Existence theorems for Monge-Ampère equations in R^N

Takaŝi KUSANO and Charles A. SWANSON (Received December 19, 1989)

1. Introduction

Our aim is to establish the existence of positive radial entire solutions u(x) of nonlinear partial differential equations of the Monge-Ampère type

(1)
$$\det (D^2 u) = \alpha \Delta u + \lambda f(|x|, u, |Du|), \qquad x \in \mathbb{R}^N, \qquad N \ge 3$$

which grow like constant multiples of $|x|^2$ as $|x| \to \infty$, where $\alpha > 0$ and $\lambda \in \mathbf{R}$ are constants and $f \in C(\mathbf{D}, \mathbf{R})$, $\mathbf{D} = \overline{\mathbf{R}}_+ \times \mathbf{R}_+ \times \overline{\mathbf{R}}_+$, $\mathbf{R}_+ = (0, \infty)$, $\overline{\mathbf{R}}_+ = [0, \infty)$. Detailed hypotheses on f are listed in §2. Under modified conditions we also prove (Theorem 3) the existence of radial entire solutions of (1) which are positive in some neighborhood of infinity.

As usual, |x| denotes the Euclidean length of a point $x = (x_1, ..., x_N)$ in \mathbb{R}^N , $D_i = \partial/\partial x_i$, $D_{ij} = D_i D_j$ for i, j = 1, ..., N, $Du = (D_1 u, ..., D_N u)$, $\Delta = \sum_{i=1}^N D_{ii}$, and $D^2 u$ is the Hessian matrix $(D_{ii}u)$.

An entire solution of (1) is defined to be a function $u \in C^2(\mathbb{R}^N)$ satisfying (1) at every point $x \in \mathbb{R}^N$. We seek radially symmetric entire solutions u(x) = y(t), t = |x|, of (1) such that

(2)
$$0 < \liminf_{t \to \infty} t^{-2} y(t), \qquad \limsup_{t \to \infty} t^{-2} y(t) < \infty.$$

In particular our results apply to the following special cases of (1):

(3)
$$\det (D^2 u) = \alpha \Delta u + \lambda p(|x|) u^{\gamma}, \qquad x \in \mathbb{R}^N;$$

(4)
$$\det (D^2 u) = \alpha \varDelta u + \lambda p(|x|) e^u, \qquad x \in \mathbf{R}^N,$$

where γ is a positive constant and $p \in C(\overline{R}_+, R)$. If $p(t) = 0(t^{-2\gamma})$ as $t \to \infty$, Theorem 1 implies that (3) has an infinitude of positive radial entire solutions u(x) = y(|x|) satisfying (2), for all sufficiently small $|\lambda|$. If in addition $\gamma < N$ and $p(t) \ge 0$ on \overline{R}_+ , Theorem 2 shows that (3) has positive radial entire solutions satisfying (2) for all $\lambda \ge 0$.

If $p(t) = 0[\exp(-2\alpha_N t^2)]$ as $t \to \infty$, where

(5)
$$\alpha_N = (\alpha N)^{1/(N-1)}, \qquad N \ge 3,$$

Theorem 1 implies that (4) has an infinitude of positive radial entire solutions u(x) = y(|x|) satisfying (2) for sufficiently small $|\lambda|$. Theorem 3 establishes, for

arbitrary $\lambda \in \mathbf{R}$, the existence of infinitely many radial entire solutions of (4) satisfying (2) which are positive in a neighborhood of infinity.

Theorems 1 and 2 also apply to generalizations of (3) having the form

(6)
$$\det (D^2 u) = \alpha \Delta u + \lambda p(|x|) u^{\gamma} (1 + |Du|^2)^{\delta}, \qquad x \in \mathbb{R}^N,$$

where γ , δ are nonnegative constants with $\gamma + \delta > 0$. The condition $p(t) = 0(t^{-2\gamma-2\delta})$ as $t \to \infty$ implies the existence of positive radial solutions of (6) satisfying (2) if $|\lambda|$ is small enough; and if in addition $\gamma + 2\delta < N$ and p(t) is nonnegative, implies the existence of such solutions for arbitrary $\lambda \ge 0$.

If $\alpha = 0$, $\gamma = 0$, and $\delta = (N + 2)/2$ equation (6) arises in differential geometry as the equation for prescribed Gaussian curvature [6, p. 38]. If $\alpha > 0$, (6) is an equation for prescribed generalized Gaussian curvature, as described by Pogorelov [14, Chap. 10–13]. Since the case $\alpha = 0$ was treated in [8, 9] our attention here is directed toward the case $\alpha > 0$, $N \ge 3$. If N = 2 sufficient conditions are given in [8] for equation (1) to have infinitely many positive radial entire solutions which are strictly convex in \mathbb{R}^2 and asymptotic to constant multiples of |x| (if $\alpha = 0$) or $|x|^2$ (if $\alpha > 0$) as $|x| \to \infty$. These results are extended to dimensions $N \ge 3$ by our theorems in §2 (for $\alpha > 0$) together with those in [9] (for $\alpha = 0$).

The significance of Monge-Ampère equations (1) in geometry and analysis have led to many recent investigations [1-7, 10-19], mostly devoted to existence and regularity questions for boundary value problems in *bounded* domains. The results for unbounded domains seem to be limited to those of Popivanov and Kutev [17] for exterior domains and the authors [8, 9] for (1), as described above.

2. Statement of theorems and outline of method

The hypotheses on the function f in (1) will be selected from the following list:

- (f₁) |f(t, u, v)| is nondecreasing in u and in v for fixed values of the other variables.
- (f₂) $F(k) = \sup_{t \in \overline{R}_+} |f(t, k(1 + t^2), 2kt)| < \infty$ for all k > 0.
- (f₃) $\lim_{k\to\infty} k^{-N}F(k) = 0.$
- (f₄) $H(c) = \sup_{t \in \overline{R}_+} |f(t, c + 2\alpha_N t^2, 4\alpha_N t)| < \infty$ for all $c \in \mathbb{R}$ where α_N is defined by (5).
- (f₅) $\lim_{c\to -\infty} H(c) = 0.$

THEOREM 1. If $f \in C(D, R)$ satisfies (f_1) and (f_2) , then there exists $\lambda_0 > 0$ such that equation (1) has an infinitude of positive radial entire solutions u(x) = y(|x|) satisfying (2) for all $|\lambda| \le \lambda_0$.

THEOREM 2. If $f \in C(D, \overline{R}_+)$ and satisfies $(f_1)-(f_3)$, then equation (1) has an infinitude of positive radial entire solutions u(x) = y(|x|) satisfying (2) for all $\lambda \ge 0$.

THEOREM 3. If $f \in C(\overline{R}_+ \times R \times \overline{R}_+, R)$ satisfies (f_1) , (f_4) , and (f_5) , then equation (1) has an infinitude of radial entire solutions which are positive in a neighborhood of infinity and satisfy (2) for all real λ .

To prove these theorems we seek radial entire solutions u(x) = y(t), t = |x|, of (1) such that y(0) = c > 0 and y'(t) > 0. Standard calculations [5] yield the polar forms

(7)
$$\det (D^2 u) = t^{1-N} (y')^{N-1} y'', \qquad \Delta u = t^{1-N} (t^{N-1} y')',$$

where a prime denotes d/dt. It follows that u(x) is a positive entire solution of (1) if and only if y(t) is a positive $C^2[0, \infty)$ -solution of the ordinary differential equation

(8)
$$(y')^{N-1}y'' - \alpha(t^{N-1}y')' = \lambda t^{N-1}f(t, y, y'), \qquad t > 0$$

subject to the initial conditions

(9)
$$y(0) = c > 0, \quad y'(0) = 0$$

Integration of (8) yields

(10)
$$(y'(t))^N - \alpha N t^{N-1} y'(t) = \lambda N \int_0^t s^{N-1} f(s, y(s), y'(s)) \, ds \, , \qquad t > 0 \, .$$

In order to write this integro-differential equation in the more accessible form $y(t) = (\mathscr{F}y)(t)$ (see (19) below), we define

$$z(t) = \alpha_N^{-1} t^{-1} y'(t) , \qquad t > 0 ,$$

where α_N is given by (5), and rewrite (10) in the form

(11)
$$[z(t)]^{N} - z(t) = \lambda N \alpha_{N}^{-N} t^{-N} \int_{0}^{t} s^{N-1} f(s, y(s), y'(s)) \, ds \, , \qquad t > 0 \, .$$

To solve (11) for z(t), we note that the function ϕ defined by $\phi(\zeta) = \zeta^N - \zeta$ is strictly increasing for $\zeta \ge N^{-1/(N-1)}$, and in fact ϕ is a bijective map from $(N^{-1/(N-1)}, \infty)$ onto $(-(N-1)N^{-N/(N-1)}, \infty)$ such that $\phi(1) = 0$. Therefore ϕ has a uniquely defined inverse function Φ from $(-(N-1)N^{-N/(N-1)}, \infty)$ onto $(N^{-1/(N-1)}, \infty)$ with $\Phi(0) = 1$. Moreover, standard inversion theorems show that Φ is analytic, strictly increasing, and concave; in particular Takaŝi KUSANO and Charles A. SWANSON

(12)
$$\Phi'(\eta) = \frac{1}{N[\Phi(\eta)]^{N-1} - 1} > 0,$$

(13)
$$\Phi''(\eta) = -\frac{N(N-1)[\Phi(\eta)]^{N-2}}{(N[\Phi(\eta)]^{N-1}-1)^3} < 0$$

on dom Φ . It can also be seen easily that

(14)
$$\Phi(\eta) \le 2(1+\eta)^{1/N}$$
 for $\eta \ge 0$.

For the right side of (11) belonging to dom Φ , i.e., exceeding $-(N-1)N^{-N/(N-1)}$, for all t > 0, it follows that (11) is equivalent to

$$z(t) = \Phi\left[\lambda N \alpha_N^{-N} t^{-N} \int_0^t s^{N-1} f(s, y(s), y'(s)) ds\right], \qquad t > 0,$$

or

(15)
$$y'(t) = \alpha_N t \Phi \left[\lambda N \alpha_N^{-N} t^{-N} \int_0^t s^{N-1} f(s, y(s), y'(s)) \, ds \right], \qquad t \ge 0.$$

Equation (15) extends to t = 0 by continuity since L'Hôpital's rule yields

$$\lim_{t \to 0^+} t^{-N} \int_0^t s^{N-1} f(s, y(s), y'(s)) \, ds = N^{-1} f(0, c, 0)$$

for any C^1 -function y satisfying the initial conditions (9). Integration of (15) leads to the following integro-differential equation, appropriate for the initial value problem (8), (9):

(16)
$$y(t) = c + \alpha_N \int_0^t s \Phi \left[\lambda N \alpha_N^{-N} s^{-N} \int_0^s r^{N-1} f(r, y(r), y'(r)) dr \right] ds, \quad t \ge 0.$$

As soon as a positive solution $y \in C^1(\overline{R}_+)$ of (16) has been demonstrated, as will be done in §3, it will follow by differentiation and application of the mapping ϕ that y solves the initial value problem (8), (9), and hence that u(x) = y(|x|) is a positive radial entire solution of (1).

3. Proofs of theorems

To construct a solution $y \in C^1(\overline{R}_+)$ of (16) under the hypotheses of Theorem 1, we choose $\lambda_0 > 0$ such that

(17)
$$N\lambda_0 F(2\alpha_N) \le \alpha_N^N,$$

and fix $c \in (0, 2\alpha_N)$ arbitrarily. Let C^1 denote the Fréchet space of all C^1 -functions in \overline{R}_+ , with the topology of uniform convergence of functions and

646

their first derivatives on compact subintervals of \bar{R}_+ . Consider the closed convex set

(18)
$$\mathscr{Y} = \left\{ y \in C^1 : c \le y(t) \le c + 2\alpha_N t^2, 0 \le y'(t) \le 4\alpha_N t, t \ge 0 \right\}$$

and the mapping $\mathscr{F}:\mathscr{Y}\to C^1$ defined by

(19)
$$(\mathscr{F}y)(t) = c + \alpha_N \int_0^t s \Phi[w(s)] ds , \quad t \ge 0 , \quad |\lambda| \le \lambda_0 ,$$

where

(20)
$$w(s) = \lambda N \alpha_N^{-N} s^{-N} \int_0^s r^{N-1} f(r, y(r), y'(r)) dr, \qquad y \in \mathscr{Y}.$$

If $y \in \mathcal{Y}$, then for all $s \ge 0$, $|\lambda| \le \lambda_0$,

(21)
$$|w(s)| \le |\lambda| N \alpha_N^{-N} s^{-N} \int_0^s r^{N-1} |f(r, 2\alpha_N (1+r^2), 4\alpha_N r)| dr$$
$$\le \lambda_0 \alpha_N^{-N} F(2\alpha_N) \le N^{-1} < (N-1) N^{-N/(N-1)},$$

showing that \mathscr{F} is well-defined on \mathscr{Y} . Also, if $y \in \mathscr{Y}$, (12), (14), and (17) yield

$$0 < \alpha_N \Phi[w(s)] \le \alpha_N \Phi(N^{-1}) \le 2\alpha_N (1 + N^{-1})^{1/N} \le 4\alpha_N , \qquad s \ge 0 ,$$

and hence

$$c \leq (\mathscr{F}y)(t) \leq c + 2\alpha_N t^2$$
, $t \geq 0$.

Furthermore

(22)
$$0 \leq (\mathscr{F}y)'(t) \leq \alpha_N t \Phi[w(t)] \leq 4\alpha_N t , \quad t \geq 0 ,$$

showing that \mathcal{F} maps \mathcal{Y} into itself.

To prove the continuity of \mathscr{F} in the C^1 -topology, let $\{y_n\}$ be a sequence in \mathscr{Y} converging to $y \in \mathscr{Y}$ in this topology, and define

$$w_n(t) = \lambda N \alpha_N^{-N} t^{-N} \int_0^t r^{N-1} f(r, y_n(r), y'_n(r)) dr , \qquad t \ge 0.$$

Then by (20) and (22), for $|\lambda| \leq \lambda_0$, $t \geq 0$,

$$|w_n(t) - w(t)| \le \lambda_0 \alpha_N^{-N} \sup_{0 \le r \le t} |f(r, y_n(r), y'_n(r)) - f(r, y(r), y'(r))|$$

and

$$|(\mathscr{F} y_n)'(t) - (\mathscr{F} y)'(t)| = \alpha_N t |\Phi[w_n(t)] - \Phi[w(t)]|.$$

The continuity of Φ therefore implies that $(\mathscr{F}y_n)'(t) \to (\mathscr{F}y)'(t)$ as $n \to \infty$ uni-

formly on every compact subinterval of \overline{R}_+ . Likewise, from (19), $(\mathscr{F}y_n)(t) \rightarrow (\mathscr{F}y)(t)$ uniformly on such subintervals, establishing the continuity of \mathscr{F} in C^1 .

To prove that $\mathscr{F}\mathscr{Y}$ has compact closure in C^1 via Ascoli's theorem, we note that $\mathscr{F}y \in C^2(\overline{R}_+)$ for all $y \in \mathscr{Y}$, and

$$(\mathscr{F}y)''(t) = \alpha_N \Phi[w(t)] + \lambda N \alpha_N^{1-N} \Phi'[w(t)] \left[f(t, y(t), y'(t)) - N t^{-N} \int_0^t r^{N-1} f(r, y(r), y'(r)) dr \right],$$

$$t \ge 0.$$

Then (12), (13), and (21) imply the uniform bound

$$|(\mathscr{F}y)''(t)| \le \alpha_N \Phi(N^{-1}) + 2\lambda_0 N \alpha_N^{1-N} \Phi'(-N^{-1}), \quad t \ge 0,$$

from which $\mathscr{F}'\mathscr{Y} = \{(\mathscr{F}y)' : y \in \mathscr{Y}\}$ is locally equicontinuous in \overline{R}_+ . Similarly $\mathscr{F}\mathscr{Y}$ is locally equicontinuous, and the local uniform boundedness of $\mathscr{F}\mathscr{Y}$ and $\mathscr{F}'\mathscr{Y}$ is easily verified. Hence $\mathscr{F}\mathscr{Y}$ is relatively compact in the C^1 -topology by Ascoli's theorem.

We can then apply the Schauder-Tychonov fixed point theorem to conclude that there exists an element $y \in \mathscr{Y}$ such that $\mathscr{F}y = y$, i.e., y(t) satisfies (16), yielding a positive entire solution u(x) = y(|x|) of equation (1) in \mathbb{R}^{N} . The fact that y(t) satisfies (2) follows from the inequalities

(23)
$$c + \frac{1}{2}\alpha_N N^{-1/(N-1)}t^2 \le y(t) \le c + 2\alpha_N t^2, \quad t \ge 0.$$

The right inequality (23) is obvious from (18), and the left inequality is a consequence of the fact

$$\Phi(\eta) \ge N^{-1/(N-1)}$$
 for $\eta \ge -(N-1)N^{-N/(N-1)}$.

Since any $c \in (0, 2\alpha_N]$ will serve as an initial value y(0) = c in (9), there exists an infinitude of positive radial entire solutions of equation (1). This completes the proof of Theorem 1.

PROOF OF THEOREM 2. For arbitrary (fixed) $\lambda \ge 0$, (f₂) and (f₃) imply the existence of a constant $\beta \ge \alpha_N$ such that

(24)
$$\lambda NF(2c) \le c^N$$
 for all $c \ge \beta$.

For such a number c, consider the following analogue of (18):

(25)
$$\mathscr{Y} = \{ y \in C^1 : c \le y(t) \le c(1+2t^2), 0 \le y'(t) \le 4ct, t \ge 0 \}.$$

Since f has only nonnegative values by hypothesis, the mapping \mathscr{F} defined by (19) is well-defined on \mathscr{Y} . Furthermore, exactly as indicated below (20), if $y \in \mathscr{Y}, s \ge 0$, then

648

$$0 < \alpha_N \Phi[w(s)] \le \alpha_N \Phi[\lambda \alpha_N^{-N} F(2c)]$$

$$\le 2\alpha_N [1 + \lambda \alpha_N^{-N} F(2c)]^{1/N} = 2[\alpha_N^N + \lambda F(2c)]^{1/N} \le 4c$$

in view of (24), implying that \mathscr{F} maps \mathscr{Y} into itself. The remainder of the proof is virtually the same as that for Theorem 1, and will be deleted.

PROOF OF THEOREM 3. For fixed $\lambda \in \mathbf{R}$, hypotheses (f_4) and (f_5) show that there exists a number $c_0 \in \mathbf{R}$ such that $|\lambda| NH(c) \leq \alpha_N^N$ for all $c \leq c_0$. Almost identical procedure to that used for Theorem 1 then yields a fixed point y of the mapping \mathscr{F} defined by (19) in the set (18). Since c_0 could be negative, the entire solution u(x) = y(|x|) of (1) obtained in this fashion could be negative near x = 0, but it is still easy to verify that u(x) grows like a positive constant multiple of $|x|^2$ as $|x| \to \infty$. The details will be left to the reader.

ACKNOWLEDGMENTS. The first author was supported by Grant-in-Aid for Scientific Research (No. 62302004), Ministry of Education (Japan). The second author was supported by NSERC (Canada) under Grant A-83105.

References

- [1] T. Aubin, Équations de Monge Ampère réeles, J. Functional Anal. 41(1981), 345-377.
- [2] —, Nonlinear Analysis on Manifolds, Monge-Ampère Equations, Die Grundlehren der Math. Wissenschaften, Vol. 252, Springer-Verlag, New York, 1982.
- [3] I. Ya. Bakelman, Geometric Methods of Solutions of Elliptic Equations, "Nauka", Moscow, 1965 (in Russian).
- [4] L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations I. Monge-Ampère equation, Comm. Pure Appl. Math. 37(1984), 369-402.
- [5] Ph. Delanoë, Radially symmetric boundary value problems for real and complex elliptic Monge-Ampère equations, J. Differential Equations 58(1985), 318-344.
- [6] J. L. Kazdan, Prescribing the Curvature of a Riemannian Manifold, Regional Conference Series in Mathematics No. 57, American Mathematical Society, Providence, 1985.
- [7] N. V. Krylov, On degenerate nonlinear elliptic equations II, Mat. Sb. 121(1983), 211-232 (in Russian).
- [8] T. Kusano and C. A. Swanson, Existence theorems for elliptic Monge-Ampère equations in the plane, Differential and Integral Equations, 3 (1990), 487–493.
- [9] —, Entire solutions of real and complex Monge-Ampère equations, SIAM J. Math. Anal., to appear.
- [10] P. L. Lions, Sur les équations de Monge-Ampère I, Manuscripta Math. 41(1983), 1-43.
- [11] —, Sur les équations de Monge-Ampère II, Arch. Rational Mech. Anal. 89(1985), 93-122.
- [12] —, Two remarks on Monge-Ampère equations, Ann. Mat. Pura Appl. 142(1985), 263-275.
- [13] P. L. Lions, N. S. Trudinger, and J. I. E. Urbas, The Dirichlet problem for the equation of prescribed Gauss curvature, Bull. Austral. Math. Soc. 28(1983), 217-231.
- [14] A. V. Pogorelov, Monge-Ampère Equations of Elliptic Type, Khar'kov University Press,

Khar'kov, 1960. Translation from Russian by L. F. Boron, P. Noordhoff, Groningen, 1964.

- [15] ——, Extrinsic Geometry of Convex Surfaces, "Nauka", Moscow, 1969. Translation from Russian by Israel Program for Scientific Translations, American Mathematical Society, Providence, 1973.
- [16] ——, The Multidimensional Minkowski Problem, Wiley, New York, 1978.
- [17] P. R. Popivanov and N. D. Kutev, Interior and exterior boundary value problems for the degenerate Monge-Ampère operator, Hiroshima Math. J. 19(1989), 167-179.
- [18] N. S. Trudinger and J. I. E. Urbas, The Neumann problem for equations of Monge-Ampère type, Comm. Pure Appl. Math. 39(1986), 539-563.
- [19] J. I. E. Urbas, Regularity of generalized solutions of Monge-Ampère equations, Math. Z. 197(1988), 365-393.

Department of Mathematics, Faculty of Science, Hiroshima University and Department of Mathematics, University of British Columbia, Vancouver, Canada V6T 1Y4