On some contractive properties for the heat equations

Tetsuya Koyama

(Received May 19, 1989)

0. Introduction

This work is concerned with contractive properties for the solutions of the following initial boundary value problem (IBVP) for the heat equation:

(IBVP)
$$\begin{cases} \frac{\partial}{\partial t}u(x,t) = \Delta u(x,t), & x \in \Omega, t > 0, \\ u(x,0) = u_0, & x \in \Omega, \\ u(x,t) = 0, & x \in \partial\Omega, t > 0, \end{cases}$$

where Ω is a bounded domain in \mathbf{R}^N and $\partial \Omega$ denotes its boundary.

For a solution u(x, t) of (IBVP), consider the following type of contraction property:

$$\|\nabla u(\cdot, t)\|_{L^p(\Omega)} \le \|\nabla u(\cdot, s)\|_{L^p(\Omega)}, \qquad 0 < s \le t,$$

for $1 \le p \le \infty$. Here, ∇u is the gradient of u. In [1], H. Engler showed that (D_p) holds for any domain Ω , if p is close to 2 in some sense. It is well known that (D_2) holds for any domain because $\|\nabla u(\cdot, t)\|_{L^2(\Omega)}$ is the Dirichlet integral of $u(\cdot, t)$. Furthermore, if the mean curvature H of $\partial\Omega$ is nonnegative (in this case, Ω is said to be H-convex), it is known that (D_p) holds for any p. (See [1].) Engler generalized this result to the case of arbitrary domains. In this note, we consider three functionals OSC_{ε} , H_{α} and Lip which are equivalent to the functional

$$u \mapsto \max \{ |u(x) - u(y)| | x, y \in \overline{\Omega}, |x - y| \le \varepsilon \},\$$

the usual Hölder norm and Lipschitz norm, respectively. These functionals, as well as the functional $u \mapsto \| \nabla u \|_{L^{p}(\Omega)}$, represent the regularity of u. The aim of this note is to show that the above three functionals have the same type of contractive properties as in (D_{p}) under the assumption that Ω is convex.

1. Three kinds of Lyapunov functionals for Δ

Let Ω be a bounded convex domain in \mathbb{R}^{N} . In what follows, we consider the Banach space

Tetsuya Koyama

$$C_0(\overline{\Omega}) = \{ u \in C(\overline{\Omega}) | u(x) = 0 \text{ for } x \in \partial \Omega \}$$

and the contraction semigroup $\{S(t)|t \ge 0\}$ on $C_0(\overline{\Omega})$ generated by Δ . For any $u_0 \in C_0(\overline{\Omega})$, $S(t)u_0$ gives the generalized solution of (IBVP). A functional ϕ on $C_0(\overline{\Omega})$ is said to be a Lyapunov functional for Δ , if ϕ is lower semicontinuous and

$$\phi(S(t)u_0) \le \phi(u_0)$$
, for $t \ge 0$ and $u_0 \in C_0(\Omega)$.

For the Lyapunov functionals for operator semigroups, we refer to Pazy [4].

We then consider the following three kinds of functionals on $C_0(\overline{\Omega})$.

Firstly, for each $\varepsilon > 0$, we define continuous seminorm $OSC_{\varepsilon,1}$, $OSC_{\varepsilon,2}$ and OSC_{ε} on $C_0(\overline{\Omega})$ by

$$OSC_{\varepsilon,1}(u) = \max \{ |u(x) - u(y)| | x, y \in \overline{\Omega}, |x - y| \le \varepsilon \},$$

$$OSC_{\varepsilon,2}(u) = \max \{ |u(x) + u(y)| | x, y \in \overline{\Omega} \text{ and there exists } z \in \partial\Omega$$

such that $|x - z| + |z - y| \le \varepsilon \},$

and

$$OSC_{\varepsilon}(u) = \max \{OSC_{\varepsilon,1}(u), OSC_{\varepsilon,2}(u)\}, \quad \text{for} \quad u \in C_0(\Omega),$$

respectively. The functional $OSC_{\epsilon,2}$ represents the regularity near the boundary and is indispensable for OSC_{ϵ} to be a Lyapunov functional for Δ . (See Remark in Section 2.) Also, note that $OSC_{\epsilon,1} \leq OSC_{\epsilon} \leq 2OSC_{\epsilon,1}$.

Secondly, for any $\alpha \in (0, 1)$ and $u \in C_0(\overline{\Omega})$, we put

$$\mathbf{H}_{\alpha}(u) = \sup_{\varepsilon > 0} \varepsilon^{-\alpha} \mathbf{OSC}_{\varepsilon}(u)$$

and define the associated space

$$C_0^{\alpha}(\overline{\Omega}) = \left\{ u \in C_0(\overline{\Omega}) | \mathbf{H}_{\alpha}(u) < \infty \right\},\,$$

Note that H_{α} is equivalent to the usual Hölder norm

$$||u||_{\alpha} = \sup \{ |u(x) - u(y)| |x - y|^{-\alpha} | x, y \in \overline{\Omega}, x \neq y \}.$$

In fact,

$$||u||_{\alpha} = \sup_{\varepsilon > 0} \varepsilon^{-\alpha} OSC_{\varepsilon, 1}(u)$$

holds.

Finally, we define

$$\operatorname{Lip}(u) = \sup_{\varepsilon > 0} \varepsilon^{-1} \operatorname{OSC}_{\varepsilon}(u),$$

and write the associated space as

$$Lip_0(\overline{\Omega}) = \{ u \in C_0(\overline{\Omega}) | \text{Lip}(u) < \infty \}.$$

Note that Lip coincides with the usual Lipschitz norm

$$||u||_{Lip} = \sup \{ |u(x) - u(y)| |x - y|^{-1} | x, y \in \Omega, x \neq y \}.$$

In fact,

$$\|u\|_{Lip} = \sup_{\varepsilon > 0} \varepsilon^{-1} OSC_{\varepsilon, 1}(u)$$

and there is a number $0 < k \le 1$ (which may depend on u and ε) such that

$$OSC_{\varepsilon}(u) \leq k^{-1}OSC_{k\varepsilon,1}(u)$$

for any $u \in C_0(\overline{\Omega})$.

Our main theorem is then stated as follows.

THEOREM 1. Let Ω be a bounded convex domain in \mathbb{R}^N , and $\{S(t)\}$ be the contraction semigroup on $C_0(\overline{\Omega})$ associated with (IBVP). Then we have the following.

(i) OSC_{ε} is a Lyapunov functional for Δ .

(ii) Let $0 < \alpha < 1$. Then $C_0^{\alpha}(\overline{\Omega})$ is invariant under $\{S(t)\}$ and H_{α} is a Lyapunov functional for Δ .

(iii) $Lip_0(\Omega)$ is invariant under $\{S(t)\}$ and Lip is a Lyapunov functional for Δ .

2. Lyapunov estimates of the resolvents of Δ

Fix $\tau > 0$ and consider the following boundary value problem:

(E)
$$\begin{cases} u(x) - \tau \Delta u(x) = v(x), & x \in \Omega, \\ u(x) = 0, & x \in \partial \Omega. \end{cases}$$

The aim of this section is to show the following theorem which plays a crucial role in proving Theorem 1.

THEOREM 2. For any $v \in C_0(\overline{\Omega})$ and $\tau > 0$, there exists a unique solution $u(x) \in C_0(\overline{\Omega})$ of (E) and, for any $\varepsilon > 0$,

(D)
$$OSC_{\varepsilon}(u) \le OSC_{\varepsilon}(v)$$

holds.

REMARK. There is a case in which u(x), v(x), $\tau > 0$ and $\varepsilon > 0$ are as in Theorem 2, but

$$OSC_{\epsilon,1}(u) \leq OSC_{\epsilon,1}(v)$$

fails for any sufficiently small $\tau > 0$, and for some $\varepsilon > 0$. In fact, put

Tetsuya Коуама

 $\Omega = (-1, 1) \subset \mathbf{R},$

$$v(x) = \begin{cases} (2/3) - |x|, & \text{if } 0 \le |x| < 1/3, \\ 1/3, & \text{if } 1/3 \le |x| < 2/3, \\ 1 - |x|, & \text{if } 2/3 \le |x| < 1, \end{cases}$$

and $\varepsilon = 2/3$. Then $u(\pm 1/3) > v(\pm 1/3) = OSC_{(2/3),1}(v)$ for any sufficiently small $\tau > 0$.

PROOF OF THEOREM 2. Fix any $\eta > 0$. Let Ω_{η} be a bounded convex domain in \mathbb{R}^{N} which satisfies the following conditions:

 $\overline{\Omega} \subset \Omega_{\eta}$, $\eta/2 \leq \text{dist}(z, \overline{\Omega}) < \eta$ for any $z \in \partial \Omega_{\eta}$, and $\partial \Omega_{\eta}$ is of class C^2 .

Put $v_{\eta} = v * \rho_{(\eta/2)} \in C_0(\overline{\Omega}_{\eta}) \cap C^{\infty}(\Omega_{\eta})$, where $\rho_{(\eta/2)}$ is the Friedrichs mollifier. Then there exists a unique solution $u_{\eta} \in C_0(\overline{\Omega}_{\eta}) \cap C^{\infty}(\Omega_{\eta})$ to the following problem (E_{η}) :

(E_{\eta})
$$\begin{cases} u_{\eta}(x) - \tau \varDelta u_{\eta}(x) = v_{\eta}(x), & x \in \Omega_{\eta}, \\ u_{\eta}(x) = 0, & x \in \partial \Omega_{\eta}. \end{cases}$$

See for instance Mizohata [2], Chapter 3.

For each $\varepsilon > 0$ and $\eta > 0$, we define seminorms $OSC_{\varepsilon,\eta,1}$, $OSC_{\varepsilon,\eta,2}$ and $OSC_{\varepsilon,\eta}$ on $C_0(\overline{\Omega_{\eta}})$ by

$$OSC_{\varepsilon,\eta,1}(u) = \max \{ u(x) - u(y) | x, y \in \overline{\Omega}_{\eta}, |x - y| \le \varepsilon \},$$

$$OSC_{\varepsilon,\eta,2}(u) = \max \{ |u(x) + u(y)| | x, y \in \overline{\Omega}_{\eta} \text{ and there exists}$$

$$z \in \partial \Omega_{\eta} \text{ such that } |x - z| + |z - y| \le \varepsilon \},$$

$$OSC_{\varepsilon,\eta}(u) = \max \{ OSC_{\varepsilon,\eta,1}(u), OSC_{\varepsilon,\eta,2}(u) \},$$

for $u \in C_0(\overline{\Omega}_n)$, respectively.

In what follows, we demonstrate the following key estimate

$$(\mathbf{D}_{\eta}) \qquad \qquad \mathbf{OSC}_{\varepsilon,\eta}(u_{\eta}) \le \mathbf{OSC}_{\varepsilon,\eta}(v_{\eta}) \,.$$

The idea of the proof is illustrated as follows. Let Ω'_{η} be a copy of Ω_{η} , identify $\partial \Omega_{\eta}$ and $\partial \Omega'_{\eta}$ and put $\tilde{\Omega}_{\eta} = \bar{\Omega}_{\eta} \cup \bar{\Omega}'_{\eta}$. Then $\tilde{\Omega}_{\eta}$ is a C^2 -manifold without boundary. Let $x' \in \bar{\Omega}'_{\eta}$ (or $x' \in \bar{\Omega}_{\eta}$) denote the corresponding point of $x \in \bar{\Omega}_{\eta}$ (or $x \in \bar{\Omega}'_{\eta}$ respectively). Put

$$\tilde{v}_{\eta}(x) = \begin{cases} v_{\eta}(x) , & \text{if } x \in \bar{\Omega}_{\eta} , \\ -v_{\eta}(x') , & \text{if } x \in \bar{\Omega}'_{\eta} , \end{cases}$$

and consider the problem

280

Contractive properties for the heat equations

$$(\tilde{\mathbf{E}}_{\eta}) \qquad \qquad \tilde{u}_{\eta}(x) - \tau \varDelta \tilde{u}_{\eta}(x) = \tilde{v}_{\eta}(x) , \qquad x \in \tilde{\Omega}_{\eta} .$$

Let $\tilde{u}_{\eta}(x)$ be a solution of (\tilde{E}_{η}) and define $u_{\eta} \in C_0(\overline{\Omega}_{\eta})$ by $u_{\eta}(x) = \tilde{u}_{\eta}(x)$ for $x \in \overline{\Omega}_{\eta}$. Then u_{η} satisfies the original problem (E_{η}) and $\tilde{u}_{\eta}(x) = -u_{\eta}(x')$ for $x \in \Omega'_{\eta}$. Moreover $OSC_{\varepsilon,\eta}(u_{\eta})$ coincides with

$$\operatorname{OSC}_{\varepsilon,\eta}(\tilde{u}_{\eta}) = \max \left\{ |\tilde{u}_{\eta}(x) - \tilde{u}_{\eta}(y)| | x, y \in \tilde{\Omega}_{\eta}, d(x, y) \leq \varepsilon \right\},\$$

where d denotes a metric on $\tilde{\Omega}_n$ defined by

$$d(x, y) = \begin{cases} |x - y|, & \text{if } x, y \in \overline{\Omega}_{\eta} \text{ or } x', y' \in \overline{\Omega}_{\eta}, \\ \min \{ |x - z| + |z - y| | z \in \partial \Omega_{\eta} = \partial \Omega'_{\eta} \}, & \text{if } x, y' \in \overline{\Omega}_{\eta} \text{ or } x', y \in \overline{\Omega}_{\eta}. \end{cases}$$

Thus it is sufficient to show the contractive property (D_{η}) for $OSC_{\varepsilon,\eta}$. The proof will be divided into essentially three cases as follows.

Case 1. Suppose that there exist x_0 and $y_0 \in \Omega_\eta$ such that $|x_0 - y_0| \le \varepsilon$ and $OSC_{\varepsilon,\eta}(\tilde{u}_\eta) = u_\eta(x_0) - u_\eta(y_0)$.

For sufficiently small h > 0, we have

$$h^{-N-1} \left\{ \int_{|\xi|=h} \left[u_{\eta}(x_{0}+\xi) - u_{\eta}(x_{0}) \right] dS_{\xi} - \int_{|\xi|=h} \left[u_{\eta}(y_{0}+\xi) - u_{\eta}(y_{0}) \right] dS_{\xi} \right\}$$

= $h^{-N-1} \int_{|\xi|=h} \left\{ \left[u_{\eta}(x_{0}+\xi) - u_{\eta}(y_{0}+\xi) \right] - \left[u_{\eta}(x_{0}) - u_{\eta}(y_{0}) \right] \right\} dS_{\xi} \le 0 .$

Here dS_{ξ} denotes the surface element on the sphere $\{\xi \in \mathbb{R}^{N} | |\xi| = h\}$. Letting $h \downarrow 0$, we have $\Delta u_{\eta}(x_{0}) \leq \Delta u_{\eta}(y_{0})$, and this yields

$$u_{\eta}(x_0) - u_{\eta}(y_0) \le v_{\eta}(x_0) - v_{\eta}(y_0)$$

and (D_{η}) .

Case 2. Suppose that there exist $x_0 \in \Omega_\eta$, $y_0 \in \Omega'_\eta$ and $z_0 \in \partial \Omega_\eta$ such that $d(x_0, y_0) = |x_0 - z_0| + |z_0 - y_0| \le \varepsilon$ and $OSC_{\varepsilon, \eta}^{\sim}(\tilde{u}_\eta) = \tilde{u}_\eta(x_0) - \tilde{u}_\eta(y_0) = u_\eta(x_0) + u_\eta(y'_0)$.

Let π denote the tangent hyperplane of $\partial \Omega_{\eta}$ at z_0 , and let r(x) denote the reflexion of a point $x \in \mathbb{R}^N$ with respect to π . Since

$$\min\left\{|x_0+\xi-z|+|z-r(r(y'_0)+\xi)| | z \in \partial \Omega_{\eta}\right\} \le \varepsilon$$

holds for $\xi \in \mathbf{R}^N$ with $|\xi|$ sufficiently small, we have

$$h^{-N-1} \int_{|\xi|=h} \left\{ \left[u_{\eta}(x_{0}+\xi) - u_{\eta}(x_{0}) \right] + \left[u_{\eta}(r(r(y'_{0})+\xi)) - u_{\eta}(y'_{0}) \right] \right\} dS_{\xi} \leq 0$$

for sufficiently small h > 0. Letting $h \downarrow 0$, we have $\Delta u_{\eta}(x_0) + \Delta u_{\eta}(y'_0) \le 0$. This yields (D_{η}) .

Tetsuya Koyama

Case 3. Suppose that there exist $x_0 \in \Omega_\eta$ and $y_0 \in \partial \Omega_\eta$ such that $|x_0 - y_0| \le \varepsilon$ and $OSC_{\varepsilon,\eta}(\tilde{u}_\eta) = u_\eta(x_0) - u_\eta(y_0) = u_\eta(x_0).$

Let π , r(x) and h > 0 be as in Case 2. Put

$$A = \{\xi \in \mathbf{R}^{N} | |\xi| = h, y_{0} + \xi \in \Omega_{\eta} \},$$

$$B = \{\xi \in \mathbf{R}^{N} | |\xi| = h, r(y_{0} + \xi) \in \Omega_{\eta} \},$$

$$C = \{\xi \in \mathbf{R}^{N} | |\xi| = h \} \setminus (A \cup B),$$

and note that

$$\begin{split} &\int_{|\xi|=h} \left[u_{\eta}(x_{0}+\xi) - u_{\eta}(x_{0}) \right] dS_{\xi} \\ &= \int_{A} \left\{ \left[u_{\eta}(x_{0}+\xi) - u_{\eta}(y_{0}+\xi) \right] - \left[u_{\eta}(x_{0}) - u_{\eta}(y_{0}) \right] \right\} dS_{\xi} \\ &+ \int_{B} \left\{ \left[u_{\eta}(x_{0}+\xi) + u_{\eta}(r(y_{0}+\xi)) \right] - \left[u_{\eta}(x_{0}) + u_{\eta}(y_{0}) \right] \right\} dS_{\xi} \\ &+ \int_{C} \left[u_{\eta}(x_{0}+\xi) - u_{\eta}(x_{0}) \right] dS_{\xi} \,. \end{split}$$

It is not difficult to show that

$$d(x_0 + \xi, r(y_0 + \xi)') \le \varepsilon$$
, for $\xi \in B$

and that $\int_{C} = o(h^{N+1})$. From this we infer that $\Delta u_{\eta}(x_0) \leq 0$. Thus (D_{η}) is obtained.

It is easy to show that $OSC_{\varepsilon,\eta}(v_{\eta}) \leq OSC_{\varepsilon}(v)$ and $\lim_{\eta \downarrow 0} v_{\eta}(x) = v(x)$ uniformly on $\overline{\Omega}$. This and (D_{η}) together imply $\sup_{\eta>0} OSC_{\varepsilon,\eta}(u_{\eta}) < \infty$. By the Ascoli-Arzela theorem and the closedness of Δ , we have $\lim_{n \downarrow 0} u_n(x) = u(x)$, where u(x) is a solution of (E). Since

$$OSC_{\varepsilon}(u_n) - 2OSC_{n,n}(u_n) \le OSC_{\varepsilon,n}(u_n) \le OSC_{\varepsilon}(v)$$
,

letting $\eta \downarrow 0$ gives (D). The proof of Theorem 2 is thereby complete.

3. Proof of Theorem 1

Under the Dirichlet boundary condition, we see from the maximum principle and Theorem 2 that Δ is *m*-dissipative on $C_0(\overline{\Omega})$ and generates a (C_0) contraction semigroup $\{S(t)\}$ on $C_0(\overline{\Omega})$ represented by

$$\lim_{\tau \downarrow 0} \left[1 - \tau \varDelta \right]^{-[t/\tau]} u_0 = S(t) u_0$$

uniformly on $\overline{\Omega}$. (See Pazy [3].) On the other hand, Theorem 2 implies that

Contractive properties for the heat equations

$$\operatorname{OSC}_{\varepsilon}([1 - \tau \varDelta]^{-[t/\tau]}u_0) \leq \operatorname{OSC}_{\varepsilon}(u_0).$$

Letting $\tau \downarrow 0$, we obtain (i).

Finally (ii) and (iii) can be easily seen from the definitions.

ACKNOWLEDGEMENT. The author would like to express his gratitude to Professor S. Oharu for his kind advice.

References

- [1] H. Engler, Contractive properties for the heat equation in Sobolev spaces, J. Funct. Anal., 64 (1985), 412-435.
- [2] S. Mizohata, The theory of partial differential equations, Cambridge University Press, 1973.
- [3] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983.
- [4] —, The Lyapunov Method for semigroups of nonlinear contractions in Banach spaces, J. Analyse Math., 40 (1981), 239-262.

Department of Mathematics, Hiroshima Institute of Technology