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Haruo TOTOKI and Yoshiki TSUJII

(Received August 29, 1989)

Recently the second author of the present paper proposed the idea of
generalized random dynamical systems and investigated their ergodic properties
in [3]. This paper is a supplementary note for [3]. We will investigate the
exactness and the Bernoulliness of skew product transformations associated
with generalized random dynamical systems.

§1. Preliminaries

Let (5, ̂ , μ) and (7, ̂ , v) be standard probability spaces. We consider
(5, ̂ , μ) as a phase space and (7, Ĵ , v) as a parameter space. Namely for each
y e 7 a measure-preserving transformation φy on (S, ,̂ μ) is given. We assume
that the mapping (s, y) ι-» φy(s) is & x ^/^-measurable. We are concerned
with the behavior of the random orbit

where yί9 ..., yn are taken randomly in the following manner. There are given
a family of probability density functions {y(s, y), se S} on 7:

γ(s9 y)>09 γ(s9 y) dv(y) = 1, 5 e 5 ,
JY

and a sub-σ-field ^0 c= gβ such that
(i) γ(s9 y) is ̂ 0 x ^-measurable

and
(ii) φ"1^ and J*0 are independent for each y e Y.

Each yk (k > 1) is choosen according to the probability measure γ(Xk_ί(s)9 y) dv(y)
where X0(s) = s. Then X = {Xn(s)9 n > 0} becomes a stationary Markov chain
with the transition probability

P(s, B) = lβ(<Pv( s))y(s, y) dv(y), B e 38 ,
Jy

and the stationary measure μ. Let Γ be the corresponding Markov operator:

Tf(s) = \ f(t)P(s9 dt) = \ f(φy(s))γ(s, y) dv(y), / e Ll(S9 μ).
JS JY
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The quadruplet a = ((S, Λ, Λ09 μ\ (Y9 ^9 v), [γ(s, y\ s e S}, {φy, y e Y}) is called
a generalized random dynamical system.

Next let (7*, &*} = Π*=1(7Π, &n) be the product measurable space of
the spaces (Yn, 3?n) = (7, &\ n > 1. Let ψ be the shift transformation on 7*
defined by

(Ψy*)Λ = >Wι , n > 1 , y* = GO,*! e 7* .

Let Ω = S x Y*, Jΐ = 30 x 3?* and define for E e &, F = Fl x F2 x - - x Fn x
ΠΓ= π + 1 ^F,eJF(/c=l, . . . ,n),

P(E x F) = ί ί lE(s) Πί=ι WyMφ,^ -'"- φyί(s), yΛ)
JSjYn

Then P becomes a probability measure on (Ω, Jί) by the Kolmogorov exten-
sion theorem. Define

φ*(s, y*) = (φyι(s), ^*) , y* = (yn)n>, e Y*.

Then φ* is a measure-preserving transformation on (Ω, J(, P) (cf. [3]). The
mapping φ* is called the skew product transformation associated with Q).

Set <%k = \/yι ..... yk φ'1 . . . φ£Λθ9 k > 1, and ̂  = \/ΐ=n@k, 0 < n < m < oo.
Then we have

THEOREM 1 ([3] Theorems 5 and 6). (i) T is mixing:

lim ί (T*f(s))g(s) dμ(s) = ί f dμ ί g dμ , /, flf e L°°(S, μ) ,
«-*oo Js Js JS

if and only if φ* is mixing:

lim f F(φ*nω)G(ω) dP(ω) = \ F dP \ G dP , F, G 6 L°°(ί2, P) .
n-»oo Jβ Jβ Jβ

(ii) Assume the following conditions:
(A) ί/ie σ-fields Jβ"1 and φ~ί

1...φ~*&i are independent for any fixed yί9

..., yneY9n>l,and

(B) as = a.
Then φ* 15 mixing.

§2. Exactness

In this section we will show that a stronger conclusion about φ* than that
of (ii) in Theorem 1 holds under the conditions (A) and (B).
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Let Γn(y*) = yn denote the n-th coordinate function of y* = (yn)n>ι e 7*,
and JFM* = σ({y M , . . . ,Y m }) the σ-field generated by {Ym9...,Ym} for \<n<
m < oo. Especially we see J^00 = J^*.

LEMMA 1. Under the condition (A), the sub-σ-fields J$ x &? and φ*~nJi

are independent for all n > max (p + I 9 q ) .

PROOF. Let F(s, y*) = /(s, yι,...9yq) be a J*g x ^-measurable bounded
function and G(s, y*) = g(s9 yί9 . . ., ym) be a ̂  x ^/"-measurable bounded func-

tion where m > 1 is arbitrary. Then we have

)(1) f f F(s,y*)G(φ**(s,y*))dP(s,y
J J s x y *

f(s>yι> >yq)0(φyn

o

JYn + m \_Js

X 7m(Λ+l» » yn+m', <Pyn ° ' " ° <Py

where

which is &Q 1 -measurable for any fixed yl9 ..., yke Y9 and it holds that

7«+m(yι> > yn+m'> s) = γm(yn+1,..., yn+m; φyn o o φyι(s))γn(yl9 ...,yn',s).

Suppose n>max(p+ I 9 q ) . Then for any fixed yί9 ..., yn+m e 7, the si-

function /(s, yl9..., yq)7n(yι9 ...9yn;s) is ^g"1-measurable and the s-function

g(ψyn°'"° φyί(
S)>yn+l>- >yn+m)7m(yn+l> '"^yn+ml <Pyn°'"° φyι(

S)) I8 <Py? •• <Py*&-

measurable, and hence they are independent. Therefore we obtain

[...] in the right hand side of (1)

= f(s9yl9...9yq)yn(yl9...9yn'9s)dμ(s)
Js

^(S, yn+l , - - - ,
Js

and so

Γ Γ
J Jsxr*

-Hi/**.Jy» LJs
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x g(s, yn+ι,..., yn+m)ym(y«+ι> , yn+m', s) dμ(s) ΠΓ=ι dv(yn+k)

Π F(s, y*) dP(s, y*) I I G(φ*"(s, y*)) dP(s, y*).
? χ y * J J s x y *

Thus we see that &ξ x ̂  and φ*~n(β x <F™) are independent for all

m > 1, and so ^g x ̂  and φ*~nJt = φ*~n(& x ^f) are independent. The
proof is completed.

REMARK. Let us consider the condition

(A') the σ-fields $k, k > 0, are mutually independent,
in stead of (A). Under the condition (B), (A') implies (A). But we don't
know whether (A') is actually stronger than (A).

Assume the conditions (A) and (B) are satisfied. Then by Lemma 1,

^o x ^\ and φ*~nJt are independent for all n > max (p + 1, q). Therefore
^g x 3F£ and (~}n>o<P*~n^ are independent for all p > 0 and q > 1. This

means by (B) that M = & x ^* and (°|n>0φ*~n^ are independent. Thus we
have

THEOREM 2. Under the conditions (A) and (B), (Ω, Jt, P, φ*) is exact:

(~}ΐ=o<P*~n^ is trivial.

Since the exactness of a transformation implies the mixing property (cf.

[2]), the second assertion (ii) of Theorem 1 follows from this theorem as a

corollary.

§3. Factor transformations

Now we consider a factor transformation of (Ω, Jt, P, φ*). Let (5*, 38*) =

(S,&)N be the product measurable space of (5, ̂ ), where N = {0,1,2,...}.

Let θ be the shift transformation on 5*: (θs*)n = sπ+1, n > 0, s* = (sπ)π>0 e S*.
The transition probability P(s, B) and the stationary measure μ given in §1

induce a Markov measure Q on (5*, &*): for B = B0 x - - - x Bn x Π£LΠ+1 Sh

Bke^,0<k<n9Si = S9ί>n-\-l9

(2) Q(E) ={ dμ(s0)ί
Jβ0 J#

= ί ί Ws)
Js Jy
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The measure β on (S*, J^*) is nothing else but the probability law of the

Markov chain {Xn(s)}n>0. Clearly θ is a measure-preserving transformation on
(S*, #*, β), which is called a Markov shift.

Let π: Ω -> S* be a mapping defined by π(s, y*) = (s, -XΊ(s),..., Xn(s\ ...) =
(s, φyι(s),..., φyn o - - o φyι(s)9...), y* = (}>„)„>! e Y*. It is easy to see that

π o φ* = Θ o π and π'1^*) c uT. We see also P o π

-1 = β. Indeed, for any
bounded measurable function //(s*) = /ι(s0, s1 ?..., sw), s* = (sfc)fc>0 e 5*, we have

H(π(s, y*)) dP(s, y*)
Ω

= h(s, φyι(s\ ...,φyno-'° φyι(s))γn(yι> » 3^5 s) Πϊ=ι dv(3Ίk) rf^(s)
JSJY"

= ί
Js

Hence (S*, #*, β, θ) is a factor transformation of (Ω, Jl, P, φ*), namely the
former is an image of the latter, under the mapping π (cf. [2]). Therefore by

Theorem 2 we have

THEOREM 3. Under the conditions (A) and (B), the Markov shift (S*, #*,

Q, 0) is exact: Π^=o^~"^* = ί™iα/.

Next we consider a factor transformation of (5*, #*, β, θ). Here we don't
assume the conditions (A) and (B). Let J$ = Λ$ be the product σ-field of
JO which is given in §1. Then (S*, J$, Q, θ) is a factor transformation of
(S*, #*, β, θ), and we have

THEOREM 4. 77ιe /αcίor transformation (S*, J$, β, θ) is a Bernoulli trans-
formation (cf. [1]).

PROOF. In the equation (2), take Bk E ̂ 0, 0 < Jc < n, and change the
order of integrations. In the integrand of the obtained integral we see that
yn(y^"^yn^) = yn-ί(y2,'",yniφyί(s))y(s9yl)9 the s-functions ^(sMs,;^) and
the remainder are independent (because the former is ^0 -measurable and the
latter is φ~^ ̂ -measurable) and φyι is μ-preserving. Hence we get

Q(B) = μ(B0) f ί lβι(s) Π2=2 lBk(<Pyk ° ' ' ' ° φ,2W)
J s Jy-1

x 7n-i(y2> ~>yn>s) Πfc=2 dv(yk) dμ(s) .

Repeating the same arguments, we obtain finally

Q(B) = Πϊ=o μ(Bk) .
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Since n is arbitrary, this completes the proof.

§4. Bernoulliness

Let us consider (Ω, Jt, P, φ*). Define ^ = ̂ 0 x J^1. Let F(s, y*) =
f(s9 yj be ^-measurable. Then F(φ*k(s9 y*)) = f(φyk o o φyι(s), yk+1) is Jβ x

J*ί+1-measurable. Hence φ*~fc^ c Λ* x &f+1 and so V£=oΦ*~*^ c ̂ S'1 x

#in. On the other hand we have \/k=n<P*~k& c φ*~n^t. By Lemma 1 we
obtain

LEMMA 2. l/nder the condition (A), ί/ie sub-σ-fields φ*~n&, n > 0, are
mutually independent.

If \/%=<)<P*~ny = Λt holds, then ^ is called a generator for <p*. In this
case φ* becomes a Bernoulli transformation by Lemma 2. In the following

theorem, we give some sufficient conditions for ̂  to be a generator for φ*.

THEOREM 5. In addition to the conditions (A) and (B), we assume the
following conditions:

(C) 7 is a countable set, and
(D) for any n > 1, α1? ..., απ, &15 ..., bπ e Y and B e &0, there exists

B' E ̂ o such that φ^ . . . φ^(ff) = φ'1 . . . φ£(B).
Then (Ω, M, P, φ*) fs α Bernoulli transformation with the generator &.

PROOF. It remains to prove that ^ is a generator for φ*. To do this

it suffices to show that &n x #i"+1 c VZ=oΦ*~k^ for all n > 0. Consider

a typical element X = φ'1 . . . φ£(B) x {y* = (yk)k>, e 7*; ̂  = bl9 . . . , jn+1 =
fen+1} e Λn x ^Ί"+1 where βe^0 By the condition (D) there is Fe#0 such
that φ^1 . . . φj£ (B') = φ~* . . . φ~* (B). Hence we have

Put F(s, y*) = lB,(s)l{yι=bn+l}(y*) and Gk(s9 y*) - l{,1=bk}(y*), 1 < fe < π. Then
F(s, y*) and Gfc(s, y*), 1 < k < n, are ^-measurable, and hence

Ufe y*) = p(φ*"fe y*)) ΠZ=ι G*(φ*(*~υfe y*))
is Vfc=o ^* "^-measurable. Thus 1̂ e VΛ=O Φ*~fc^ Noting the condition (C)
we see Λn x J2Γ

1

M+1 c: Vϊ=oΦ*~ fc^ by a routine argument. We have proved the
theorem.
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REMARK. If every φy (y e Y) is invertible then the condition (D) is satisfied.

EXAMPLE. Let us consider the following generalized random dynamical

system:
( i ) S = [0, 1), J* = the Borel field of [0, 1) and μ = the Lebesgue measure

on [0, 1).
(ii) Y = (0, 1}, ̂  = the all subsets of Y and v({0}) = v({l}) = 1/2.

(iii) φ0(s) = 3s (mod 1) and φ^s) = 3(1 — s) (mod 1).
(iv) ^o = the field generated by [0, 1/3), [1/3, 2/3) and [2/3, 1).
(v) y(s, 0) = 2/3 (0 < 5 < 1/3), = 1 (1/3 < 5 < 2/3), = 4/3 (2/3 < s < 1),and

7(s,l) = 2-y(s,0).
This system satisfies clearly all the conditions (A) ~ (D), and so the asso-

ciated skew product transformation φ* is a Bernoulli transformation.
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