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On some contractive properties for the heat equations
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0. Introduction

This work is concerned with contractive properties for the solutions of the
following initial boundary value problem (IBVP) for the heat equation:

(IBVP)

d
— u(x, t) = Δu(x, t ) , x e Ω , t > 0 ,
ot

u(x, 0) = UQ , x e Ω ,

u(x, t) = 0 , x E dΩ , ί > 0 ,

where Ω is a bounded domain in RN and dΩ denotes its boundary.
For a solution u(x, t) of (IBVP), consider the following type of contraction

property:

PP) W u ( - , f ) \ \ L P ( Ω } < ||Fw( ,s)||LP(β), 0 < s < ί ,

for 1 < p < oo. Here, Vu is the gradient of u. In [1], H. Engler showed that
(Όp) holds for any domain Ω, if p is close to 2 in some sense. It is well known
that (D2) holds for any domain because ||Fχ , ί)llL2(Ω) *s the Dirichlet integral
of w( , t). Furthermore, if the mean curvature H of dΩ is nonnegative (in this
case, Ω is said to be //-convex), it is known that (Όp) holds for any p. (See
[1].) Engler generalized this result to the case of arbitrary domains. In this
note, we consider three functionals OSCε, Hα and Lip which are equivalent to
the functional

wh-nnax {\u(x) - u(y)\\x, y ε Ω, \x - y\ < ε},

the usual Holder norm and Lipschitz norm, respectively. These functionals, as
well as the functional MI—> | |PM||LP(C)» represent the regularity of u. The aim of
this note is to show that the above three functionals have the same type of
contractive properties as in (Όp) under the assumption that Ω is convex.

1. Three kinds of Lyapunov functionals for A

Let Ω be a bounded convex domain in RN. In what follows, we consider
the Banach space
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C0(Ω) = {UE C(Q)|ιι(x) = 0 for x e dΩ}

and the contraction semigroup {S(t)\t > 0} on C0(Ω) generated by A. For any
MO e C0(Ω\ S(t)u0 gives the generalized solution of (IBVP). A functional φ on
C0(Ω) is said to be a Lyapunov functional for A, if φ is lower semicontinuous
and

Φ(S(t)u0) < φ(u0) , for ί>0 and u0 e C0(Ω) .

For the Lyapunov functionals for operator semigroups, we refer to Pazy [4].
We then consider the following three kinds of functionals on C0(ί2).
Firstly, for each ε > 0, we define continuous seminorm OSCε 1} OSCε 2 and

OSCε on C0(β) by

OSCε>1(w) = max (\u(x) - u(y)\\x, y e Ω, \x - y\ < ε} ,

OSCε>2(w) = max (\u(x) +.u(y)\\x, y e Ω and there exists z e dΩ

such that |x — z| + \z — y\ < ε} ,

and

OSCε(w) = max {OSCε>1(M), OSCε,2(w)} , for u e C0(Ω) ,

respectively. The functional OSCε>2 represents the regularity near the bound-
ary and is indispensable for OSCε to be a Lyapunov functional for A. (See
Remark in Section 2.) Also, note that OSC^ < OSCε < 2OSCε>1.

Secondly, for any α e (0, 1) and u E C0(ί2), we put

Hβ(ιι) = supβ>0e"ΌSCβ(ιι)

and define the associated space

Note that Hα is equivalent to the usual Holder norm

H u l l , = sup (|ιφc) - u(y)\ \x - yΓ\x, yε&

In fact,

||M||β = supβ>0β"ΌSCβfl(ιι)

holds.
Finally, we define

Lip (u) = supε>0 e^OSC^ii) ,

and write the associated space as

Lip0(Ω) = {ue C0(ί2)|Lip (u) < 00} .
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Note that Lip coincides with the usual Lipschitz norm

\\u\\up = sup (|ιι(x) - ιι(jO||x - y\~l\x9 yeΩ,x*y}.

In fact,

and there is a number 0 < k < 1 (which may depend on u and ε) such that

for any u e C0(Ω).
Our main theorem is then stated as follows.

THEOREM 1. Let Ω be a bounded convex domain in RN, and (S(t)} be the
contraction semigroup on C0(Ω) associated with (IBVP). Then we have the
following.

( i ) OSCe is a Lyapunov functional for A.
(ii) Let 0 < α < 1. Then Q(ί2) is invariant under (S(t)} and Hα is a

Lyapunov functional for A.
(iii) Lip0(Ω) is invariant under {S(t)} and Lip is a Lyapunov functional

for A.

2. Lyapunov estimates of the resolvents of A

Fix τ > 0 and consider the following boundary value problem:

u(x) — τAu(x) = v(x), x e Ω ,

: 0 , xedΩ .

The aim of this section is to show the following theorem which plays a
crucial role in proving Theorem 1.

THEOREM 2. For any v e C0(Ω) and τ > 0, there exists a unique solution
u(x) e CQ(Ω) of (E) and, for any ε > 0,

(D) OSCε(u) < OSCβ(ι>)

holds.

REMARK. There is a case in which u(x\ v(x\ τ > 0 and ε > 0 are as in
Theorem 2, but

OSCβfl (11)

fails for any sufficiently small τ > 0, and for some ε > 0. In fact, put
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v(x) =

(2/3) -|*l, if 0 < | x | < l / 3 ,

1/3, if l / 3 < | x | < 2 / 3 ,

l - | x | , if 2 / 3 < | x | < l ,

and ε = 2/3. Then u(± 1/3) > v(± 1/3) = OSC(2/3)5l(ι;) for any sufficiently small
τ > 0 .

PROOF OF THEOREM 2. Fix any η > 0. Let Ωη be a bounded convex
domain in RN which satisfies the following conditions:

Ω a Ωη , η/2< dist (z, Ω) < η for any z e 8Ωη , and dΩη is of class C2 .

Put ^ = v * p(ί7/2) e C0(Ωη) Π C°°(ί2n), where p(ί7/2) is the Friedrichs mollifier.
Then there exists a unique solution uη e C0(Ωη) Π C°°(̂ ) to the following prob-
lem (E,):

1 η)

(x) - τAuη(x) = vη(x) , x e Ωη ,

See for instance Mizohata [2], Chapter 3.

For each ε > 0 and η > 0, we define seminorms OSCεί/1, OSCεη2 and

OSCε^ on Coίfl,) by

OSCε>M(w) = max {κ(x) - M(J)|X, y e Ωη, \x - y\ ̂  ε} ,

OSCε^j2(
M) = max {IWW + w(y)l|*9 y

 e ̂  and there exists

zeδβ, such that |x - z| + |z - y\ < ε} ,

OSCβt,(ιι) = max {OSC^M OSCε,,,2(W)} ,

for u E C0(β^), respectively.
In what follows, we demonstrate the following key estimate

The idea of the proof is illustrated as follows. Let Ω'η be a copy of Ωη,
identify dΩη and dΩ'η and put Ωη = Ωη u Ω'η. Then Ωη is a C2 -manifold without
boundary. Let x' e Ω'η (or x'eΩη) denote the corresponding point of x 6 Ωη

(or xeΩ'η respectively). Put

W ' if xε°η,
v(χ')
^ ( x j ) if xeβ;,

and consider the problem
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(£„) uη(x) - τΔύn(x) = ϋη(x) , x e Ωη .

Let ϋη(x) be a solution of (E^) and define uη e C0(Ωη) by uη(x) = ύη(x) for x E Ωη.

Then uη satisfies the original problem (Eη) and uη(x) = — uη(x') for x e Ω'η.
Moreover OSCε tη(uη) coincides with

Cα,) = max {\uη(x) - uη(y)\\x, y ε Ωη9 d(x, y) < s} ,

where d denotes a metric on Ωη defined by

ί |x-y | , if x,yeΩηorx',yΈΩη,
(X' y) [mm {\x - z\ + \z - y\\z ε dΩη = dΩ'η] , if x, y' ε Ωη or x', y e Ωη .

Thus it is sufficient to show the contractive property (D^) for OSC~r The
proof will be divided into essentially three cases as follows.

Case 1. Suppose that there exist x0 and y0 ε Ωη such that |x0 — y0\ < s
and OSC~η(uη) = uη(x0) - uη(y0).

For sufficiently small h > 0, we have

Λ-"'1 { f K(^o + ξ)~ H,(XO)] dSξ - ί K(y0 + ξ) - uη(yM dSξ(J\ξ\=h J\ξ\=h

= h-«-ι { {[uη(xQ + ξ)- uη(y0 -f {)] -
J\ξ\=h

Here dSξ denotes the surface element on the sphere {ξ e RN | |ξ | = h}. Letting
/i |0, we have Λuη(x0) < Auη(yQ\ and this yields

uη(xQ) - uη(y0) < vη(x0) - vη(y0)

and (D,).
Case 2. Suppose that there exist x0 e Ωη, y0ε Ω'η and z0 e dΩη such that

d(xo> yo) = \XQ ~ zo\ + \zo - Jol < ε and OSC^Cfi,) = ύη(xQ) - uη(y0) = uη(x0) +

Let π denote the tangent hyperplane of dΩη at z0, and let r(x) denote the
reflexion of a point x ε RN with respect to π. Since

min {|x0 + ξ - z\ + |z - r(r(y'0) + £)| |ze flfl,} < ε

holds for ί e RN with |£| sufficiently small, we have

fr-N-i {[M (x ξ) - "

for sufficiently small h > 0. Letting /ι 10, we have Δuη(x0) + Auη(y'0) < 0. This
yields (D,).
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Case 3. Suppose that there exist x0 e Ωη and y0 e dΩη such that

|x0 - JO I ̂  e and OSC^ίfi,) = uη(x0) - uη(y0) = "„(*<>)•
Let π, r(x) and h > 0 be as in Case 2. Put

and note that

(XOL-*κ

ίK(*c
JA

JB η

ψ»Jc

dSξ

0)] - [M,(XO) + «,(3Ό)

»η(*o + ξ) -

It is not difficult to show that

d(x0 + ξ, r(y0 + {)') < ε , for £ e £

and that Jc = O(/IN+I). From this we infer that Auη(x0) < 0. Thus (D,) is
obtained.

It is easy to show that OSCε̂ (t;^) < OSCε(t;) and lim^ioι;^(x) = υ(x) uni-
formly on Ω. This and (D,,) together imply supl/>0OSCε^(w^) < oo. By the
Ascoli-Arzela theorem and the closedness of A, we have lim^^oW^ίx) = w(x),
where u(x) is a solution of (E). Since

OSCe(u,) - 20SC,.,(«,) < OSC.,,(«,) < OSCM ,

letting η 10 gives (D). The proof of Theorem 2 is thereby complete.

3. Proof of Theorem 1

Under the Dirichlet boundary condition, we see from the maximum prin-
ciple and Theorem 2 that A is m-dissipative on C0(Ω) and generates a (C0)-
contraction semigroup {S(t)} on C0(Ω) represented by

limτ|0 [1 — τ^]~[ί/t]M0 = S(t)uQ

uniformly on Ω. (See Pazy [3].) On the other hand, Theorem 2 implies that
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OSCε([l - τJ]-^Wo) < OSCε(Mo).

Letting τ 10, we obtain (i).
Finally (ii) and (iii) can be easily seen from the definitions.
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