Existence theorems for Monge-Ampère equations in $\boldsymbol{R}^{\boldsymbol{N}}$

Takaŝi Kusano and Charles A. Swanson

(Received December 19, 1989)

1. Introduction

Our aim is to establish the existence of positive radial entire solutions $u(x)$ of nonlinear partial differential equations of the Monge-Ampère type

$$
\begin{equation*}
\operatorname{det}\left(D^{2} u\right)=\alpha \Delta u+\lambda f(|x|, u,|D u|), \quad x \in \boldsymbol{R}^{N}, \quad N \geq 3 \tag{1}
\end{equation*}
$$

which grow like constant multiples of $|x|^{2}$ as $|x| \rightarrow \infty$, where $\alpha>0$ and $\lambda \in \boldsymbol{R}$ are constants and $f \in C(\boldsymbol{D}, \boldsymbol{R}), \boldsymbol{D}=\overline{\boldsymbol{R}}_{+} \times \boldsymbol{R}_{+} \times \overline{\boldsymbol{R}}_{+}, \boldsymbol{R}_{+}=(0, \infty), \overline{\boldsymbol{R}}_{+}=[0, \infty)$. Detailed hypotheses on f are listed in §2. Under modified conditions we also prove (Theorem 3) the existence of radial entire solutions of (1) which are positive in some neighborhood of infinity.

As usual, $|x|$ denotes the Euclidean length of a point $x=\left(x_{1}, \ldots, x_{N}\right)$ in \boldsymbol{R}^{N}, $D_{i}=\partial / \partial x_{i}, D_{i j}=D_{i} D_{j}$ for $i, j=1, \ldots, N, D u=\left(D_{1} u, \ldots, D_{N} u\right), \Delta=\Sigma_{i=1}^{N} D_{i i}$, and $D^{2} u$ is the Hessian matrix ($D_{i j} u$).

An entire solution of (1) is defined to be a function $u \in C^{2}\left(\boldsymbol{R}^{N}\right)$ satisfying (1) at every point $x \in \boldsymbol{R}^{N}$. We seek radially symmetric entire solutions $u(x)=y(t)$, $t=|x|$, of (1) such that

$$
\begin{equation*}
0<\lim \inf _{t \rightarrow \infty} t^{-2} y(t), \quad \lim \sup _{t \rightarrow \infty} t^{-2} y(t)<\infty \tag{2}
\end{equation*}
$$

In particular our results apply to the following special cases of (1):

$$
\begin{array}{ll}
\operatorname{det}\left(D^{2} u\right)=\alpha \Delta u+\lambda p(|x|) u^{\nu}, & x \in \boldsymbol{R}^{N} ; \\
\operatorname{det}\left(D^{2} u\right)=\alpha \Delta u+\lambda p(|x|) e^{u}, & x \in \boldsymbol{R}^{N}, \tag{4}
\end{array}
$$

where γ is a positive constant and $p \in C\left(\overline{\boldsymbol{R}}_{+}, \boldsymbol{R}\right)$. If $p(t)=0\left(t^{-2 \gamma}\right)$ as $t \rightarrow \infty$, Theorem 1 implies that (3) has an infinitude of positive radial entire solutions $u(x)=y(|x|)$ satisfying (2), for all sufficiently small $|\lambda|$. If in addition $\gamma<N$ and $p(t) \geq 0$ on \bar{R}_{+}, Theorem 2 shows that (3) has positive radial entire solutions satisfying (2) for all $\lambda \geq 0$.

If $p(t)=0\left[\exp \left(-2 \alpha_{N} t^{2}\right)\right]$ as $t \rightarrow \infty$, where

$$
\begin{equation*}
\alpha_{N}=(\alpha N)^{1 /(N-1)}, \quad N \geq 3 \tag{5}
\end{equation*}
$$

Theorem 1 implies that (4) has an infinitude of positive radial entire solutions $u(x)=y(|x|)$ satisfying (2) for sufficiently small $|\lambda|$. Theorem 3 establishes, for
arbitrary $\lambda \in \boldsymbol{R}$, the existence of infinitely many radial entire solutions of (4) satisfying (2) which are positive in a neighborhood of infinity.

Theorems 1 and 2 also apply to generalizations of (3) having the form

$$
\begin{equation*}
\operatorname{det}\left(D^{2} u\right)=\alpha \Delta u+\lambda p(|x|) u^{\gamma}\left(1+|D u|^{2}\right)^{\delta}, \quad x \in \boldsymbol{R}^{N}, \tag{6}
\end{equation*}
$$

where γ, δ are nonnegative constants with $\gamma+\delta>0$. The condition $p(t)=$ $0\left(t^{-2 \gamma-2 \delta}\right)$ as $t \rightarrow \infty$ implies the existence of positive radial solutions of (6) satisfying (2) if $|\lambda|$ is small enough; and if in addition $\gamma+2 \delta<N$ and $p(t)$ is nonnegative, implies the existence of such solutions for arbitrary $\lambda \geq 0$.

If $\alpha=0, \gamma=0$, and $\delta=(N+2) / 2$ equation (6) arises in differential geometry as the equation for prescribed Gaussian curvature [6, p. 38]. If $\alpha>0$, (6) is an equation for prescribed generalized Gaussian curvature, as described by Pogorelov [14, Chap. 10-13]. Since the case $\alpha=0$ was treated in [8, 9] our attention here is directed toward the case $\alpha>0, N \geq 3$. If $N=2$ sufficient conditions are given in [8] for equation (1) to have infinitely many positive radial entire solutions which are strictly convex in \boldsymbol{R}^{2} and asymptotic to constant multiples of $|x|$ (if $\alpha=0$) or $|x|^{2}$ (if $\alpha>0$) as $|x| \rightarrow \infty$. These results are extended to dimensions $N \geq 3$ by our theorems in $\S 2$ (for $\alpha>0$) together with those in [9] (for $\alpha=0$).

The significance of Monge-Ampère equations (1) in geometry and analysis have led to many recent investigations [1-7, 10-19], mostly devoted to existence and regularity questions for boundary value problems in bounded domains. The results for unbounded domains seem to be limited to those of Popivanov and Kutev [17] for exterior domains and the authors [8,9] for (1), as described above.

2. Statement of theorems and outline of method

The hypotheses on the function f in (1) will be selected from the following list:
(f_{1}) $|f(t, u, v)|$ is nondecreasing in u and in v for fixed values of the other variables.
(f $\left.f_{2}\right) \quad F(k)=\sup _{t \in \bar{R}_{+}}\left|f\left(t, k\left(1+t^{2}\right), 2 k t\right)\right|<\infty$ for all $k>0$.
$\left(f_{3}\right) \quad \lim _{k \rightarrow \infty} k^{-N} F(k)=0$.
(f \mathbf{f}) $H(c)=\sup _{t \in \bar{R}_{+}}\left|f\left(t, c+2 \alpha_{N} t^{2}, 4 \alpha_{N} t\right)\right|<\infty$ for all $c \in \boldsymbol{R}$ where α_{N} is defined by (5).
(f $\left.f_{5}\right) \lim _{c \rightarrow-\infty} H(c)=0$.
Theorem 1. If $f \in C(\boldsymbol{D}, \boldsymbol{R})$ satisfies $\left(\mathrm{f}_{1}\right)$ and $\left(\mathrm{f}_{2}\right)$, then there exists $\lambda_{0}>0$ such that equation (1) has an infinitude of positive radial entire solutions $u(x)=y(|x|)$ satisfying (2) for all $|\lambda| \leq \lambda_{0}$.

Theorem 2. If $f \in C\left(D, \overline{\boldsymbol{R}}_{+}\right)$and satisfies $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{3}\right)$, then equation (1) has an infinitude of positive radial entire solutions $u(x)=y(|x|)$ satisfying (2) for all $\lambda \geq 0$.

Theorem 3. If $f \in C\left(\overline{\boldsymbol{R}}_{+} \times \boldsymbol{R} \times \overline{\boldsymbol{R}}_{+}, \boldsymbol{R}\right)$ satisfies $\left(\mathrm{f}_{1}\right)$, $\left(\mathrm{f}_{4}\right)$, and $\left(\mathbf{f}_{5}\right)$, then equation (1) has an infinitude of radial entire solutions which are positive in a neighborhood of infinity and satisfy (2) for all real λ.

To prove these theorems we seek radial entire solutions $u(x)=y(t), t=|x|$, of (1) such that $y(0)=c>0$ and $y^{\prime}(t)>0$. Standard calculations [5] yield the polar forms

$$
\begin{equation*}
\operatorname{det}\left(D^{2} u\right)=t^{1-N}\left(y^{\prime}\right)^{N-1} y^{\prime \prime}, \quad \Delta u=t^{1-N}\left(t^{N-1} y^{\prime}\right)^{\prime}, \tag{7}
\end{equation*}
$$

where a prime denotes $d / d t$. It follows that $u(x)$ is a positive entire solution of (1) if and only if $y(t)$ is a positive $C^{2}[0, \infty)$-solution of the ordinary differential equation

$$
\begin{equation*}
\left(y^{\prime}\right)^{N-1} y^{\prime \prime}-\alpha\left(t^{N-1} y^{\prime}\right)^{\prime}=\lambda t^{N-1} f\left(t, y, y^{\prime}\right), \quad t>0 \tag{8}
\end{equation*}
$$

subject to the initial conditions

$$
\begin{equation*}
y(0)=c>0, \quad y^{\prime}(0)=0 . \tag{9}
\end{equation*}
$$

Integration of (8) yields

$$
\begin{equation*}
\left(y^{\prime}(t)\right)^{N}-\alpha N t^{N-1} y^{\prime}(t)=\lambda N \int_{0}^{t} s^{N-1} f\left(s, y(s), y^{\prime}(s)\right) d s, \quad t>0 \tag{10}
\end{equation*}
$$

In order to write this integro-differential equation in the more accessible form $y(t)=(\mathscr{F} y)(t)$ (see (19) below), we define

$$
z(t)=\alpha_{N}^{-1} t^{-1} y^{\prime}(t), \quad t>0,
$$

where α_{N} is given by (5), and rewrite (10) in the form

$$
\begin{equation*}
[z(t)]^{N}-z(t)=\lambda N \alpha_{N}^{-N} t^{-N} \int_{0}^{t} s^{N-1} f\left(s, y(s), y^{\prime}(s)\right) d s, \quad t>0 \tag{11}
\end{equation*}
$$

To solve (11) for $z(t)$, we note that the function ϕ defined by $\phi(\zeta)=\zeta^{N}-\zeta$ is strictly increasing for $\zeta \geq N^{-1 /(N-1)}$, and in fact ϕ is a bijective map from $\left(N^{-1 /(N-1)}, \infty\right)$ onto $\left(-(N-1) N^{-N /(N-1)}, \infty\right)$ such that $\phi(1)=0$. Therefore ϕ has a uniquely defined inverse function Φ from $\left(-(N-1) N^{-N /(N-1)}, \infty\right)$ onto $\left(N^{-1 /(N-1)}, \infty\right)$ with $\Phi(0)=1$. Moreover, standard inversion theorems show that Φ is analytic, strictly increasing, and concave; in particular

$$
\begin{gather*}
\Phi^{\prime}(\eta)=\frac{1}{N[\Phi(\eta)]^{N-1}-1}>0, \tag{12}\\
\Phi^{\prime \prime}(\eta)=-\frac{N(N-1)[\Phi(\eta)]^{N-2}}{\left(N[\Phi(\eta)]^{N-1}-1\right)^{3}}<0 \tag{13}
\end{gather*}
$$

on dom Φ. It can also be seen easily that

$$
\begin{equation*}
\Phi(\eta) \leq 2(1+\eta)^{1 / N} \quad \text { for } \eta \geq 0 . \tag{14}
\end{equation*}
$$

For the right side of (11) belonging to $\operatorname{dom} \Phi$, i.e., exceeding $-(N-1) N^{-N /(N-1)}$, for all $t>0$, it follows that (11) is equivalent to

$$
z(t)=\Phi\left[\lambda N \alpha_{N}^{-N} t^{-N} \int_{0}^{t} s^{N-1} f\left(s, y(s), y^{\prime}(s)\right) d s\right], \quad t>0
$$

or

$$
\begin{equation*}
y^{\prime}(t)=\alpha_{N} t \Phi\left[\lambda N \alpha_{N}^{-N} t^{-N} \int_{0}^{t} s^{N-1} f\left(s, y(s), y^{\prime}(s)\right) d s\right], \quad t \geq 0 \tag{15}
\end{equation*}
$$

Equation (15) extends to $t=0$ by continuity since L'Hôpital's rule yields

$$
\lim _{t \rightarrow 0+} t^{-N} \int_{0}^{t} s^{N-1} f\left(s, y(s), y^{\prime}(s)\right) d s=N^{-1} f(0, c, 0)
$$

for any C^{1}-function y satisfying the initial conditions (9). Integration of (15) leads to the following integro-differential equation, appropriate for the initial value problem (8), (9):

$$
\begin{equation*}
y(t)=c+\alpha_{N} \int_{0}^{t} s \Phi\left[\lambda N \alpha_{N}^{-N} s^{-N} \int_{0}^{s} r^{N-1} f\left(r, y(r), y^{\prime}(r)\right) d r\right] d s, \quad t \geq 0 . \tag{16}
\end{equation*}
$$

As soon as a positive solution $y \in C^{1}\left(\overline{\boldsymbol{R}}_{+}\right)$of (16) has been demonstrated, as will be done in $\S 3$, it will follow by differentiation and application of the mapping ϕ that y solves the initial value problem (8), (9), and hence that $u(x)=y(|x|)$ is a positive radial entire solution of (1).

3. Proofs of theorems

To construct a solution $y \in C^{1}\left(\overline{\boldsymbol{R}}_{+}\right)$of (16) under the hypotheses of Theorem 1, we choose $\lambda_{0}>0$ such that

$$
\begin{equation*}
N \lambda_{0} F\left(2 \alpha_{N}\right) \leq \alpha_{N}^{N}, \tag{17}
\end{equation*}
$$

and fix $c \in\left(0,2 \alpha_{N}\right)$ arbitrarily. Let C^{1} denote the Fréchet space of all C^{1} functions in $\overline{\boldsymbol{R}}_{+}$, with the topology of uniform convergence of functions and
their first derivatives on compact subintervals of $\overline{\boldsymbol{R}}_{+}$. Consider the closed convex set

$$
\begin{equation*}
\mathscr{Y}=\left\{y \in C^{1}: c \leq y(t) \leq c+2 \alpha_{N} t^{2}, 0 \leq y^{\prime}(t) \leq 4 \alpha_{N} t, t \geq 0\right\} \tag{18}
\end{equation*}
$$

and the mapping $\mathscr{F}: \mathscr{Y} \rightarrow C^{1}$ defined by

$$
\begin{equation*}
(\mathscr{F} y)(t)=c+\alpha_{N} \int_{0}^{t} s \Phi[w(s)] d s, \quad t \geq 0, \quad|\lambda| \leq \lambda_{0}, \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
w(s)=\lambda N \alpha_{N}^{-N} s^{-N} \int_{0}^{s} r^{N-1} f\left(r, y(r), y^{\prime}(r)\right) d r, \quad y \in \mathscr{Y} . \tag{20}
\end{equation*}
$$

If $y \in \mathscr{Y}$, then for all $s \geq 0,|\lambda| \leq \lambda_{0}$,

$$
\begin{align*}
|w(s)| & \leq|\lambda| N \alpha_{N}^{-N} s^{-N} \int_{0}^{s} r^{N-1}\left|f\left(r, 2 \alpha_{N}\left(1+r^{2}\right), 4 \alpha_{N} r\right)\right| d r \\
& \leq \lambda_{0} \alpha_{N}^{-N} F\left(2 \alpha_{N}\right) \leq N^{-1}<(N-1) N^{-N /(N-1)}, \tag{21}
\end{align*}
$$

showing that \mathscr{F} is well-defined on \mathscr{Y}. Also, if $y \in \mathscr{Y},(12)$, (14), and (17) yield

$$
0<\alpha_{N} \Phi[w(s)] \leq \alpha_{N} \Phi\left(N^{-1}\right) \leq 2 \alpha_{N}\left(1+N^{-1}\right)^{1 / N} \leq 4 \alpha_{N}, \quad s \geq 0,
$$

and hence

$$
c \leq(\mathscr{F} y)(t) \leq c+2 \alpha_{N} t^{2}, \quad t \geq 0
$$

Furthermore

$$
\begin{equation*}
0 \leq(\mathscr{F} y)^{\prime}(t) \leq \alpha_{N} t \Phi[w(t)] \leq 4 \alpha_{N} t, \quad t \geq 0, \tag{22}
\end{equation*}
$$

showing that \mathscr{F} maps \mathscr{Y} into itself.
To prove the continuity of \mathscr{F} in the C^{1}-topology, let $\left\{y_{n}\right\}$ be a sequence in \mathscr{Y} converging to $y \in \mathscr{Y}$ in this topology, and define

$$
w_{n}(t)=\lambda N \alpha_{N}^{-N} t^{-N} \int_{0}^{t} r^{N-1} f\left(r, y_{n}(r), y_{n}^{\prime}(r)\right) d r, \quad t \geq 0 .
$$

Then by (20) and (22), for $|\lambda| \leq \lambda_{0}, t \geq 0$,

$$
\left|w_{n}(t)-w(t)\right| \leq \lambda_{0} \alpha_{N}^{-N} \sup _{0 \leq r \leq t}\left|f\left(r, y_{n}(r), y_{n}^{\prime}(r)\right)-f\left(r, y(r), y^{\prime}(r)\right)\right|
$$

and

$$
\left|\left(\mathscr{F} y_{n}\right)^{\prime}(t)-(\mathscr{F} y)^{\prime}(t)\right|=\alpha_{N} t\left|\Phi\left[w_{n}(t)\right]-\Phi[w(t)]\right| .
$$

The continuity of Φ therefore implies that $\left(\mathscr{F} y_{n}\right)^{\prime}(t) \rightarrow(\mathscr{F} y)^{\prime}(t)$ as $n \rightarrow \infty$ uni-
formly on every compact subinterval of $\overline{\boldsymbol{R}}_{+}$. Likewise, from (19), $\left(\mathscr{F} y_{n}\right)(t) \rightarrow$ $(\mathscr{F} y)(t)$ uniformly on such subintervals, establishing the continuity of \mathscr{F} in C^{1}.

To prove that $\mathscr{F} \mathscr{Y}$ has compact closure in C^{1} via Ascoli's theorem, we note that $\mathscr{F} y \in C^{2}\left(\overline{\boldsymbol{R}}_{+}\right)$for all $y \in \mathscr{Y}$, and

$$
\begin{aligned}
(\mathscr{F} y)^{\prime \prime}(t)= & \alpha_{N} \Phi[w(t)] \\
& +\lambda N \alpha_{N}^{1-N} \Phi^{\prime}[w(t)]\left[f\left(t, y(t), y^{\prime}(t)\right)-N t^{-N} \int_{0}^{t} r^{N-1} f\left(r, y(r), y^{\prime}(r)\right) d r\right], \\
& t \geq 0 .
\end{aligned}
$$

Then (12), (13), and (21) imply the uniform bound

$$
\left|(\mathscr{F} y)^{\prime \prime}(t)\right| \leq \alpha_{N} \Phi\left(N^{-1}\right)+2 \lambda_{0} N \alpha_{N}^{1-N} \Phi^{\prime}\left(-N^{-1}\right), \quad t \geq 0,
$$

from which $\mathscr{F}^{\prime} \mathscr{O}=\left\{(\mathscr{F} y)^{\prime}: y \in \mathscr{Y}\right\}$ is locally equicontinuous in $\overline{\boldsymbol{R}}_{+}$. Similarly $\mathscr{F} \mathscr{Y}$ is locally equicontinuous, and the local uniform boundedness of $\mathscr{F} \mathscr{Y}$ and $\mathscr{F} \cdot \mathscr{Y}$ is easily verified. Hence $\mathscr{F} \mathscr{Y}$ is relatively compact in the C^{1}-topology by Ascoli's theorem.

We can then apply the Schauder-Tychonov fixed point theorem to conclude that there exists an element $y \in \mathscr{Y}$ such that $\mathscr{F} y=y$, i.e., $y(t)$ satisfies (16), yielding a positive entire solution $u(x)=y(|x|)$ of equation (1) in \boldsymbol{R}^{N}. The fact that $y(t)$ satisfies (2) follows from the inequalities

$$
\begin{equation*}
c+\frac{1}{2} \alpha_{N} N^{-1 /(N-1)} t^{2} \leq y(t) \leq c+2 \alpha_{N} t^{2}, \quad t \geq 0 . \tag{23}
\end{equation*}
$$

The right inequality (23) is obvious from (18), and the left inequality is a consequence of the fact

$$
\Phi(\eta) \geq N^{-1 /(N-1)} \quad \text { for } \eta \geq-(N-1) N^{-N /(N-1)} .
$$

Since any $c \in\left(0,2 \alpha_{N}\right]$ will serve as an initial value $y(0)=c$ in (9), there exists an infinitude of positive radial entire solutions of equation (1). This completes the proof of Theorem 1.

Proof of Theorem 2. For arbitrary (fixed) $\lambda \geq 0$, $\left(f_{2}\right)$ and (f_{3}) imply the existence of a constant $\beta \geq \alpha_{N}$ such that

$$
\begin{equation*}
\lambda N F(2 c) \leq c^{N} \quad \text { for all } c \geq \beta . \tag{24}
\end{equation*}
$$

For such a number c, consider the following analogue of (18):

$$
\begin{equation*}
\mathscr{Y}=\left\{y \in C^{1}: c \leq y(t) \leq c\left(1+2 t^{2}\right), 0 \leq y^{\prime}(t) \leq 4 c t, t \geq 0\right\} . \tag{25}
\end{equation*}
$$

Since f has only nonnegative values by hypothesis, the mapping \mathscr{F} defined by (19) is well-defined on \mathscr{Y}. Furthermore, exactly as indicated below (20), if $y \in \mathscr{Y}, s \geq 0$, then

$$
\begin{aligned}
0 & <\alpha_{N} \Phi[w(s)] \leq \alpha_{N} \Phi\left[\lambda \alpha_{N}^{-N} F(2 c)\right] \\
\leq & 2 \alpha_{N}\left[1+\lambda \alpha_{N}^{-N} F(2 c)\right]^{1 / N}=2\left[\alpha_{N}^{N}+\lambda F(2 c)\right]^{1 / N} \leq 4 c
\end{aligned}
$$

in view of (24), implying that \mathscr{F} maps \mathscr{Y} into itself. The remainder of the proof is virtually the same as that for Theorem 1, and will be deleted.

Proof of Theorem 3. For fixed $\lambda \in \boldsymbol{R}$, hypotheses $\left(\mathrm{f}_{4}\right)$ and (f_{5}) show that there exists a number $c_{0} \in \boldsymbol{R}$ such that $|\lambda| N H(c) \leq \alpha_{N}^{N}$ for all $c \leq c_{0}$. Almost identical procedure to that used for Theorem 1 then yields a fixed point y of the mapping \mathscr{F} defined by (19) in the set (18). Since c_{0} could be negative, the entire solution $u(x)=y(|x|)$ of (1) obtained in this fashion could be negative near $x=0$, but it is still easy to verify that $u(x)$ grows like a positive constant multiple of $|x|^{2}$ as $|x| \rightarrow \infty$. The details will be left to the reader.

Acknowledgments. The first author was supported by Grant-in-Aid for Scientific Research (No. 62302004), Ministry of Education (Japan). The second author was supported by NSERC (Canada) under Grant A-83105.

References

[1] T. Aubin, Équations de Monge Ampère réeles, J. Functional Anal. 41(1981), 345-377.
[2] -, Nonlinear Analysis on Manifolds, Monge-Ampère Equations, Die Grundlehren der Math. Wissenschaften, Vol. 252, Springer-Verlag, New York, 1982.
[3] I. Ya. Bakelman, Geometric Methods of Solutions of Elliptic Equations, "Nauka", Moscow, 1965 (in Russian).
[4] L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations I. Monge-Ampère equation, Comm. Pure Appl. Math. 37(1984), 369-402.
[5] Ph. Delanoë, Radially symmetric boundary value problems for real and complex elliptic Monge-Ampère equations, J. Differential Equations 58(1985), 318-344.
[6] J. L. Kazdan, Prescribing the Curvature of a Riemannian Manifold, Regional Conference Series in Mathematics No. 57, American Mathematical Society, Providence, 1985.
[7] N. V. Krylov, On degenerate nonlinear elliptic equations II, Mat. Sb. 121(1983), 211-232 (in Russian).
[8] T. Kusano and C. A. Swanson, Existence theorems for elliptic Monge-Ampère equations in the plane, Differential and Integral Equations, 3 (1990), 487-493.
[9] -, Entire solutions of real and complex Monge-Ampère equations, SIAM J. Math. Anal., to appear.
[10] P. L. Lions, Sur les équations de Monge-Ampère I, Manuscripta Math. 41(1983), 1-43.
[11] ——, Sur les équations de Monge-Ampère II, Arch. Rational Mech. Anal. 89(1985), 93-122.
[12] ——, Two remarks on Monge-Ampère equations, Ann. Mat. Pura Appl. 142(1985), 263-275.
[13] P. L. Lions, N. S. Trudinger, and J. I. E. Urbas, The Dirichlet problem for the equation of prescribed Gauss curvature, Bull. Austral. Math. Soc. 28(1983), 217-231.
[14] A. V. Pogorelov, Monge-Ampère Equations of Elliptic Type, Khar'kov University Press,

Khar'kov, 1960. Translation from Russian by L. F. Boron, P. Noordhoff, Groningen, 1964.
[15] -, Extrinsic Geometry of Convex Surfaces, "Nauka", Moscow, 1969. Translation from Russian by Israel Program for Scientific Translations, American Mathematical Society, Providence, 1973.
[16] -, The Multidimensional Minkowski Problem, Wiley, New York, 1978.
[17] P. R. Popivanov and N. D. Kutev, Interior and exterior boundary value problems for the degenerate Monge-Ampère operator, Hiroshima Math. J. 19(1989), 167-179.
[18] N. S. Trudinger and J. I. E. Urbas, The Neumann problem for equations of Monge-Ampère type, Comm. Pure Appl. Math. 39(1986), 539-563.
[19] J. I. E. Urbas, Regularity of generalized solutions of Monge-Ampère equations, Math. Z. 197(1988), 365-393.

Department of Mathematics, Faculty of Science, Hiroshima University and
Department of Mathematics,
University of British Columbia, Vancouver, Canada V6T 1Y4

