left[c_{m}(-1)^{m} D^{\lambda} \varphi(y)\right] D^{\lambda} u(y) d y \\
& =\int \Delta^{m} \varphi(y) u(y) d y .
\end{aligned}
$$

Hence $\Delta^{m}\left(u-U_{\ell}\right)=0$ in the sense of distributions. What remains is to show that $P_{\ell} \equiv u-U_{\ell}$ is a polynomial.

In view of Proposition 3 and the Remark after Proposition 3, we see that if ω is nonincreasing and satisfies $(\omega 1)$ and (ii) with $\ell=\ell^{*} \equiv \max \left\{-1, \ell_{\omega}\right\}$, then the function $P_{\ell *}$ satisfies

$$
\int\left[\left|D^{\mu} P_{\ell^{*}}(x)\right|(|x|+1)^{m-n / p-e^{*-1}}\right]^{p} d x<\infty \quad \text { for }|\mu|=m
$$

By noting that $\Delta^{m} P_{\ell^{*}}=0$ on R^{n} and considering the Fourier transform, we find that $P_{\ell^{*}}$ is a polynomial of degree at most $\max \left\{m-1, \ell^{*}\right\}$ (cf. [4; Lemma 4.1]). If $\ell \geqq \max \left\{-1, \ell_{\omega}\right\}$, then

$$
\begin{equation*}
P_{\ell}=P_{\ell^{*}}-\sum_{|\lambda|=m} a_{\lambda} \int\left[K_{m, \lambda, \ell}(\cdot, y)-K_{m, \lambda, \ell *}(\cdot, y)\right] D^{\lambda} u(y) d y \tag{3}
\end{equation*}
$$

so that P_{ℓ} is a polynomial of degree at most $\max \{m-1, \ell\}$. In case ω is nonincreasing and satisfies ($\omega 1$) only, we see from the definition of ℓ_{ω} that $\omega(r)$ $\geqq M r^{p\left(m-n / p-\ell \epsilon_{\omega}-1\right)}$ for $r>1$ and $m-n / p-\ell_{\omega}-1<0$. If we let $\omega^{\sim}(r)=$ $(r+1)^{p\left(m-n / p-\ell_{\omega}{ }^{-1)}\right.}$, then u satisfies (1) with ω replaced by ω^{\sim}. Since ω^{\sim} satisfies condition (ii) with $\ell=\ell^{\sim} \equiv \max \left\{-1, \ell_{\omega}+1\right\}$, from the above considerations we find that for $\ell \geqq \max \left\{-1, \ell_{\omega}\right\}, P_{\ell}$ is a polynomial of degree at most max $\left\{m-1, \ell^{\sim}, \ell\right\}$; this implies that the degree of $P_{\epsilon_{\omega}}$ is at most $\max \{m$ $\left.-1, \ell_{\omega}+1\right\}$ and the degree of $P_{\ell}, \ell \geqq \ell_{\omega}+1$, is at $\operatorname{most} \max \{m-1, \ell\}$.

If ω is nondecreasing, then $u \in B L_{m}\left(L^{p}\left(R^{n}\right)\right)$; i.e., (1) holds with $\omega(r) \equiv 1$. Hence, by the above discussion, it follows that $P_{e^{\sharp}}$, where $\ell^{\#}$ is the integer such that $\ell^{\#} \leqq m-n / p<\ell^{\#}+1$, is a polynomial of degree at most m -1 . By (3), P_{ℓ} for $\ell \geqq \max \left\{-1, \ell_{\omega}\right\}$ is a polynomial of degree at most $\max \{m-1, \ell\}$. Thus the proof of Theorem 1 is completed.

The case $\ell_{\omega}<m-n$ can be derived along the same lines as in the proof of Theorem 1, by using Lemmas $2^{\prime}, 3^{\prime}$ and 4^{\prime} instead of Lemmas 2,3 and 4.

Theorem 1'. Let ω be a positive monotone function on the interval $[0, \infty)$ satisfying condition ($\omega 1$). If $\ell_{\omega}<m-n$ and u is a function in $B L_{m}\left(L_{\text {loc }}^{p}\left(R^{n}\right)\right)$ satisfying (1), then there exists a polynomial P such that

$$
u(x)=\sum_{|\lambda|=m} a_{\lambda} \int K_{m, \lambda, \epsilon_{\omega}^{\prime}}(x, y) D^{\lambda} u(y) d y+P(x) \quad \text { a.e. on } R^{n} .
$$

Outline of the Proof. We shall deal only with the case when ω is nonincreasing. For $\ell \geqq \max \left\{-1, \ell_{\omega}^{\prime}\right\}$, we set $U_{\ell}(x)=\sum_{|\lambda|=m} a_{\lambda} \int K_{m, \lambda, \ell}(x, y)$ $D^{\lambda} u(y) d y$ and $P_{\ell}=u-U_{\ell}$. If $\ell \geqq m-n$, then the proof of Theorem 1 implies that P_{ℓ} is a polynomial. If $\ell<m-n$, then from Lemmas 5 it follows that U_{ℓ} belongs to $B L_{m}\left(L_{\text {loc }}^{p}\left(R^{n}\right)\right)$, and

$$
\iint\left|K_{m, \lambda, \ell}(x, y) D^{\lambda} u(y) \varphi(x)\right| d y d x<\infty
$$

for any $\varphi \in C_{0}^{\infty}\left(R^{n}\right)$. Therefore, as in the proof of Theorem 1 , we see that $\Delta^{m}(u$ $\left.-U_{\ell}\right)=0$ in the sense of distributions. To show that P_{ℓ} is a polynomial, we first note that $\omega(r) \geqq M r^{p\left(m-n / p-\ell_{\omega}^{\prime}-1\right)} h(r)^{p}$ for $r>2$ and $m-n / p-\ell_{\omega}^{\prime}-1$ <0. Thus u satisfies (1) with ω replaced by $\omega^{\sim}(r)=(r+1)^{p\left(m-n / p-\ell^{\sim}\right)}$, where $\ell^{\sim}=\max \left\{-1, \ell_{\omega}^{\prime}+1\right\}$. Moreover $\ell^{\sim}<m$ and condition (ii) in Proposition 1 is satisfied with $\ell=\ell^{\sim}$. Consequently we can apply Proposition 2 to obtain

$$
\int\left|D^{\mu} P_{\imath} \sim(x)\right|^{p} \omega^{\sim}(|x|) d x<\infty \quad \text { for }|\mu|=m
$$

Thus $P_{\ell} \sim$ is a polynomial, and then for $\ell \geqq \ell_{\omega}^{\prime}, P_{\ell}=P_{\ell} \sim-\sum_{|\lambda|=m} a_{\lambda} \int\left[K_{m, \lambda, \ell}(x\right.$, $\left.y)-K_{m, \lambda, \ell \sim}(x, y)\right] D^{\lambda} u(y) d y$ is a polynomial.

5. Behavior at infinity of Beppo Levi functions

For sets E and $G \subset R^{n}$, we define $C_{m, p}(E ; G)=\inf \|f\|_{p}^{p}$, where the infimum is thaken over all nonnegative measurable functions f such that $f=0$ outside G and $\int_{G}|x-y|^{m-n} f(y) d y \geqq 1$ for every $x \in E$; for the properties of the capacity $C_{m, p}$, we refer to the paper of Meyers [3]. We say that a function u is (m, p) quasi continuous on R^{n} if for any $\varepsilon>0$ and any bounded open set $G \subset R^{n}$, there exists an open set $B \subset G$ such that $C_{m, p}(B ; G)<\varepsilon$ and u is continuous as a function on $G-B$; for details, we refer the reader to [4].

Let u be an (m, p)-quasi continuous function on R^{n} satisfying condition (1); here ω is assumed to satisfy condition ($\omega 1$). Then Theorems 1 and 2 imply the existence of an integer ℓ and a polynomial P_{ℓ} of degree at $\operatorname{most} \max \{m-1, \ell$ $+1\}$ such that

$$
\begin{equation*}
u(x)=\sum_{|\lambda|=m} a_{\lambda} \int K_{m, \lambda, \ell}(x, y) D^{\lambda} u(y) d y+P_{\ell}(x) \quad \text { a.e. on } R^{n} . \tag{4}
\end{equation*}
$$

If we write

$$
\begin{aligned}
U_{\lambda}(x)= & \int K_{m, \lambda, \ell}(x, y) D^{\lambda} u(y) d y=\int_{B(0,2 R)} K_{m, \lambda, \ell}(x, y) D^{\lambda} u(y) d y \\
& +\int_{R^{n}-B(0,2 R)} K_{m, \lambda, \ell}(x, y) D^{\lambda} u(y) d y=U_{\lambda, R}(x)+V_{\lambda, R}(x)
\end{aligned}
$$

for $R>0$, then we see that $U_{\lambda, R}$ is (m, p)-quasi continuous on R^{n} and $V_{\lambda, R}$ is continuous on $B(0, R)$, on account of [4; Lemma 3.3]. Hence U_{λ} is (m, p)-quasi
continuous on R^{n}, so that equality (4) holds for any $x \in R^{n}-E_{0}$, where E_{0} is a set satisfying $C_{m, p}\left(E_{0} \cap B(0, r) ; B(0,2 r)\right)=0$ for any $r>0$. We first study the behavior at infinity of the functions U_{λ}. More generally, we deal with the function $U(x)=\int K_{m, \lambda, \ell}(x, y) f(y) d y$, where ℓ is an integer such that $\ell \geqq-1$ and f is a nonnegative measurable function on R^{n} such that $\int f(y)^{p} \omega(|y|) d y$ $<\infty$. For $x \in R^{n}-B(0,2)$, write $U=v+w$, where

$$
v(x)=\int_{B(0,2|x|)} K_{m, \lambda, \ell}(x, y) f(y) d y
$$

and

$$
w(x)=\int_{R^{n}-B(0,2|x|)} K_{m, \lambda, \ell}(x, y) f(y) d y .
$$

By Lemmas 4 and 4^{\prime}, we know that

$$
\begin{equation*}
|w(x)| \leqq M|x|^{\ell+1} \omega_{\ell}(|x|) F(x) \tag{5}
\end{equation*}
$$

with a positive constant M independent of x.
In case $\ell \geqq \max \{0, m-n\}$, by use of Lemma 3 , we find a positive constant M such that

$$
|v(x)| \leqq M\left\{v^{\prime}(x)+v^{\prime \prime}(x)+v^{\prime \prime \prime}(x)\right\}
$$

where

$$
\begin{aligned}
& v^{\prime}(x)=\int_{B(0,1)}|x-y|^{m-n}[|h(|x-y|)|+1] f(y) d y, \\
& v^{\prime \prime}(x)=|x|^{e} \int_{B(0,2|x|)-B(0,1)}|y|^{m-n-\ell} h(4|x| /|y|) f(y) d y
\end{aligned}
$$

and

$$
v^{\prime \prime \prime}(x)=\int_{B(x,|x| / 2)}|x-y|^{m-n} h(|x| /|x-y|) f(y) d y .
$$

Then we first note that $v^{\prime}(x)=O\left(|x|^{m-n} h(|x|)\right)$ as $|x| \rightarrow \infty$.
As to $v^{\prime \prime}$, by Hölder's inequality we obtain

$$
\begin{equation*}
v^{\prime \prime}(x) \leqq M|x|^{\ell} \Omega_{\ell}^{\prime}(x) G(x) \tag{6}
\end{equation*}
$$

for any $x \in R^{n}-B(0,2)$, where $\Omega_{\ell}^{\prime}(x)=\omega_{\ell}^{\prime}(|x|)$ with

$$
\omega_{\ell}^{\prime}(r)=\left(\int_{1}^{r} s^{p^{\prime}(m-n / p-\ell)} h(2 r / s)^{p^{\prime}} \omega(s)^{-p^{\prime} / p_{S}-1} d s\right)^{1 / p^{\prime}}
$$

and $G(x)=\left(\int_{B(0,2|x|)} f(y)^{p} \Omega(y) d y\right)^{1 / p}$.
Remark. Let $\omega(r)=r^{-\delta}$ for $r>1$. If $\ell<m-n / p+\delta / p$, then $\omega_{\ell}^{\prime}(r)$ $=M_{1} r^{m-n / p-\ell+\delta / p}$; if $\ell=m-n / p+\delta / n$, then $\omega_{\ell}^{\prime}(r) \leqq M_{2} h(r)(\log r)^{1 / p^{\prime}}$ for $r>2$, where M_{1} and M_{2} are positive constants.

Finally we treat the function $v^{\prime \prime \prime}$.
Lemma 6. Let f be a nonnegative measurable function on R^{n} such that $\int f(y)^{p} \Omega(y) d y<\infty$, and let $\varphi(r)$ be a positive function on the interval $(0, \infty)$ for which there exists $M>0$ such that $\varphi(r) \leqq M \varphi(s)$ whenever $0<r \leqq s \leqq 2 r$. If $m p \leqq n$, then there exists a set $E \subset R^{n}$ having the following properties:
(i) $\lim _{|x| \rightarrow \infty, x \in R^{n}-E} \varphi(|x|)^{-1} \omega(|x|)^{1 / p} v^{\prime \prime \prime}(x)=0$.
(ii) $\sum_{j=1}^{\infty} \varphi\left(2^{j}\right)^{p} C_{m, p}\left(E_{j} ; G_{j}\right)<\infty$,
where $E_{j}=E \bigcap B_{j}$ and $G_{j}=B_{j-1} \cup B_{j} \cup B_{j+1}$ with $B_{j}=B\left(0,2^{j}\right)-B\left(0,2^{j-1}\right)$.
If $m p>n$, then

$$
v^{\prime \prime \prime}(x) \leqq M^{\prime}|x|^{m-n / p} \omega(|x|)^{-1 / p} G(x) \leqq M^{\prime \prime}|x|^{\ell} \Omega_{\imath}^{\prime}(x) G(x)
$$

for any $x \in R^{n}-B(0,2)$, where M^{\prime} and $M^{\prime \prime}$ are positive constants independent of x and f.

Proof. The case $m p>n$ can be derived readily from Hölder's inequality. In case $m p \leqq n$, we choose a sequence $\left\{a_{j}\right\}$ of positive numbers such that $\lim _{j \rightarrow \infty} a_{j}=\infty$ and $\sum_{j=1}^{\infty} a_{j} \int_{G_{j}} f(y)^{p} \Omega(y) d y<\infty$. For each positive integer j, we define

$$
E_{j}=\left\{x \in B_{j} ; v^{\prime \prime \prime}(x) \geqq \varphi\left(2^{j}\right) \omega\left(2^{j}\right)^{-1 / p} a_{j}^{-1 / p}\right\} .
$$

If $x \in B_{j}$, then $v^{\prime \prime \prime}(x) \leqq \int_{G_{j}}|x-y|^{m-n} f(y) d y$. Hence it follows from the definition of $C_{m, p}$ that

$$
C_{m, p}\left(E_{j}\right) \leqq \varphi\left(2^{j}\right)^{-p} \omega\left(2^{j}\right) a_{j} \int_{G_{j}} f(y)^{p} d y \leqq A^{2} \varphi\left(2^{j}\right)^{-p} a_{j} \int_{G_{j}} f(y)^{p} \Omega(y) d y .
$$

This implies that $E=\bigcup_{j=1}^{\infty} E_{j}$ satisfies (ii). It is easy to see that (i) is fulfilled with this set E. Thus the lemma is proved.

$$
\text { In case } \ell=-1 \geqq m-n,\left|K_{m, \lambda, \ell}(x, y)\right|=\left|D^{\lambda} k_{m}(x-y)\right| \leqq M_{1}|x-y|^{m-n}
$$ so that

(7) $\quad|v(x)| \leqq M_{2}\left(|x|^{m-n} \int_{B(0,2|x|)} f(y) d y+v^{\prime \prime \prime}(x)\right) \leqq M_{3}|x|^{\ell} \Omega_{\ell}^{\prime}(x) G(x)+M_{2} v^{\prime \prime \prime}(x)$,
where $M_{1} \sim M_{3}$ are positive constants independent of $x \in R^{n}-B(0,2)$.
In case $\ell<m-n$, by using Lemma 3^{\prime}, we find a positive constant M_{1} such that

$$
|v(x)| \leqq M_{1}|x|^{m-n} h(|x|) \int_{B(0,2|x|)} f(y) d y
$$

Hence Hölder's inequality gives

$$
\begin{equation*}
|v(x)| \leqq M_{2}|x|^{\ell} \Omega_{\ell}^{\prime}(x) G(x) \tag{8}
\end{equation*}
$$

where M_{2} is a positive constant independent of $x, \Omega^{\prime}(x)=\omega_{\ell}^{\prime}(|x|)$ with

$$
\omega_{\ell}^{\prime}(r)=r^{m-n-\ell} h(r)\left(\int_{1}^{r} \omega(s)^{-p^{\prime} / p} s^{n-1} d s\right)^{1 / p^{\prime}}
$$

and $G(x)=\left(\int_{B(0,2|x|)} f(y)^{p} \Omega(y) d y\right)^{1 / p^{\prime}}$.
We now define $A_{\ell}(r)=r^{\ell+1} \omega_{\ell}(r)+r^{\ell} \omega_{\ell}^{\prime}(r)$ for an integer ℓ such that ℓ $\geqq \max \left\{-1, \ell_{\omega}, m-n\right\}$ or $\max \left\{-1, \ell_{\omega}^{\prime}\right\} \leqq \ell<m-n$. Then condition $(\omega 1)$ implies that $A_{\ell}(r) \geqq M r^{m-n / p} \omega(r)^{-1 / p}$ for $r>1$, where M is a positive constant independent of r. If $\ell \geqq \max \{-1, m-n\}$, then $\liminf _{r \rightarrow \infty} h(r)^{-1} \omega_{\ell}^{\prime}(r)$ $\geqq\left(\int_{1}^{\infty} s^{p^{\prime}(m-n / p-\ell)} \omega(s)^{-p^{\prime} / p} S^{-1} d s\right)^{1 / p^{\prime}} \equiv a_{\ell}>0$, so that

$$
\lim \sup _{r \rightarrow \infty} A_{\ell}(r)^{-1}\left[r^{\ell} h(r)\right] \leqq a_{\ell}^{-1}<\infty
$$

Further we set $b_{\ell}=\limsup _{r \rightarrow \infty} A_{\ell}(r)^{-1}\left[r^{m-n} h(r)\right]$. If $\ell \geqq m-n$, then $b_{\ell}<\infty$ by the above, and if $\ell<m-n$, then $A_{\ell}(r) \geqq r^{m-n} h(r)\left(\int_{1}^{r} \omega(t)^{-p^{\prime} / p} t^{n-1} d t\right)^{1 / p^{\prime}}$, so that b_{ℓ} is finite, too.

THEOREM 2. Let ω be a positive monotone function on $[0, \infty)$ satisfying condition $(\omega 1)$, and ℓ be given as above. If f is a nonnegative measurable function on R^{n} satisfying $\int f(y)^{p} \Omega(y) d y<\infty$, then there exists a set $E \subset R^{n}$ such that
(i) $\lim \sup _{|x| \rightarrow \infty, x \in R^{n}-E} A_{\ell}(|x|)^{-1}|u(x)|<\infty$;
(ii) $\sum_{j=1}^{\infty} A_{\ell}\left(2^{j}\right)^{p} \omega\left(2^{j}\right) C_{m, p}\left(E_{j} ; G_{j}\right)<\infty$,
where $u(x)=\int K_{m, \lambda, \ell}(x, y) f(y) d y, E_{j}=E \bigcap B_{j}$ and $G_{j}=B_{j-1} \cup B_{j} \cup B_{j+1}$ with B_{j}
$=B\left(0,2^{j}\right)-B\left(0,2^{j-1}\right)$; in case $m p>n, E$ can be taken as the empty set.
Proof. By (5), (6), (7) and (8), we see that

$$
\begin{align*}
|u(x)| \leqq & M_{1} A_{\ell}(|x|)[F(x)+G(x)] \tag{9}\\
& +M_{1}|x|^{m-n}[|h(|x|)|+1] \int_{B(0,1)} f(y) d y+M_{1} v^{\prime \prime \prime}(x)
\end{align*}
$$

for any $x \in R^{n}-B(0,2)$, where M_{1} is a positive constant independent of x. In case $m p \leqq n$, applying Lemma 6 with $\varphi(r)=A_{\ell}(r) \omega(r)^{1 / p}$, we see that $v^{\prime \prime \prime}$ fulfills (i) in Lemma 6 with an appropriate set E satisfying (ii), so that

$$
\begin{align*}
& \lim \sup _{|x| \rightarrow \infty, x \in R^{n}-E} A_{\ell}(|x|)^{-1}|u(x)| \tag{10}\\
& \quad \leqq M_{1} \lim \sup _{|x| \rightarrow \infty} G(x)+M_{1} b_{\ell} \int_{B(0,1)} f(y) d y<\infty ;
\end{align*}
$$

in case $m p>n$, this remains true if we take E as the empty set by the second half of Lemma 6. Thus the proof of Theorem 2 is completed.

Remark. If $a_{\ell}=\infty$ (this holds when $\ell=\ell_{\omega}$) and $b_{\ell}=0$, then $\lim _{|x| \rightarrow \infty, x \in R^{n}-E} A_{\ell}(|x|)^{-1} u(x)=0$ in the above theorem.

In order to prove this, we write

$$
\begin{aligned}
u(x) & =\int_{B(0,2 R)} K_{m, \lambda, \ell}(x, y) f(y) d y+\int_{R^{n}-B(0,2 R)} K_{m, \lambda, \ell}(x, y) f(y) d y \\
& =U_{\ell, R} f(x)+V_{\ell, R} f(x)
\end{aligned}
$$

for $R>1$ as before. Then, by our assumptions, $\lim _{|x| \rightarrow \infty} A_{\ell}(|x|)^{-1}\left|U_{\ell, R} f(x)\right|$ $=0$. Next, noting that M_{1} in (9) is determined to be independent of f, we find from the arguments in the proof of Theorem 2 that

$$
\lim \sup _{|x| \rightarrow \infty, x \in R^{n}-E} A_{\ell}(|x|)^{-1}\left|V_{\ell, R} f(x)\right| \leqq M_{1}\left(\int_{R^{n}-B(0,2 R)} f(y)^{p} \Omega(y) d y\right)^{1 / p}
$$

with the same E as above. This proves the required assertion.
Corollary 1. Let ω be a positive monotone function on $[0, \infty)$ satisfying condition ($\omega 1$), and ℓ be as above. If u is an (m, p)-quasi continuous function belonging to $B L_{m}\left(L_{l o c}^{p}\left(R^{n}\right)\right)$ and satisfying condition (1), then there exist a polynomial P and a set $E \subset R^{n}$ such that
(i) $\lim \sup _{|x| \rightarrow \infty, x \in R^{n}-E} A_{\ell}(|x|)^{-1}|u(x)-P(x)|<\infty$;
(ii) $\sum_{j=1}^{\infty} A_{\ell}\left(2^{j}\right)^{p} \omega\left(2^{j}\right) C_{m, p}\left(E_{j} ; G_{j}\right)<\infty$;
in case $m p>n, E$ can be taken as the empty set.

Proof. First we can find a polynomial P_{ℓ} and a set E_{0} such that equality (4) holds for any $x \in R^{n}-E_{0}$ and $C_{m, p}\left(E_{0} \cap B(0, r) ; B(0,2 r)\right)=0$ for any r >0. Clearly, $C_{m, p}\left(E_{0 j} ; G_{j}\right)=0$, so that E_{0} satisfies condition (ii). Therefore the Corollary follows readily from Theorem 2.

Lemma 7. If $\omega(r)=r^{-\delta}$ for $r>1$, then $\ell_{\omega} \leqq m-n / p+\delta / p<\ell_{\omega}+1$ and $\ell_{\omega}^{\prime}=\ell_{\omega}$; moreover for $\ell=\max \left\{-1, \ell_{\omega}\right\}$,
$A_{\ell}(r) \sim r^{m-n / p+\delta / p} \quad$ in case $m-n / p+\delta / p>\ell \geqq m-n$,
$A_{\ell}(r) \sim r^{\ell} h(r)(\log r)^{1 / p^{\prime}} \quad$ in case $\ell=m-n / p+\delta / p \geqq m-n$,
$A_{\ell}(r) \sim r^{\ell} \quad$ in case $m-n / p+\delta / p<\ell$ and $m-n \leqq \ell$
and

$$
A_{\ell}(r) \sim r^{m-n} h(r) \quad \text { in case } \ell<m-n,
$$

where $\varphi(r) \sim \psi(r)$ means that $0<\lim _{r \rightarrow \infty} \varphi(r) / \psi(r)<\infty$.
With the aid of Lemma 7, Corollary 1 and the Remark after Theorem 2 give the following result.

Corollary 2. If u is an (m, p)-quasi continuous function in $B L_{m}\left(L_{\text {loc }}^{p}\left(R^{n}\right)\right)$ satisfying (1) with $\omega(r)=r^{-\delta}$, then there exist a set E and a polynomial P of degree at most $\max \{m-1, \ell\}$, where $\ell=\max \left\{-1, \ell_{\omega}\right\}$, such that

$$
\begin{aligned}
& \lim _{|x| \rightarrow \infty, x \in R^{n}-E}|x|^{-(m-n / p+\delta / p)}[u(x)-P(x)]=0 \\
& \quad \text { in case } m-n / p+\delta / p>\ell \geqq m-n, \\
& \lim _{|x| \rightarrow \infty, x \in R^{n}-E}|x|^{-\ell}[h(|x|)]^{-1}(\log |x|)^{-1 / p^{\prime}}[u(x)-P(x)]=0 \\
& \quad \text { in case } m-n / p+\delta / p=\ell \geqq m-n, \\
& \limsup _{|x| \rightarrow \infty, x \in R^{n}-E}|x|^{-\ell}|u(x)-P(x)|<\infty \\
& \quad \text { in case } m-n / p+\delta / p<\ell \text { and } m-n \leqq \ell, \\
& \limsup _{|x| \rightarrow \infty, x \in R^{n}-E}\left[|x|^{m-n} h(|x|)\right]^{-1}|u(x)-P(x)|<\infty \\
& \quad \text { in case } \ell<m-n
\end{aligned}
$$

and
$\sum_{j} \varphi\left(2^{j}\right)^{p} C_{m, p}\left(E_{j} ; B_{j}\right)<\infty$ with $\varphi(r)=A_{\ell}(r) \omega(r)^{1 / p}\left(\geqq M r^{m-n / p}\right) ;$ in case $m p$ $>n, E$ can be taken as the empty set.

Remark. This corollary gives the radial limit theorem [7; Theorem 3], where the case $\omega(r) \equiv 1$ is treated.

References

[1] J. Deny and J. L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier 5 (1955), 305-370.
[2] W. K. Hayman and P. B. Kennedy, Subharmonic functions, Vol. I, Academic Press, London, 1976.
[3] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand. 8 (1970), 255-292.
[4] Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiroshima Math. J. 4 (1974), 375-396.
[5] Y. Mizuta, On the radial limits of Riesz potentials at infinity, Hiroshima Math. J. 7 (1977), 165-175.
[6] Y. Mizuta, On the behavior at infinity of superharmonic functions, J. London Math. Soc. 27 (1983), 97-105.
[7] Y. Mizuta, On the existence of limits along lines of Beppo Levi functions, Hiroshima Math. J. 16 (1986), 387-404.
[8] H. Wallin, Continuous functions and potential theory, Ark. Mat. 5 (1963), 55-84.

> Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University

