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0. Introduction

As a generalization of a topological group in the homotopy theory, an
//-space (or a Hopf space) is defined to be a topological space Y with a base
point * admitting a continuous multiplication μ: Y x Y -> Y such that * acts as
a two sided homotopy unit, that is, the restrictions μ\Y x * and μ|* x Y are
both homotopic (preserving *) to the identity map idy: Y -» Y; and an //-space
Y = (Y, μ) is said to be homotopy associative when the two maps μ(μ x idy)
and μ(idy x μ) of Y x Y x Y to Y are homotopic. The loop space ΩX of a
based space X admitting the usual loop multiplication is another important
example; and in the homotopy theory, ΩX can be regarded as a topological
group G when X = BG is the classifying space of G.

Moreover, as a generalization of a topological abelian group, an //-space
Y = (γ9 μ) is said to be homotopy commutative when μ: Y x Y -+ Y is homo-
topic to μT for the homeomorphism T on Y x Y commuting coordinates. A
compact connected Lie group G is homotopy commutative if and only if G is
abelian, that is, G is a torus, the product of some copies of the circle group
S1, by Araki-James-Thomas [2]. Moreover Hubbuck[13] proved that if a
connected finite CW-complex Y is a homotopy commutative //-space, then Y
has the homotopy type of a torus.

In this paper, we are concerned with the homotopy commutativity of the
loop space ΩX of a connected, simply connected finite CW-complex X. It is
easy to see that

(i) If X itself is an //-space, then ΩX is homotopy commutative.
But the converse is not true for the complex projective 3-space CP(3). In

fact, Stasheff[21; Th.1.18] proved that ΩCP(3>) is homotopy commutative; but
CP(3) is not an //-space which is seen by BorePs theorem on the cohomology
ring of an //-space.

We note also that X is an //-space if and only if ΩX is strongly homotopy
commutative in the sense of Sugawara [23].

Now the purpose of this paper is to prove the following

THEOREM 1. Let X be the suspension X = ΣA of a connected finite CW-
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complex A. Then the loop space ΩX is homotopy commutative only if X is an
H-space, that is, only if X is contractible or is homotopy equivalent to the
n-sphere Sn for n = 3,1.

THEOREM 2. Let X be the mapping cone C(α) = S*uαe" of oίeπn_1(Sk)

(k, n > 2). Then ΩC(ct) is homotopy commutative if and only if C(α) is contrac-
tible, that is, k = n - 1 and ±α = [idSk] = ιk E πk(Sk).

Let Ey denote the /c-sphere bundle over Sn with characteristic class γ e
Kn-^Ok+t) (k, n > 2), which is the CW-complex of the form

Ey = Sk uα e» u en+k for α = q^(γ) e π,.̂ *) ([15]),

where Ok is the orthogonal group of transformations on the real fc-space and
q: Ok+1 -> Ok+1/Ok = Sk is the projection. Also, in addition to the generator
ιnεπn(Sn)^Z, consider those ηt e πί+1(5f) ̂  Z (i = 2), ^Z2 (i > 3) and ωe

THEOREM 3. ΩEy of the bundle Ey is not homotopy commutative, except for
the following cases (1) ~ (4):

(1) Ey is an H-space, that is, it is homotopy equivalent to S3 x S3, S3 x SΊ,
SΊ x S1 (α = 0), SΊ (α = ±ι3), 517(3) (α = ι/3), or α = ±aω for a = 1, 3, 4, 5.

(2) α = ±f/2> *Λ0f is, £y is homotopy equivalent to CP(3).
(3) (fc, n) = (3, 4), (3, odd) and (7, odd), and Ey is not an H-space.

(4) k and n are odd, k + 2<n<2k-\ (k φ 3, 7), the order of α is even

and the Whitehead product [ιk, ιk~] is in the image of α^ : π2fc_ι(Sn~1) -> 7Γ2k-ι('S'k)

In Theorem 3, the case (1) is determined by Zabrodsky [25]. As is stated
above, ΩEy is homotopy commutative in the first two cases; but the author

cannot determine whether so is or not in the last two cases.

In case when X is not simply connected, we note only the following

PROPOSITION 4. When X = Sn/Zm is the real projective space (n>2,m = 2)
or the lens space (n : odd > 3, m > 3), ΩX is homotopy commutative if and only if

n = 3 or 1; and X is an H-space if and only if n = 3, 7 and m = 2.

Our method to prove the above theorems is based on the following results
which may be well known:

(ii) (cf. Arkowitz [3].) If ΩX is homotopy commutative, then all White-
head products on X vanish.

(iii) (cf. [4], [11], [18].) For any set P of primes, the loop space ΩXP of
the P-localization XP of X is homotopy commutative if so is ΩX.
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We also use Adams' theorem which states that 5" is an //-space if and only
if n = 1, 3 or 7. For the properties of the homotopy groups of spheres and the

calculation of several Whitehead products, we use Toda's book [24] and so on.

The author would like to thank Professor M. Sugawara for help and

encouragement and to thank T. Matumoto, T. Ohkawa and Y. Hemmi who
gave him many useful suggestions and hospitality.

1. Preliminaries

In this paper, all topological spaces will be assumed to have a base point *

and to have the homotopy type of connected CW-complexes, and all maps and
homotopies to preserve *. We denote by π(X9 Y) the homotopy set of all

homotopy classes [/] of maps / : X -> Y (preserving *), and / and [/] are

denoted frequently by the same letter.

A space X = (X, μx) is an H- space with multiplication μ = μx : X x X -> X

if μ\X x * ~ id ̂  μ|* x X, and is homotopy associative (resp. commutative) if

μ(μ x id) ~ μ(id x μ):X x X x X -+ X (resp, μ ~ μT : X x X -> X) .

(Here ~ means 'homotopic (preserving *)', id = idx : X -> X is the identity map,

and T : X x X -> X x X, Γ(x, y) = (y, x), is a commuting map.) A map / :

X = (X, μx) -> 7 = (7, μγ) between //-spaces is an //-map if fμx ~ μγ(f x /).
The loop space ΩX of a connected space X is the space of all loops

ω:(/, dl) -> (X, *) (/ = [0, 1], dl = (0, 1}) with the compact open topology,
whose base point is the constant map *. By the loop multiplication

μ = μΩX:ΩX x ΩX -* ΩX , μ(ωl9 ω2) = ω: ω2 ,

given by (ωί ω2)(ί) = ω^(2t) if t < 1/2, = ω2(2t - 1) if £ > 1/2, ΩX is a homo-
topy associative //-space; and ΩX is homotopy commutative if X is an //-space.

Also τ:ΩX-+ΩX, τ(ω) = ω"1, is given by ω~l(t) = ω(l — ί), which satisfies
μ(id x τ) ~ * ~ μ(τ x id).

We note that ΩX has the homotopy type of a CW-complex by Milnor's

theorem. Also, ΩX is connected if and only if X is simply connected. Here-
after, we are concerned with ΩX by assuming that X is simply connected unless

otherwise stated.

For /, g .A^ΩX, we have f g:A^>ΩX given by ( f ' g ) ( a ) = f ( a ) ' g ( a ) ;

and the homotopy set π(A9 ΩX) forms a group by [/]• [#]= [/•#] so that we
have the natural isomorphism

Ω0 : π(ΣA, X) ^ π(A, ΩX) (ΣA = A x I /(A x dl u * x /), the suspension)

by sending f'.ΣA^X to its adjoint Ω0f = f':A^>ΩX, f ' ( a ) ( t ) = f(a,t) for

a e A and ί e /.
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Now consider the commutator map

φ :ΩX x ΩX -» ΩX , <p(ω1? ω2) = (coί co2)'(ωϊί -ω^1) .

Then φ\ΩX v ΩX is null homotopic, and there exists a map

φ : ΩX Λ ΩX -> ί2Jf with φ pr ~ φ .

(Here AvB = Ax*v*xBis the wedge, A A B = A x B/A v Bis the smαs/z
product, and p r : A x 5 - ^ ^ 4 Λ 5 i s the natural projection.)

DEFINITION 1.1. (1) The Samelson product of fl'.A^QX (i = 1, 2) is
given by

(2) The Whitehead product of /, : 274, -> Jf (i = 1, 2) is given by

by using the adjoint operator Ω0.
(3) The homotopy classes of these products give us the Samelson product

<[//], [/2']> and the Whitehead product [[/J, [/2]] of homotopy classes.

For £ in (2), consider ft = /f pr : (Cy4ί? y4£) -> (Jί, *) and define the map

h : AI * A2 = CA± x A2v A^ x CA2 -> X

by h\CAι x A2 = fi pτ1 and h\Al x CA2 = J2 pr2. (Here CA = A x //
A x 1 u * x / (A = A x 0) is the cone, pr : CA -> ΣA = CA/A is the projection,
A1*A2 is the reduced join and pτi:Xί x X2^Xι is the projection to the f-th

factor.) Then Arkowitz[3; Th.2.4] proved that

for the projection v : A^ *A2 -» Σ(A1 Λ A2), where v is a homotopy equivalence;

and for a homotopy inverse v"1 of v, v~lh is known to be the usual definition of

the Whitehead product [/l9/2].

To study the homotopy commutativity of ΩX, we use the following

PROPOSITION 1.2. (i) The loop space ΩX is homotopy commutative if and
only if the commutator map φ : ΩX x ΩX -> ΩX is null homotopic.

(ii) (Arkowitz[3; Prop.5.1].) Let Ai be a finite CW-complex. Then the
Whitehead product [/ι,/2] vanishes for fi'.ZA^X if and only if there

exists a map f'.ΣA^ x ΣA2^>X of type (/ι,/2), that is, flΣA^ x * ~/x and
f\*xΣA2^f2.
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(iv) (Stasheff [21; Th.1.10].) Let d = Ω^1 idβχ: ΣΩX -> X be the adjoint of
idβχ. Then ΩX is homotopy commutative if and only if there exists a map
ψ : ΣΩX x ΣΩX -»X of type (d, d).

On the other hand, for a set P of primes, we consider the P-localizations

/ = lx: X -* Xp and f p : XP -> YP

of X and / : X -> Y (cf., e.g., [4], [11] and [18]), satisfying the following

LEMMA 1.3. (i) For each i, there exists a natural isomorphism π^Xp) ^
ni(X)P such that the diagram

nt(Xp) s πt(X)P

commutes where I: G -» GP is the P-localization of a group G.
(ii) We have the homotopy commutative diagram

V J "V @ Γ7

(JP

for a given upper sequence; and if the upper sequence is a fibration or a
cofibration, then so is the lower one up to homotopy equivalence.

LEMMA 1.4. // ΩX is homotopy commutative, then so is ΩXP.

PROOF. We see the following by [4] and [11]: If Y is an H-space, then
so is Yp and / : Y -> YP is an H-map; and if Y is homotopy commutative, then so
is YP. Moreover, the induced map Ωl:ΩX^ΩXp of l:X^XP is also the
P-localization so that there exists a homotopy equivalence

r: (ΩX)P -+ ΩXP with rlΩX - Ωl

for 1ΩX: ΩX -> (ΩX)P and r is an //-map since so is Ωl. These show the
lemma.

REMARK 1.5. For a simply connected space X and a positive integer n,
consider the space Xn obtained from X by attaching (i 4- l)-cell to kill the
homotopy groups nt(X) for i > n. If ΩX is homotopy commutative, then so is
ΩXn.
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2. Proof of Theorem 1 and a note on the non-simply connected case

We prove Theorem 1 in the introduction which says in particular that ΩSn

of the ft-sphere Sn (n > 2) is homotopy commutative only if n = 3, 7.

PROOF OF THEOREM 1. Assume that ΩX of X = ΣA is homotopy commu-
tative. Then the Whitehead product [id^, idx] E n(Σ(A Λ A\ X) is defined and
vanishes by Proposition 1.2 (ii). Hence there is a map μ:XxX ^X of
type (idx, idx) by Proposition 1.2 (iii), which means that X is an H-space by
definition. Therefore X = ΣA is S3 or SΊ by West [26].

In the rest of this section, we note on the case that X is not simply
connected. In this case, we consider the universal covering

π = p'l(*) = π^X) .

Here, π is the covering transformation group identified with p"^*) and also
with the fundamental group π^X), by identifying αeπ with α = α(*) e p~l(*)
(!(*) = * for the unit 1 of π) and with α = [p/α] e π^X) by a fixed path

/α :(/;0, !)->(*; *, α) & = *).

LEMMA 2.1. // ί2^ is homotopy commutative, then so is ΩX and π is
abelίan.

PROOF. Consider the space LX of all paths / : / -> X and its subspace
L(X\ A, E) — {/ e L^|/(0) 6 ^4, 1(1) e £}. Then, p induces the homeomorphism

PΛ : L(X; *, α) « (ί2X)β = {ω 6 OΛΊ [ω] = α} , pΛ(l) = pi ,

by the unique lifting property. Here (ΩX)a is the path component of ΩX
containing pla; hence so is (ΩX)^ 9 *, and (ΩX)^ is an H-space by the loop
multiplication. Also, p± : ΩX = L(X; *, *) « (ΩX)ί is an H-map. Thus, if ΩX
is homotopy commutative, then so are (ΩX)^ and ΩX.

LEMMA 2.2. (i) We have the homotopy equivalence

φ : ΩX x π

φ(ώ, α) = pώ /?/α /or ώ e ί 2 , α e π .

(ii) Assume that X is an H-space with multiplication μ : X x X -> X such
that μ(α, x) = α(x) for α e π . ΓΛβn φ is an H-map; hence the converse of Lemma
2.1 is also valid.

PROOF. In the path space LX, we have I"1 and the path multiplication
/•/' when /(I) - /'(O), as usual.
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(i) A homotopy inverse of φ is obtained by sending ω e ΩX to

(ώ ί"1, α) e ΩX x π, where α = [ω], ώ = p~l(ω\ and pΛ is the homeomorphism

in the above proof.

(ii) We have to show that the two maps of ΩX x ΩX x π x π to ΩX

sending (ώl9 ώ2, α1 ? α2) to (pώ1 p/αι) (pώ2 p/flt2) and p(ώί'ω2)'Pl*ίΛ2> respec-
tively, are homotopic. Here, p/αιOC2 and p/Λι p/Λ2 are in the same path com-

ponent L(X; *, α^). Therefore, by the homotopy associativity of the path
multiplication, it is sufficient to show that

φ ~ φ': ΩX x π -> ΩX , where φ'(ώ, α) = plΛ pώ .

Now, μ in the assumption gives us the map μ: LX x LX -> LX given

by μ(/, /')(£) = μ(/(ί)» /'(ί))- Then, μ(/α, ώ) can be deformed continuously to

M'α *α, * ώ) = μ(/α, *) μ(*α, ώ) (*α is the constant path to α) and also to
μ(* /α, ώ *) = μ(*, ώ) μ(/α, *), and so are these to /α αώ and ώ /α, respectively,

because μ\X x * ̂  id and μ(α, x) = α(x) by assumption. Since p(/α αώ) =

pla pώ = φ'(ώ, α) and p(ώ /α) = φ(ώ, α), these show that φ ~ φ'.

By these lemmas, we can prove Proposition 4 in the introduction.

PROOF OF PROPOSITION 4. In this case, we have the universal covering

Sn -> Sn/Zm = X. If ΩX is homotopy commutative, then so is ΩSn by Lemma

2.1; hence n = 3 or 7 by Theorem 1. Conversely, if n = 3 or 7, then the

multiplication μ of quaternions or Cayley numbers on 5" satisfies the assump-

tion of Lemma 2.2 (ii), which shows that ΩX is homotopy commutative.

Sn/Zm (n = 3, 7) is an /f-space when m = 2 by the multiplication induced from μ

on Sn of above, and is not an H-space when m > 3 by Browder [8] and [9].

3. The case when X has two cells

For the homotopy group πm(Sn) (n > 2), we use the following results (see

Adams[l], James[14], Serre[20] and Toda[24]):

(3.1) (i) πm(S") = O i f m < n .

(ii) πn(Sn) £ Z generated by ιn = [id].

(iii) πm(S") (m > n) is finite except for the case that m = 2n — 1 and n is

even.

(iv) If n is even, then π2n_1(5Π) ̂  Z © Fn. Here,

Fn = Im [Γ: π2Λ.2(S»-1) - π2ll.1(S")] = {α| Jϊ(α) = 0}

(27 is the suspension homomorphism and ff(α) is the /fo#/~ invariant of α) is finite

and F2 = 0. Also the infinite cyclic part Z is generated by αn such that

= ± 1 for n = 2, 4, 8, and H(αJ = ±2 otherwise
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and H(a) = ± 1 when α is the Hopf class η2, v4 or <τ8, and H([ιn, /„]) = ±2 for
the Whitehead product [/„, /„] e π2Λ_ι(S11).

(v) For odd n, 27: π^.^S""1) ->π2,,-ι(<S"1) is epimorphic, and [zn, zn] e
π2π_ι(SΠ) is 0 if n = 3, 7, and is of order 2 if n ^ 3, 7. Moreover [/„, /„] (n > 2)
is not contained in 2π2n_1(S"1) unless n + 1 is a power of 2.

Berstein-Ganea [6] introduced the numerical invariant of homotopy type,
nil ΩX, for any space X; and in particular, nil ΩX < 1 means that ΩX is
homotopy commutative. Hereafter we use this notation frequently for the
simplicity.

In this section, we prove Theorem 2 in the introduction for the mapping
cone

C(α) = Sk uα e
n of αeπ^S*) (fc, n > 2) .

If n - 1 < k or α = 0, then C(α) ~ 5* v Sn. If n - 1 = fc, then α = sιk =

Σ(sιk.1) and C(α) ~ ̂ (ŝ ). Thus, in these cases, C(α) is the suspension type,
and Theorem 2 follows from Theorem 1 by noticing that C(sιk) is contractible if
and only if s = ±1.

Therefore, in the rest of this section, we assume that

n - 1 > k > 2 and α φ 0 .

LEMMA 3.2. // α e π^^S*) is of finite order, then nil ΩC(ot) > 1.

PROOF. Consider the 0-localizations X0 of X and α0^0-^^0 of
α ' : Jf -> 7, which are the localizations with respect to the empty set 0. Then,

Lemma 1.3 shows that α0 : S0"1 -> S0 is null homotopic by assumption, and
that C(α)0 ^ C(α0). Therefore,

C(α)0 - C(α0) - 5fc

0 v ΓS^1 - Sk

0 v SW

0 - (Sk v S»)0 .

Consider the inclusions i:Sk -+ Sk v S", 7':SΠ -* Sfe v Sn. Then, [1,7] e
πk+n^(Sk v S") is of infinite order, because d:πk+n(Sk x 5", Sk v Sn) (^Z)-+
πΛ+Π_1(5fe v Sn) is monomorphic and [1,7] is the δ-image of a generator.
Therefore,

is non-trivial for the 0-localization l:X-+X0. Thus Ω(Sk v 5W)0 is not
homotopy commutative by Proposition 1.2 (ii), and so is ί2C(α)0, which implies
the lemma by Lemma 1.4.

For a space X, an even integer n > 2 and a map h: Sn -+ X, consider

the induced homomorphism h* : H*(X) -> H*(Sn) of the integral cohomology
groups. Then:
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PROPOSITION 3.3. Assume that a cohomology class u e H*(X) is mapped by
h* to a generator of H*(Sn) ^ Z and that

[M]=0 in π2n-1(X).

Then u2 e H2n(X) is of infinite order. Moreover, if

u2 = tv for some v e H2n(X) and t e Z ,

then t = + 1 or ±2.

PROOF. Consider the Whitehead product α = [zπ, ιn~\ e n2n-ι(Sn). Then,
= 0 in π2n-ι(Sn) by assumption. Therefore, there exists a map

h : C = C(α) = S"uα e
2" -+X with W = λ

for the inclusion i : Sn -> C. Consider the induced homomorphism

ΛVff*tY)->H*(C).

Here i* : Hn(C) ^ Hn(Sn), H2n(C) £ Z and generators ^ e Hj(C) for = n, 2n

satisfy

βn

2 = ±H(a)e2n = ±2e2n in H2Λ(C) ̂  Z

by definition of the Hopf invariant. Therefore, Λ*(M) = ± en by assumption,

and

Thus M2 is of infinite order, since so is ±2e2n. If u2 = tv for veH2n(X) and
ί e Z, then h*(v) = se2n for some integer s and

hence is = ±2 and \t\ = 1 or 2.

COROLLARY 3.4. Assume that k is even and the Hopf invariant //(α) of
α e π2jk_1(5k) is not equal to ± 1 and ±2. TTien p, i] ^ 0 m π2k_1(C(a)) for the

inclusion i:Sk-+ C(a).

PROOF. Assume that [i, i] = 0. Then the inclusion i : Sk -> C(α) satisfies
the assumption of Proposition 3.3. On the other hand, H*(C((ή) has a Z-basis
{I,ek,e2k} (degey=y) with a relation ek

2 = H((x)e2k, where H(oc) ^ ±1, ±2,

which contradicts the conclusion of Proposition 3.3.

LEMMA 3.5. Assume that H (α) = ± 1 for α e π2fc_1(Sk) (k = 2, 4, 8). Γ/ien

[p, p] Φ 0 in π9(C(α)) i/ fc = 2 ,
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where p:S5-+ C(α) = C(±η2) = CP(2) is the projection; and

[«fc,i]*0 in π2k(C(α)) if k = 4, 8 ,

where i : Sk -> C(α) is the inclusion and ηk e πk+ί(Sk).

PROOF. By (3.1) (iv), we have the following two cases:
(a) k = 2 and α = ±η2.
(b) k = 4, 8 and α = ±h + Σβ (h = v4, σ8) for some β e π2k.2(Sk~1).

Case (a): Then C(α) is homotopy equivalent to the complex projective
plane CP(2). From the homotopy exact sequence associated with the fibration
S1 -> S5 Λ CP(2), we see that

for 7 '>3,

since π^S1) = 0 for j > 2. Thus we have

DVs, /Vs] = P*['5> '5] ^0 in π9(CP(2)) ,

because [ι5, ι5] / 0 in π9(S5) by (3.1) (v).

Case (b): From the theorem of Blakers-Massey, we obtain the exact
sequence

π2fc(S2*-1)-^ π2k(Sk)^ π2k(C(α)) ,

where i : Sn -> C(α) is the inclusion.

Let η2k-ι be a generator of π2fc(S2k~1) ̂  Z2. Also let h' be a generator of
the cyclic group π2k_2(5fc~1) (k = 4, 8), i.e., h' = v' (k = 4) or σ' (fe = 8) in [24].
Then, α = ±h + Σβ = ±h + bΣh' for some integer b, and

Mfok-i) = (±h

and ftι/2*-ι ̂  0 by [24; Prop.5.8 and 7.1]. On the other hand,

2k-, by [24; (5.11) and p.63] .

These show that [ηk, zk] φ Im α^ = Ker i+ in the above exact sequence.
Thus

["7*> 0 = i*^*, '*] ̂  0 in π2k(C(α)) .

By Corollary 3.4 and Lemma 3.5, nil ΩC(a) > 1 in these cases according to
Proposition 1.2 (ii).

To consider the case that //(α) = ± 2, we prepare the following



Homotopy commutativity of the loop space of a finite CW-complex 375

PROPOSITION 3.6. Assume that the cohomology H*(X; k) with coefficient in
a field k for * < 3n has a k-basis

{I,en9e2n} (deg *,=./) with en

2 = 09

and ene2n = 0 in H3n(X; k\ for some n>2. Then, nil ΩX > 1.

PROOF. In this proof, we omit the coefficient field k for the simplicity.
Consider the projection p : L = L(X\ *, X) -> X, p(ΐ) = /(I), the adjoint d :
ΣΩX -> X of idβχ and the map d': CΩX -> L, d'(ω, t)(s) = ω(ts). Then, pd' =
d pr and we have the commutative diagram

Hj(X) p* > Hj(L,ΩX) <-̂ — Hj

Hj(ΣΩX) p^ > Hj(CΩX,ΩX) <-— Hj

By assumption and by studying the cohomology spectral sequence for the
fibration ΩX -+L-+X (cf. [20]), we see that H*(ΩX) for * < 3n - 3 has k-basis
{\,σ(en\e',σ(e2n\σ(en)e'} (deg e' = 2n — 2), where σ = (δ*)~lp* is the suspen-
sion homomorphism. Thus, H*(ΣΩX) for * < 3n — 2 has /c-basis

{1, αn, fr2B_!, α2w, b3n_2} (deg c, =7),

where the suspension isomorphism σ* = (c)*)"1 pr* maps α7 to σ(^), ^2,,-! to βr,

and fe3π_2 to σ(βπ)β'. Hence, the above commutative diagram shows that

d*(ej) = aj for j = n and 2n .

Suppose that ΩX is homotopy commutative. Then, by the result of

Stashefϊ stated in Proposition 1.2 (iv), there exists a map

ψ : ΣΩX x ΣΩX -> X

such that φ\ΣΩX x * ^ d ^ ι / Ί * x 27ί2AT. Consider the homomorphism

ψ* : H*(X) -+ H*(ΣΩX) ® H*(ΣΩX)

induced by ψ. Then, by the above results on the cohomologies, we see that

\l/*(en) = d*(en) ®1 + 1® d*(en) = an ® 1 + 1 ® an,

Ψ*(e2n) = d*(e2n) ® 1 + 1 ® d*(e2n) + gd*(en) ® d*(en)

= a2n ® 1 + 1 ® a2n + ^απ ® αn

for some g e fc, and so
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0 = ψ*(eme2Λ) = <A*(O<A*(*2n) = an ® a2n + a2n ® an * 0 ,

which is a contradiction. Thus nil ΩX > 1.

COROLLARY 3.7. // #(α) = ±2 for α e π2k_1(Sk) (fc : £?ι?en), ίfcen nil ί2C(α) >
1.

PROOF. #*(C(α); Z2) has a Z2 -basis {l;ek, e2*} (degβ/=7) and e£ =
H(y)e2k = 0 by assumption. Thus the result is a special case of Proposition
3.6.

Thus Theorem 2 is proved completely.

4. The case when A" is a sphere bundle over a sphere

By Steenrod[22; 18.5], the fc-sphere bundles over the n-sphere Sn with
group Ok+l are classified, up to bundle equivalence, by equivalence classes of
elements of πn^(Ok+ί) under the operations of π0(Ofc+1). Hereafter, we denote
by Ey the fc-sphere bundle over Sn which corresponds to the equivalence class of

) ( fc ,n>2) ,

which is called the characteristic class of Ey9 and by

p:Ey^Sn and i : Sk = p~l(*) -+ Eγ

the projection and the inclusion, respectively. Then, we have the following
exact sequence

and there holds the equality

(4.1) oc = A(ιn)

for the homomorphism q^ : πn_1(0k+1) -> ππ_!(5fc) induced by the natural projec-
tion q : Ok+1 -> Ok+l/Ok = Sk. Also, for the boundary homomorphism Δ, we
have the formula

(4.2) A(Σβ) = A(ιn)β = αj? for any β ε π^S"-1) .

In particular, (4.1) shows that Ey admits a cross section if and only if α = 0.

In the first place, we consider the case that

α = 0 , e.g., n < f c , or rc = fc+l and fc is even .

In fact, ^_!(5fc) = 0 if n < fc, and q+ = 0 : πk(Ok+1)-> πk(Sk) if fc is even by

[22; 23.7].
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PROPOSITION 4.3. Assume that a fibration (E,p,B) with fiber F = p~*(*)
admits a cross section s : B -» E, and B and F are simply connected. Then:

(i) μ(Ωi x Ωs): ΩF x ΩB -> ΩE is a homotopy equivalence, where i: F -> E
is the inclusion and μ is the loop multiplication on ΩE.

(ii) // ΩE is homotopy commutative, then so are ΩB and ΩF.

PROOF, (i) We see that μ(Ωi x Ωs) induces the isomorphisms of the
homotopy groups, which implies (i) by J. H. C. Whitehead's theorem.

(ii) If ΩE is homotopy commutative, then we can see that μ(Ωi x Ωs) is
an H-map. By (i), ΩF x ΩB is also homotopy commutative and so are ΩB
and ΩF.

COLLORARY 4.4. For the bundle Ey with α = q^(y) = 0 e nn^(Sk\ ΩEy is
not homotopy commutative unless {fc, n}c= {3, 7}.

PROOF. This follows from Proposition 4.3 and Theorem 1.

From now on, we consider Ey for γ e πn_1(0k+1) such that

n>k>2 and q+(γ) = Δ(ιn) = α Φ 0 inπ^S*).

By James-Whitehead[ 15], the bundle Ey admits a CJ^-structure

Ey = Sk uα e
n u en+k = C(α) uβ e

n+k = C(β).

Here β: S""1"*"1 -> C(α) is the attaching map of the top cell en+k so that

β = β\Sn+k~l for β: (Vn+\ S"-1-*-1)-* (£y, C(α)),

where β is the characteristic map for en+k. Also,

α = αlS"-1 for ά: (V\ Sn~l) -> (C(α), S"'1)

where α is the one for en, and there holds the following

PROPOSITION 4.5 ([15]). (i) Sk = p"1^) and p|C(α): (C(α), 5fc) -> (5Π, *) is α

relative homeomorphism for the projection p: Ey -> S".

(ϋ) Λ,(/0 = [«, ij far 7* : π^^.^Cία)) -* π^^^Cία), Sk),

7 is the inclusion and [α, ;k] is ί̂ β relative Whitehead product.

LEMMA 4.6. If k<n— 1, then [α, zk] α/trf j? are of infinite order.

PROOF. Consider the homotopy exact sequence

• -> πm(£r S
k) -* πm(£r C(α)) -̂  πm_1(C(α), Sfc) -> πm_1(£r S*) -» -
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of the triple (EΓ C(α), Sk\ where

ff = j*d : πm(EΓ C(α)) -> πm^(C(Λ)) - nm^(C(ocl Sk)

and πn+k(E7, C(α)) ̂  Z generated by β. Then, ππ+k(£y, Sk) is finite, because
p^ : πm(Ey, Sk) ^ π^S") and n<n + k<2n— 1 by assumption. Thus δ' for

m = n + fc is monomorphic; hence δ'(/J) =j*(β) = [α, zk] is of infinite order, and
so is also β.

LEMMA 4.7. Assume that n or k is even, and that α = q*(y) e n^^S1*) is of
finite order. Then,

[P> P] ̂  0 M π2n-l(Eγ) f°r S0me P e πn(Eγ) if n ZS even »

[ϊ, i] / 0 in π2k_1(£y) i/ /c is even .

PROOF. Consider the exact sequence

Assume that n is even and sα = 0 in n^^S1") for s φ 0. Then, from (4.1)

and the exactness,

A(sιn) = sA(ιn) = sα = 0 and so sιn = p*(p)

for some p e πΛ(£y). Thus

52DΠ, ij / 0 in π2n_1(5w)

by (3.1) (iv). Thus [p, p] ̂  0 in π2n_1(£y).
Assume that k is even. Then [/k, ιk~] e π2fc_1(5k) is of infinite order by (3.1)

(iv). On the other hand, the image of

is finite because π2k(Sn) is finite if n φ 2k by (3.1), and Im A is generated by
A(ιn) = α if n = 2k. Therefore [/k, zfc] is not contained in Im A. Hence, by the
above exact sequence, we have

[ ~\ r_ _ π / rv _ /17 \
I, ΪJ ^ ϊ^L'fe? ^fcJ ^ " m π 2k-lWy/

Thus we have nil ί2Ey > 1 in case of Lemma 4.7 by Proposition 1.2 (ii).

LEMMA 4.8. Assume that n = k + 1 φ 4 and α = #*(}>) / 0 in nk(Sk).
nil

PROOF, fe is odd by assumption, as is noticed in front of Proposition 4.3.
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Put α = sιk (s φ 0), and consider the homotopy exact sequence

• - - > πm(C(α))- πm(C(α), Sk) πm.,(Sk) - > πm-,(C(*\ Sk) - > - - -

of the pair (C(α), Sk) for C(α) = Sk uα e
k+1. Then, by Proposition 4.5 (ii) and

[7] on the relation of the relative Whitehead product and the absolute one, we

see that

0 = dj+(β) = δ([α, ιk]) = -[δά, ιt] = -[α, ιk] = -s[zk, ΪJk]

in π2k_ι(S*). Thus s is even if k Φ 3, 7 by (3.1) (v).

(a) The case that s is even: By Blakers-Massey[7], πn+k_1(C(α), Sk) is the

direct sum

Im [a, : πn+k^(V\ S""1) -> π^.ΛCία), S*)] Θ Z (k = n - 1)

where Z is generated by [α, ιk], Consider d : π2k(Vk+1

9 Sk) ^ π2k-ι(Sk). Then,
for any p e π2k(Vk+1, Sk), we have

= sδp

since dp e π2k_!(5fc) = Γπ2k_2(5fc~1) by (3.1)(v). Thus,

Im [3 : π2k(C(α), 5fc) -, π^ΛS*)]

by the above direct sum decomposition, since δ([α, zk]) = 0 as is shown in the
above. Since s is even, this and (3.1) (v) show that

[/k, ιk~\ φ Im δ if fe + 1 is not a power of 2 .

On the other hand, we have the commutative diagram

π2k(EΓ Sk) ^±— π2k(C(α), Sk),

where t is the inclusion map and ί# is epimorphic since Ey = C(α)ue2k+1.

Therefore Im J = Im 3 0 [*k, ίk] and

[i, ί] = i^Cϊfc, ϊk] ^ 0 in π^.^Ey)

if fe + 1 is not a power of 2.
Now, consider the case that fe + 1 = n is a power of 2. This proof can be

applicable in the case fe = 3, 7 and α = s/k (s is even).
We consider the exact sequence
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Then, for the generator ηk+ί = Σ2ηk_ί e nk+2(Sk+l) ^ Z2, we see that

Λfo*+ι) = Λ(ιk+1)ih by (4.2)

= *1k = sηk by (4.1)

= 0

since s is even. Thus there exists an element p e πk+2(Eγ) such that ηk+l =
p+(p). Therefore, by Hilton[10],

P*([P, P]) = Dh+ι, %+ι] ̂  0 in π2k+3(5fc+1)

hence [p, p] ̂  0 in π2fc+3(£y) and nil ΩEy > 1.

(b) The case that k = n — 1=7, VL = sιη and s is odd: We consider the
set P of primes p with (p, s) = 1. Then 2 e P and the P-localization αp : SP -> Sp
is a homotopy equivalence. Thus C(αP) has the homotopy type of a point *.

Therefore βP~*:SP

4^> C(αP) ̂  C(α)P ^ * and

(£y)P - C(βP) * SP

5 .

For the P-localization / : Sm -> 5? of Sm, we note that

[//„, /ι J = /D«, ̂ ] ̂ 0 in π2m.1(S-) if m ^ 3, 7 and 2 e P .

In fact, this is shown by Lemma 1.3, since 2 e P and the order of [ίm, zm] is 2 or

infinite by (3.1).
Therefore [//15, /z15] ^ 0 in π29(Sp5) in the above case, and ί2Sp5 is not

homotopy commutative by Proposition 1.2 (ii), and so is Ω(Ey)P, which implies

the lemma by Lemma 1.4.

LEMMA 4.9. Assume that n = 2k > 8, k is even and α = q#(y) e π2k-ι(Sk)
satisfies H(oΐ) Φ 0. Then [i, i] φ 0 in π2k_1(Ey).

PROOF. Consider the case //(α) ̂  ± 1, ±2. Then,

[Γ,Π/0 in π24.1(C(α))

for the inclusion i' : Sk -> C(α), by Corollary 3.4. Also,

πm(C(α)) s πm(£y) for m < 3fe - 2

by the homomorphism induced by the inclusion C(α) -> £y = C(α) u e3k. There-

fore [i, i] / 0 in π2k-ι(£y).
Now, we show that the assumption implies H(α) ̂  -hi, +2.

By Barratt-Mahowald[5] and Krishnarao[17], we see that π2k_1(0k+1) for
even k > 10 is the direct sum of a finite group and an infinite cyclic group
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generated by θ and

β*(0) = ΛlΛ, 'J + θ' for λ = ε(k)((fe - l)!)/8 > 2

for the homomorphism q^ : π2k_1(Ok+1) ->π2k_ι(S*) induced by the projection <?,
where θ' e Fk in (3.1) (iv) and ε(k) = 1 or 2 according as fc/2 is even or odd.

Consider the case k = 4, 6, 8. By [16] (cf. the table of πm(Ok) and πm(Sfc) in
[27; II, pp.1415-7]), we can see that π2k_1(0k+1) is the direct sum of a finite

group and an infinite cyclic group generated by θ which satisfies

f6[ι4,ι4] + 0' for fc = 4

= 2[/6, 16] for k = 6

where θ' eFk. Therefore,

#(α) + ± 1, ±2 if #(α) ̂ 0 and /c is even > 4 .

since α = q*(y)\ and the lemma is proved.

REMARK 4.10. Let X be a CW-complex obtained from C(α) = S*uα e" by
attaching r-cells with r > m for some m. Assume that \_ξ, ζ] 7^ 0 in C(α) for
ξ e πα(C(α)) and C e πb(C(α)) and α + fc < m. Then [yί,7'C] Φ 0 in ΛΓ for the
inclusion 7 : C(α) -* X, because j+ : πs(C(α)) = πs(X) for s < m, and we see that
nil ΩX > 1.

LEMMA 4.11. Let Ey be the bundle with α = q^(γ) e πII_1(Sk) (fc < n — 1).
(i) If n> 2k and k^ 3,1, then [i, i] ̂  0 in π2k_1(£y).
(ii) // ί/ι^ order o/ α is odrf and (k, n) 7^ (3, 7), then nil £2Ey > 1.

PROOF, (i) Consider the homotopy exact sequence

Then i^ is a monomorphism since π2k(Sn) = 0. Thus i^^fc, /k] = [i, i] ^ 0
in π2k_1(£y).

(i) We consider the 2-localization (Ey)2 of Ey. Then the 2-localization

α2 of α is null homotopic. Thus the fibration S* -> (£y)2 -̂  52 has a cross
section. Therefore we have nil ΩEγ > 1 by Proposition 4.3 and 1.2 (ii), because
[//m, lιm~\ φ 0 in π2m_1(S2

M) for m ̂  3, 7 as noted in the case (b) of the proof of
Lemma 4.8.

LEMMA 4.12. Assume that α = q^(y) e πn^(Sk) (k < n — 1) satisfies the fol-
lowing condition (1) or (2):
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(1) [Λ> lk\ ί5 not contained in the image of α^ : π2fc_1(Sπ~1) -> n2k-i(Sk) and

* * 3, 7,
(2) α = 2α' /or some α' e πa-^S*), fe + 1 is noί α power of 2 and k>4.

Then p,ί] 7*0 in π2fc_1(£v).

PROOF. In the exact sequence

we see by (4.2) and the suspension theorem that

α* = AΣ : π^S"-1) s π2k(Sn) -> π .̂̂ S*)

since fc < n — 1.
Case (1): In this case, we have

A(n2k(Sn)) = αJπ^ΛS"-1)) $ [ιk, ιk] .

Therefore [i, i] = ^[/fc, /fc] / 0 in π2k-ι(Ey\ by (3.1) (v) and the exactness.
Case (2): In this case, we have

since α = 2α' and 27: π2k_2('S'"~2) ̂ π2fc_1(5"~1) is epimorphic. On the other
hand, [ιk, ιk~] φ 2π2k-1(Sk)9 by (3.1) (v), since k + 1 is not a power of 2. Thus we
obtain A(π2k(Sn)) φ [_ιk, ιk~]. Therefore p, ί] / 0 in π2fc_1(£y).

REMARK 4.13. pfc, /k] does not lie in the image of ^4t'n2k-ι(Sn~1)^
π2k-ι(Sk) f°r tne following α e ^-jίS*):

ηk for /c = 1 mod 4, 77^, »/1 5; vk, vfc

3, μk, ηkεk+ί for fe = 11, 13 and 15; ζk for
k = 13 and 15, (the notation are the ones in [24]).

LEMMA 4.14. Assume that n = 0, 1 mod 4 and n Φ 5, and that α = q#(γ) e

πΠ_!(Sfc) satisfies

Wn-i = 0 /or !/„_! e πΛS"-1) s Z2 , e.g., α e 2π2n_!(5fc) .

Then [//„, //„] 7* 0 in π2n+1(Eγ) for any ήn e nn+1(Ey).

PROOF. Consider the exact sequence

- - > π,+1 (Sk) ^+ πn+ί (Eγ) ^+πn+ί (S») -±> πn(Sk) -
Then,

l) = Δ(ιn)ηn_, by (4.2)

= ̂ ^=0 by (4.1).

Thus, there exists an element ήn e πn+1(Eγ) such that p^(ήn) = ηn-
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Therefore, by Hilton [10],

P*(K»S ί»]) = fri,, *ln~\ * 0 in π2n+ί(Sn)

hence [ηn9 ήn~\ φ 0 in π2n+1(£y).

LEMMA 4.15. nilΏJf > 1 for any 2-sphere bundle over S4 such that α =

<?*(y) * f2 e π3(S2).

PROOF. Let £m denote the bundle Ey with a = mη2. Then £m has a
CW-structure

E m ~S 2 u m , 2 e 4 ue 6 ,

where f/ 2 : S3 -> S2 is the Hopf map.
From the homotopy exact sequence associated with the bundle Em and

(4.1), we have

π2(Em) ^ Z generated by i^ι2 = i,

π3(EJ ^ Zm generated by i^η2 = iη2 ( = 0 if m = ± 1)',

where i: S2 -> Em is the inclusion.

Let m ^ ±1, ±2. Then

P*'2» M2] = ϊ*[;25 '2] = ί*(2ί72) = 2^172 7^ 0 in π3(EJ .

When m = ±2, [/J4, //4] ^ 0 in π9(£m) by Lemma 4.14.
When m = ± 1, Em is homotopy equivalent to the complex project!ve space

CP(3). By Stasheίf [21; Th.1.18], ΩCP(3) is homotopy commutative.
Therefore ΩEm is homotopy commutative if and only if m = ±1.

Now, Theorem 3 in the introduction is proved by Corollary 4.4 and
Lemmas 4.7-15.
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