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Introduction

Let X be a Banach space. Let X* and X** denote the first and second

dual spaces of X. We denote by π the canonical map of X into X**. In what

follows, X will be identified with π(X). It is well known that if a Banach space

X is isometric to a dual Banach space then there exists a projection P with

norm 1 from its second dual X** onto X. Davis and Johnson showed in [3]

that every nonreflexive Banach space can be equivalently renormed in such a

way that the renormed space is not isometric to a dual space. Dulst and

Singer [4] then proved that this conclusion can be improved in the following

form: Every nonreflexive Banach space X admits an equivalent norm || || such

that for each projection P: X** -*X, \\P\\ > 1 with respect to the norm. After

this, Godun gave in [5] a more general result that each nonreflexive Banach

space X admits an equivalent norm || || such that for each projection P: X**

-• X, || PII > 2 with respect to the norm. These results are all related to the

existence of an equivalent norm which admits no preduals. On the contrary,

we are concerned with equivalent norms which admit preduals. In this paper

we consider the class of such equivalent norms and demonstrate that given a

nonreflexive Banach space X "most" of the equivalent norms on X do not

admit preduals in the above sense.

Let (91, | |) be a nonreflexive Banach space with norm | |. We denote by

9l(X) the class of all the equivalent norms on X and by 9lp(X) the class of all

equivalent norms on X which admit preduals. The purpose of this paper is to

show in terms of metric space theory that 9lp(X) is a meager subset of the space

9l(X). To accomplish this we introduce a metric p: 9l(X) x 9l(X) -> [0, oo) on

9l(X) defined by

pfl li, N 2)
= log{ infμ > 0: \x\1 < λ\x\2 < λ2\x\x for all xeX}}.

Then p defines a complete metric on 9l(X), and it is shown (see Theorem 2

below) that 9lp(X) is nowhere dense in 9l(X) with respect to the metric topology

p. This means that 9lp(X) is meager in 9l(X) and in this sense "most" of the

equivalent norms do not admit preduals.
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1. Preliminaries

In what follows, a continuous projection is simply called a projection. Let

be the set of all projections from X** onto X. It is obvious that

Φ φ if X itself is a dual space. However it should be mentioned that

Φ φ does not always mean that AT is a dual space. For instance, it is

known that the space !/[(), 1] is not isomorphic to any dual Banach

space. But it is proved that there is a projection with norm 1 from its second

dual (L^O, 1])** onto L^O, 1], and hence ^(L^O, 1]) Φ φ. We next define an

extended real-valued function Φ on 9l(X) by

finf{|P|: Pe0>{X)} if
{ } U l) I o o if

It is not difficult to show that either Φ(| |) = oo for all \-\e9t(X) or 1 < Φ ( | | )

< oo for all HeSRpQ. If (X9\ \) is a dual Banach space, then Φ(| |)

= 1. Godun's result states that there exists | |eSR(X) with Φ(| |) > 2 for any

nonreflexive Banach space X. Moreover, Φ is continuous on (9l(X), p) if

0>(X) φ φ. In fact, it is seen that \P\1 < λ2\P\2 < λ4\P\1 for any projection

Pe&(X) provided that \X\t < λ\X\2 < λ2\X\ί for all xeX. Hence we have

Φd li) < λ2Φ(\-\2) < ^ Φ d Ί x ) if Wx < λ\x\2 < λ2\x\1 for all x e l This means

that Φ is continuous on ($l(X), p). We here recall (see[l]) the notion of

characteristic of a subspace V of a dual Banach space X*. The characteristic

r(V) of V is defined as the maximum of nonnegative numbers r such that the

unit ball Bv = {/e V: \f\ < 1} of V is σ(X*, X)-dense in the r-ball rBx*

= { / e l * : I/I < r} of X*. Clearly, 0 < r(V) < 1 and r(V) is characterized as

(2) }}

= inf{\π(x)-F\:xeX, \x\ = 1, F e F 1 } ,

where B^iXtV) denotes the closure with respect to the weak topology σ(X, V) of
the unit ball Bx = { x e l : |x | < 1} and V1 = {FeX**: F(f) = 0, fe V}. The
following lemma is immediate.

LEMMA 1. Let (X, | |) be a nonreflexive Banach space with 0>(X) Φ 0. Let
Pe0*(X). Then we have

\P\~ι = inf{r(kerF): P(F) = 0,

and

\P\ = sup{sup{|x|: x ε 5 f ' k e r F ) } : P{F) = 0, FeX**}.

PROOF. Since the first equality was already proved in [4], we prove the

second identity. To this end, we use the characterization (2) for r(V). For any

FeX** with P(F) = 0, we take V= kerF c X*. Then VL = <F>, where <F>
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stands for the one dimensional linear space spanned by F. Therefore

r(kerF) = {sup{|x|: x e ί f ' ^ } } " 1

= inΐ{\π(x)-x**\:xeX, |x| = 1, x**e(F>}

and sup{|x|: xeBσ

x

(XX*rF)} = |P | π ( χ ) θ < F >|. From this it follows that

sup{sup{|x|: x e S f k e r f ) } : P(F) = 0, FeX**} = \P\.

Q.E.D.

2. Lemmas

We begin by introducing two numbers. For a pair of positive numbers λί9

λ2 and a pair of bounded subsets Bl9 B2 of X, we define

MtJ = 1 + (λj/λdwf{r > 0: Bj c rBj,

where (i,j) = (1, 2) or (2, 1). It is seen that M l f 2 and M2,i make sense as finite
numbers provided that both Bx and B2 contain the origin 0 as an interior point.

LEMMA 2. Let Bt and B2 be bounded convex subsets of X both of which
contain 0 as an interior point. Let λ1 > 0, λ2 > 0, and set B3 = λ1B1

+ λ2B2. Let V be a subspace of X* and suppose that there exists ε > 0

satisfying

(3) Bl{X>V) c (1 + ε)B3.

Then we have the following two inclusions',

(4) 5 ™ c (1 + MU2ε)Bx

(5) B}™ cz (1 + M2Λε)B2.

PROOF. By condition (3) we have

We now define

M(A, x*) = s u p ^ x*(x), for v4 c X, χ*eX*.

Then we have

This implies

λ2B2, x*) < (1 + ε)M(/ί1β1 + λ2B29 x*)

= (1 + 8 ) ^ ^ ( 5 ! , x*) + (1 + ε)λ2M(B2, x*).
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K x*) + λ2M(B29 x )

< (1 + ε){λ1M(Bu x*) + λ2M(B2, x )},

and hence ^MCff?*'^, x ) < (1 + εϊ^M(B l f x ) + ελ2M(B2, x*). Therefore
we get

M ( 5 ^ K ) , x*) < (1 + ε)M(£l5 x*) + (ε22Ax)M(β2, x*)

< (1 + e)M(Bu x*) + (λj/AOM(Bl9 x*) inf{r > 0: £ 2 <= rBx}

= M(Bί9x*)(l + Mlt2ε).

Since the above relation holds for every x* of X*, we have

Thus we obtain the first inclusion (4). The second inclusion (5) can be verified
in a similar way. Q.E.D.

Let X be a Banach space with norm | | and V be a closed subspace of
X*. Then 7 becomes a Banach space, and it is seen that Fis a predual of X if
and only if the following two conditions are satisfied:

[A] For any continuous linear function / on V, there exists a unique
element x of X such that /(x*) = x*(x) for all X*G V.

[B] For any xeX, |x| = sup{x*(x): x*eK I * Ί = 1}.

For a Banach space X Property [A] is invariant under renormings of X,
while Property [B] depends in general upon renormings of X.

LEMMA 3. Let \ \u \-\2e9l(X) and λx > 0 and λ2 > 0, and let Vbe a closed

subspace of X*. Let Bx = {xeX; \x\t < 1}, B2 = {xeX; |x | 2 < 1} and B3

= λ1B1 + λ2B2. Then the Minkowski functional | | 3 of B3 gives an equivalent

norm on X with the following three properties:

( I ) If Vis a predual with the norm | | 3, then it is a predual with any one of

the norms \-\1 and | | 2 .

(II) Let P be a continuous projection from X** to X. If \P\3 = 1, then

\P\i = \P\i = l.
(IΠ) / / φ ( | | 3 ) = l , then Φ(| |1) = φ ( | | 2 ) = 1, where Φ is the functional

defined by (1).

PROOF. We first prove (I). By the assumption of (I), Vsatisfies conditions
[A] and [B] for the norm | | 3 and B3 is σ(X, K)-closed. Therefore, letting ε
= 0 in Lemma 3, we infer that Bi is also σ(X, K)-closed. For any xeX with
\x\t = 1 and any ε > 0, (1 + ε)x is not the element of Bv By the separation
theorem one finds an element x* of V such that sup{x*(y): yeBx} <
(1 + ε)x*(x). Then we have |x*|i < (1 + ε)x*(x), or 1/(1 + ε) < (l/|x*|1)x*(x).
This shows that sup{}>*(x): y*e V, \y*\x < 1} > 1/(1 + ε). Letting ε |0 , we have
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sup{y*(x):y*eV9 I/Ίi < 1} = 1.

This shows that V satisfies condition [B] for the norm | | l 5 and that V is a

predual of X with the norm \-\v Similarly, Fis a predual of X with the norm

(Π) and (ΠI): Suppose that Pe0>(X) with | P | 3 < 1 + ε. We wish to show

that

(6) \P\1 < 1 + M l t 2 ε and \P\2 < 1 + M2Λε

where M 1 2 and M2Λ are the constants defined at the beginning of §2. To this

end, fix any x * * e k e r P c X** and let V= {x*eX*: x**(x*) = 0}. Applying

Lemma 1 to X equipped with the norm | | 3, we have

sup{|x | 3 : xe5** ' F ) } < | P | 3 < 1 + ε.

This shows that Bσ

3

(X'V) c (1 + ε)£3. Thus Lemma 2 implies that

From this it follows that

supf lx l i ixe f i?*^} < 1 + MU2ε.

We then apply Lemma 1 again and conclude that \P\X < 1 4- M1 > 2£ Similarly

we obtain \P\2 < 1 + M2tίε.

To prove assertion (Π), it is sufficient to put ε = 0 in (6). Then \P\i ^ 1

and \P\2 < 1.

Finally, suppose that Φ(| | 3 ) = l . Then for any ε > 0, there exists a

projection P such that \P\3 < 1 + ε. Then we infer from (6) that \P\X < 1

+ M1>2ε, and so Φ d l i ) < 1 + M1>2ε. Letting ε | 0 yields Φ(\'\x) = 1. By the

same reasoning we have Φ(| |2) = 1. Thus we obtain the third assertion (ΠI).

Q.E.D.

3. Theorems

We are now in a position to state our main theorems and give their proofs.

THEOREM 1. Let (X, | |0) be a nonreflexive Banach space. Then the set

= {\-\eyi{X)\ Φ(| |) > 1} is open dense in SR{X) with respect to the metric

P-

PROOF. We only give the proof for the case in which Φ < oo. Since Φ is
continuous on (9l(X), p), tft(AΓ) is open. Next by Godun's theorem [5] there
exists a norm || || e $l(X) such that
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Now take any element | | e ^ ( J ) and any λ > 0. Let B = {xeX: \x\ < 1} and

C = { x e l : | |x | | < 1}. We then consider the Minkowski functional ||| | | |λ of

B + λC. Then Φ( ||| |||A) > 1 by Lemma 3 (IΠ). Moreover, it is seen that

lim A i 0 p(| |, III \\\λ) = 0. This means that $(X) is dense in (9l(X)9 p). Q.E.D.

THEOREM 2. Let (Λ", | |0) be a nonreflexive Banach space. Then the set

yip(X) = {I I e 9l(X): X with the norm | | has a predual} is a nowhere dense

subset of the metric space (yi(X), p).

PROOF. Let $ί(X) = { | |e^l(X): Φ(| |) > 1}. Since Φ(| |) = 1 for all

HeSRppO, it follows that $ί(X) n $lp(X) = φ. Theorem 1 then implies that

yip(X) is nowhere dense. Q.E.D.
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