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§ 1. Introduction

We consider a dynamical system in a compact metric space (M, d) in which
continuous maps operated on points are successively chosen randomly
according to a fixed probability law. Such random dynamical systems were
studied, for example, by [3], [4], [7] and [8]. More precisely, let Φ be a set of
maps with a measurable structure ^ and (φn(ω)\ rceN} be (Φ, J^)-valued
stochastic process on a probability space (Ω9 g, P). The corresponding
trajectories on M are {φn(ω)° ••• °φi(ω)x: neN}, xeM, for ωeΩ. Here the
underlying probability space (Ω, g, P) can be taken to be (ΦN, J^N, P) for some
P. To avoid the dependence of the law for the choice of maps on time, we
impose on P the stationality (i.e. the shift invariance). We also assume that P
is ergodic for simplicity.

Define a map τ on M x ΦN by τ(x, φ) = (</>iX, σφ\ xeM, φ
= (φί9 φ2,...)eΦN, where σ is the shift transformation on ΦN. This map τ is
called the skew product transformation. In most articles, a probability
measure of the following type was considered as an invariant measure of τ : Q
= μ x P, where P = pN, p is a probability measure on (Φ, J*) and μ is a
stationary (i.e. invariant) probability measure of the transition probability
P(x, B) = §φlB(φx)dp(φ). Tsujii [10] treated a slightly different measure in
connection with the theory of random fractals. He gave a τ-invariant measure
which has the non-trivial decomposition with respect to the partition
{M x {φ}: φeΦN}. Even in his system P turns out to be of the type p™ for
some probability measure py on Φ.

In this paper we consider the random dynamical sysytems in more general
situation. We assume only that an ergodic shift invariant probability measure
P on (ΦN, ^N) is given and we are concerned with a τ-invariant Q on (M x ΦN,
J*M x J^N) which is required to satisfy only the condition Q(M x F) = P(F),
Fe&. In §2 we prove the existence of such a τ-invariant probability measure
Q. When maps are homeomorphisms, as a natural extention of ΦN, we can
take the underlying probability space to be (Φz, J* z, P) for a given ergodic shift
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invariant probability measure P on (Φz, J^2). Also in this case the existence of

an invariant measure is assured. (See [2].)
In § 3 we study the ergodic decomposition of (τ, Q) on M x ΦN. For a

random dynamical system such as Tsujii's one, it has simple form. That is, the

decomposition is essentially determined by a decomposition of M. We deduce
this from the ergodic decomposition of a certain Markov operator. This result

obtained here corresponds to a special case of deterministic version lemma in

an i.i.d. random dynamical system (i.e. P = pN and Q = μ x P stated above)

([7]).
In §4 both topological and metrical entropies htop(P) and hQ(P) of a

random dynamical system are defined as in a detrministic case or an i.i.d. case

([4]). The notion of the metrical entropy is closely related to that of the
conditional entropy and here we follow [4] to obtain the Kolmogorov-Sinai

type lemma. We also briefly consider the variational principle and the
Shannon-McMillan-Breiman type theorem in connection with the entropy.

In §5 we consider the maximal measure in a random Bernoulli

shift. Similarly to the deterministic case, we obtain the result that there exists a

unique invariant measure which maximizes the metrical entropy. Techniques

used are similar to those in the deterministic case. But the τ-invariance

condition of measures is somewhat different so that we have to make some

modifications.

In §6 we take Tsujii random dynamical systems and apply the results

obtained in the previous sections. We review the measure given in [10] and
check the ergodicity as an application of § 3. The entropy of a certain special
system is also treated.

§2. Random dynamical systems and invariant measures

Let (M, &) be a pair of a compact metric space (M, d) and its topological

σ-algebra J*, and Csur(M, M) be the set of surjective continuous maps from M
to itself. The set Csur(M, M) is endowed with the topology generated by the
metric r(/, g) = supxeMd(/x, #x)(i.e. the uniform topology) and the measurable

structure J^0 generated by this topology. Let Φ be a measurable subset of

CSMΓ(M, M) and & = J% n Φ. We denote the product space (ΦN, J*N) by

(Φ, 2F\ an element of Φ by φ = (φn)ne^ and the shift transformation on Φ by
σ: σφ = (<pn+1)neN. We fix an ergodic σ-invariant probability measure P on
(Φ, &\ Then the coordinate functions {φn: neN} becomes an ergodic
stationary process on (Φ, &, P).

DEFINITION 2.1. The pair {(M, d\ (Φ, ,̂ P)} is called a topological
random dynamical system. Its trajectory is {nφx: neZ + } (Z+ ={0,1,2,...,})
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for xeM, φ = (φπ)MeNeΦ, where

n~ =

For a topological random dynamical system, we define the skew product
transformation τ on M x Φ by

)9 xeM,

Our first task is to find an invariant measure in the following sense.

DEFINITION 2.2. A measure ge^(M x Φ) is called invariant if it satisfies

(2.1) τ*β = ρ

(2.2) π|β = P,

where π#: M x Φ -» Φ is the natural projection. The set of invariant measures
is denoted by J>P(M x Φ).

REMARK 2.3. Throughout this paper 0>(X) or ^(AΓ, Λ) denotes the set of
probability measures on a measurable space (X, $) and the image measure of a
measure v by a map / is denoted by/*v(or sometimes v0/"1).

We define ΦM = Πί=P*»» φ» = φ and ^™ = l\l=P^v ^n = ̂  for
l < p < 4 < c x ) . For φ(1)-(φ^=peΦ^ and φ(2) = (φn)

Γ

Π=,+ 1 eΦ« + 1 r, we
denote <p (1)φ (2) = (φ^^pGΦ^. Let πk: Φ -* Φk + 1>0° be the natural projection,
i.e. π kφ = (φΠ)£Lk + 1 eΦ* + 1>0° for φ = (φn)*=1eΦ. Under these notations we
have φ = (φl9 ••• . φk)nkφ or simply φ = φ^ - φkπkφ for all feeN.

For n > l , define a bijection Θ Π : Φ -̂  Φn + 1'°° by (θnφ)k = φk-n, k>n
H- 1. We see that πn = θn°σ

n. Since P is σ-invariant, we have π*P(θnF)
= P(σ'nF) = P(F) for Fe&.

Take βe^(M x Φ) with π|β = P. Since (M, Λ) is a standard measur-
able space, there exists the family (g#: φeΦ} of regular conditional probability
measures of Q with respect to the partition {M x {φ}: φeΦ} of M x Φ:

Q(B x F) = f
JF

where we regard β^ as a measure on (M, $\ Similarly we have the family
{Pθn$ : φ e Φ} of regular conditional probability measures of P with respect to
the partition {Φ l f l i x {θnφ}: φeΦ} of Φ:

t x θnF) = JdπJPίfl.φ) = ί Pθn^(Fί

J F
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for fΊe F1'" and Fe#, where we regard Pθn$ as a measure on (Φ1'", J^1'").

LEMMA 2.4. For Qe0>(M x Φ) w/ϊA π|β = P, βeJ^M x Φ)

I Qφθ^(φ~l(2.3) Qφθ^(φ~lB)dPθ^(φ) = Q$(B) for P-a.e. φ and all Be®.

PROOF. Here we denote Θ1 by θ for simplicity. First let us assume
QεJ>P(M x Φ). For Be $, consider the function

fβ(Φ)= \Qφe^(φ~1B)dPθίβ(φl φeΦ.

By the definition of {Q }̂ and {Pθ$}9 we have, for

ί fB(φ)dP(φ) = f [Qφe^φ

=

= \l

= Q(B x F).

By the uniqueness of {Q$} we get

for P-a.e. φ.

Thus we obtain (2.3).
Next assume (2.3). Then we have as above

Q(τ~l(B x F)) = ! !QφΘ^(φ^B)dPθ^φ)dP(φ)

= f Q^B)dP(φ)
JF

= Q(B x F)

for Be J* and

REMARK 2.5. Under above notations, the τ"-invariance condition of
Qe0>(M x Φ) with π|β = P is
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ί Qφ, .. W> " '
J φl,n

(2.4) Qφ, .. W> " ' B)dPβn9(ψ !,-,<?„) =

for P-a.e. φ and for all Be&, where nφ = φn

a" °φ1 for (φί9~ 9 φn).

To deduce the existence theorem of invariant measure we prepare the
following results from [1]. Let C(M) be the set of continuous functions on M
and SQί(M) be the set of finite signed measures on M. Consider the Banach
space of integrable random continuous functions,

^Φ, C(M)) = {/: /: Φ -* C(M) measurable, |||/||| = f \\f(φ)\\dP(φ) < oo},

where \\f(φ)\\ = sup{|/(φ)|: xeM} for /(φ)eC(M), with the norm ||| |||. The
linear space of bounded random signed measures,

L00 (Φ, 9W(M)) = {μ : μ : Φ -^ 50ί(M) measurable,

(P-) ess.sup{|μ(φ)|(M): φeΦ] < oo},

can be regarded as the dual space of L^Φ, C(M)) by the duality

( f , μ ) = ί ί f(φ)(x)dμ(φ)(x)dP(φ),μ)= ί ί
J φJM

for /eL^Φ, C(M)) and μeL°°(Φ, 9M(M)).

THEOREM 2.6. J?P(M x Φ)^ φ.

PROOF. Define a linear operator T on L°°(Φ, 50l(M)) by

= ί

Then T is continuous with respect to the weak-* topology. In fact,

(/, Tμ) = ([f(φ)(φx)dμ(φθlφ)(x)dPβί9(φ)dP(φ)

= (τ*/, μ)

where τ* is the linear operator on L^Φ, C(M)) defined by (τ*/)(φ)
= /(σφ)(φ1x). Since τ* is clearly continuous, so is its dual T. Since
L(Φ, ^(M)) = {μeL°°(Φ, ΪR(M)): μ(φ)e^(M)P-a.e. φ} is a T-invariant weak-*
compact convex subset of L°°(Φ, 50l(M)), by Schauder-Tychonofif's fixed point
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theorem there exists a μeL(Φ, ^(M)) with Tμ = μ. Define Qe0>(M x Φ) by

Q(B x F) = f μ(φ)(B)dP(φ\ Be®, Fe&.
JF

It is clear that g defined above satisfies (2.3) in Lemma 2.4. So we obtain an

element Qε</P(M x Φ).

DEFINITION 2.7. Let (M, J1), (Φ, J^) and P be the same as above. For
Qe^P(M x Φ), the triplet {(M, J*), (Φ, #, P), β} is callled a metrical random
dynamical system, or simply a random dynamical system.

In the following, we briefly refer to invertible random dynamical systems.

(See the first part of [2].) Let (M, d] be the same as in the previous case. We
asuume that each φ e Φ is a homeomorphism on M. The measurable structure
& is associated with Φ in the same way as before. We denote (Φz, ̂ z) by
(Φ, ̂ ), an elment of Φ by φ = (φn)neZ and the shift transformation on Φ by
σ. We fix an ergodic σ-invariant probability measure P on

(Φ, ̂ ). Corresponding to Definition 2.1, the pair {(M, d\ (Φ, «#", P)} is called

an invertible topological random dynamical system. The skew product
transformation, which is denoted by τ in this case too, is given by

φc, φ) = (<?!*, σφ\ (x, φ)eM x Φ.

Note that in this case τ is invertible and the inverse is given by

τ-^x, φ) = (ψolx, σ~lφ), (x, φ)εM x Φ.

The measure Qe0*(M x Φ) is called invariant if it satisfies π%Q = P and τ*g
= β, where π^: M x Φ-> Φ is the natural projection. The set of invariant

measures is denoted by JP(M x Φ). The triplet {(M, J% (Φ, .#", P), Q] is
called an invertible metrical random dynamical system. The existence of
Q e e/P(M x Φ) is assured by the same arguments as in the proof of Theorem
2.6. Note that if {Q$\ φeΦ} is the family of regular conditional probability
measures of Q with respect to the partition {M x {φ}: φeΦ}, τ-invariance
condition of Q is given by the following simple form:

(2.5) ΨΪQφ = Qσφ for P-a.e.0.

Of course we assume π\Q = P and regard Qφ as a probability measure on
(M, 38). To prove (2.5) compare

Q(B x F) = f Q$(B)dP(φ)
JF

with
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τ*Q(B x F) = Q({(χ, φ)eM x Φ: <plXeB, σφeF})

= \ QΦ(<PΪlB)dP(φ) = f
Jσ-ip J

for B e 95 and F e .#", where 95 is a countable basis for (M, J>).

REMARK 2.8. The condition (2.5) is derived from τ*β = β. From (τ")*β
= Q (n e Z), we obtain

(2.6) (nΦ)*Q$ = Qσnφ for P-a.e.φ,

where {nφ: neZ} is the cocycle defined by

f <pn° — 0<Pi if n> 1,

"φ = I id if n = 0,

I <p~Λ 0 °<Po 1 if n < - 1.

REMARK 2.9. For simplicity we will abuse the underlying P and invariant

Q both in a non-invertible and in an invertible random dynamical system. We

will make use of different notations only for the infinite products Φ and Φ,

elements φeΦ and φeΦ. But the corresponding shifts will be both denoted

by σ. Thus throughout this paper {(M, d\ (Φ, #, P)} or {(M, Λ\

(Φ, ̂ , P), β} means a non-invertible random dynamical system which is
considered in the former part of this section and {(M, ά\ (Φ, ,̂ P)} or

{(M, (%\ (Φ, .#", P), Q} an invertible random dynamical system considered in
the above.

§3. Ergodic decomposition of a Markov random dynamical system

For a metrical random dynamical system {(M, Ά\ (Φ, ,̂ P), β}, let
{βx: xeM} and {Qw-~-vn: (x? φl,..., φn)eM x Φ^^ίnεN) be the families of

regular conditinal probability measures of Q with respect to the partitions
{ { x } x Φ : x e M } and {{(x, φ1 ? •••, φn)} x Φ« + 1'-: (x, Φl, ..., φM)eM x Φ1'"}

respectively. Here we regard β* and Qx>vι-~><pn as probability measures on Φ

and φπ+1'°° respectively.

DEFINITION 3.1. Let {Qx: xeM} and {β^1 ..... ̂ : (x, φl9 -, φJeM x Φ1'"}

(neN) be the same as above for a random dynamical system {(M, #),

(Φ, ̂ , P), β}. We say that Q is Markov if satisfies

(3.1) ρ*.«»ι,....Φn = ρ*ρ»** for all neN, β-a.e. (x, φ),

where θn: Φ -> Φn+i^ is the map defined in §2.
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Let π: Φ-+MZ+ be the map defined by

π(x, φ) = (nφx)neZ + for (x, φ)eM x Φ,

σ be the shift transformation on Mz+ and ^n = Y\^=0^
f

i(nEZ+), where

the trivial σ-algebra of M otherwise.

We also define Q = π*Q and μ = π^Q, where πM: M x Φ -> M is the natural
projection.

LEMMA 3.2. If Q is Markov, then Qe^(MN + , J*z + ) w α Markov measure,
that is,

(3.2) £(/°σWGO = E(/|^0)°σ"00,

/or fl// rceZ, Q-a.e.yεMz + ,feLco(Mz + , J>z+), w/zere £( | )(resp. E) denotes

the conditional expectation (resp. the expectation) with respect to Q and

L°°(X, £/) is the set of bounded measurable functions on a measurable space

PROOF. Let [Qx: xεM} be the family of regular conditional probability

measures of Q with respect to the partition {{x} x M1'00} (M1'00 = Π£ιMi> Mf
= M) of Mz+. We regard Qx as a probability measure on (Mz+, ^z+). To

prove (3.2), it suffices to show

(3.3) £*(/oσ»|Λll)(y) = £y-(/),

for all neN, βx-a.e.j; = (yn)neZ+ eMz + , μ-a.e.x, /eL°°(Mz + , J*z+), where
£x( I ) (resp. £*) denotes the conditional expectation (resp. the expection) with
rspect to Qx.

To prove (3.3), we first see that the following equality holds:

(3.4) Ex(goσ»\^n)(φ) = En**(g),

for all neN, g*-a.e. φ, μ-a.e.x, geLcc(Φ, !F\ where Ex( | )(resp. £x) is the

conditional expectation (resp. the expectation) with respect to Qx and 2? ' n is the

sub σ-algebra of §F defined by & '„ = Π^i ί̂ with

& if 1 < i < n,

the trivial σ-algebra of Φ otherwise.

For, if Fe J\, we have from (3.1),
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g°σndQxf Ex(g°σ"\<Fn)dQ*= ί
JF JF

= E"**(g)dQx(φ),

ί, - , φn)

where π l π : φ-^Φ1'" is the natural projection. This implies (3.4). If Qx =
δx x Qx (δx is the point mass at xeM), it is easy to see from (3.4) that

(3.5) Ex(hoτn\π-1(^n))(y, φ) = En**(h)9

for all rceZ + , βx-a.e. (3;, φ\ μ-a.e. x, heLco(M x Φ, # x .#"), where
£*( I )(resp. £*) is the conditional expectation (resp. the expectation) with

respect to Qx. Therefore we have

j°n(y9 φ) = Ex(f^\n'^(SI^(y, Φ)

for all neZ + , β-a.e.(y, φ), μ-a.e.x, /eL°°(Mz + , ̂ z + ). Since π is surjective
mod. Qx for μ-a.e. x, (3.3) follows.

REMARK 3.3. Since {Mz + , ̂ z + , σ, Q} is a factor of {M x Φ, J* x ,̂ τ,
β}, in the case of (3.1) (in which Q is Markov by the above lemma) Q is a
stationary Markov measure. The transition probability P(x, B) for xeM and
B e& is given by P(x, 5) = QX(B) = ίlβ(φιx)rfβx(φ) with the initial stationary
distribution μ. In this case the corresponding Markov operator 2L on L1 (M, μ)

is defined by 5/(x) = $f(φ1x)dQx(φ) for /eL^M, μ). We denote the dual
operator on ^(M) by j2*: J*v(β) - ̂ !B(φ1x)dQx(φ)dv(x) for Be^ and
ve^(M).

DEFINITION 3.4. Suppose that Q is Markov. We say that Q is M ergodίc
if Άf = f μ-a.e. implies /= const, μ-a.e. for /eL^M, μ).

THEOREM 3.5. Leί β &£ Markov. Then Q w M-ergodίc if and only if(τ, Q)
is ergodίc.

PROOF. Suppose that (τ, Q) is ergodic. Take/eL^M, μ) such that Άf = f
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μ-a.e. For ceR, we define Bc = (xeM:/(x) > c}. Since lBc is J-invariant
(see [4], p. 19), that is,

ίίBc(<Pιx)dQx(φ) = lBc(x) for μ-a.e.x,

we have lBc(9ιx) = IBC(
X) f°r β-a.e. (x, φ). This equality shows that lβc,

viewed as an element of Ll(M x Φ, β), is τ-invariant. By the ergodicity of τ,
we have that \Bc = const, μ-a.e. From this, we obtain μ(Bc) = 0 or 1 for all
ceR, which implies that/=c 0 μ-a.e. for some c0eR.

Next suppose that Q is M-ergodic. Take geL1(M x Φ, Q) such that ^ f o τ
= g β-a.e. and define g0 by

^oW= flfί^φί^β'ίΦ).

Clearly g0eLί(M9 μ). By the τ-invariance of g and (3.1), we have

= ί [0(*> φJ

= g(x, φ)dQx(φ) = g0(x) for μ-a.e. x.

Then by the M-ergodicity of β, we have that g0 = c μ-a.e. for some

ceR. Next if we define gn = E(g\Λ x J%), we have

(x, φ)= f f l f(x, φι, 9φΛθΛ

= (grφx9φ)dQx »

= (g(nφx^)dQn

= βo(nφx) = c for β-a.e.(x, φ),

where we used the condition g°τn = g β-a.e. Therefore letting H->OO, by
Doob's theorem we obtain g(x, φ) = c β-a.e. This implies the ergodicity of

(τ, β).
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Let Q be Markov and put SP(M) = (vε0>(M): £*v = v and £f = f
v-a.e. implies /= const, v-a.e. for/eL^M, v)}. Then μ = π^Q is expressed in
the following way by a probability measure λ on SP(M)\

μ=\ v,dλ(v).

The ergodic decomposition of M with respect to J is ζ = {χ"1^)-' ve<fP(M)},
where the map χ: M -> (fP(M) is defined by

χ is defined μ-a.e. by virtue of the Ornstein-Chacon theorem. (For details of
ergodic decomposition of Markov opertors, see [4] and [5].)

COROLLARY 3.6. Let ζ be the same as above. Then the ergodic
decomposition of (τ, Q) is given by ζ x Φ = {C x Φ: Ceζ}.

PROOF. Let (μc: Ceζ} and [Qc: Cεζ] be the families of regular
conditional probability measures of μ and Q with respect to the partitions ζ and
ζ x Φ respectively. Clearly

Q c ( B x F ) = \ Qx(F)dμc(x) for Bε@ and
JB

Since Q\CC = lccμc-a.e. and a.e. Ce£(Cc is the complement of C), we have

Qc(C x Φ\τ~l(C x Φ)) = 1 1 lc(x)lc<(φιx)dQx(φ)dμc(x)

= ίl

I
= lc(x)lce(x)dμc(x) = 0 for a.e.Ceζ

which implies τ- 1(C x Φ) = C x Φmod. Qc, a.e. Ceζ. By the same arguments
as in the latter part of the proof of Theorem 3.5, we consequently have
( τ lcχΦ > 6c) is ergodic a.e.Ceζ. This implies the statement in the corollary.

§4. Topological entropy and metrical entropy

Let {(M, d\ (Φ, #, P)} be a topological random dynamical system. For a
finite open convering α of M, the minimal cardinality of subconverings of α is
denoted by ./Γ(α). Define the open covering αn(φ) by απ(φ) = V7~<J 'φ"1 α (the
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refinement of iφ~1oc, ί = 0, •••, n — 1). Under this notation clearly αm+π(φ)

= απ(φ) V Mφαm(σ"φ) and therefore ^(αm+π(φ)) < Λ^(αn(φ))
^(π^~1αm(σπφ)) = ^Γ(απ(φ))^Γ(αm(σ"φ)). Hence by Kingman's subadditive
ergodic theorem

/z(P, α) = lim^ log Jr(an(φ))/n

exists P-a.e.φ. (Recall that (σ, P) is ergodic.) By the same arguments as in the
deterministic case, we know the existence of the limit

htop(P) = Hπidiamα-oMΛ °0>

which is called the topological entropy of {(M, d\ (Φ, ̂ ", P)}.

We say that for φeΦ, /ιeN and ε > 0, £ c M is (φ9 n, ε)-separated if all x,

ye£, x 7^ y, satify dCφx, '<£};) > ε for some 0 < i < n — 1. The maximal
cardinality of (φ, n, ε)-separated sets is denoted by s(φ, n, ε). We say that for
φeΦ, rceN and ε > 0, F c= M is (φ, n, ε)-spanning if for any xeM, there exists

yeF such that d(lφx, 'φ^) < ε for all 0 < i < n — 1. The minimal cardinality of

(φ, n, ε)-spanning sets is denoted by r(φ, n, ε).

LEMMA 4.1. Let {(M, d), (Φ, ̂ , P)} te /A^ same as above. Then

htop(P) = limε^0 limsupπlog s(φ, n, ε)/n

= limε^0 liminfπlog s(φ, n, ε)/π

= limε^0limsupπlog r(φ, n, ε)/n

= limε^0 liminfπlog r(φ9 n, ε)/n for P-a.e.φ.

The proof is essentially the same as in the deterministic case. See [4] and
[11].

For a finite measurable partition ξ of a probability space (X, s/, v) and a
sub σ-algebra ^ of j^, we define the conditional entropy H (ξ \<#) of £ given ̂
by

= ί/ , Iv(ξ\V)= -

When ^ is the trivial σ-algebra of X constructed from X and 0, Hv(ξ\<f) and

Iv(ξ\^) are simply denoted by Hv(ξ) and 7v(ξ) respectively. In this case Hv(ξ)

= Liβ«Φ(^)) where ιc(x) = - xlogx if 0 < x < 1 and ιc(0) = 0. Hv(ξ\P(η)).
and Iv(ξ\^(η)) will be sometimes denoted by Hv(ξ\η) and Iv(ξ\η) respectively,
where ^(ή) is the σ-algebra corresponding to the partition η.

Let {(M, $\ (Φ, ,̂ P), Q} be a metrical random dynamical system. For

a finite measurable partition ζ of M , we define Hn(ξ) by
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Hn(ξ)= \HQ.(ξn(ψ))dP(φ),
J

where ξn(φ) = V "= £ *φ ~ l ξ (the refinement of partitions lφ~vζ, 0 < i < n — 1).

LEMMA 4.2. Let Hn(ξ) be the same as above. Then

Hn + m(ξ) < Hn(ξ) + Hm(ξ) for all n, meN.

PROOF. Since ξn+m(φ) = ξn(φ) V nφ~lξm(σnφ\ we have

= Hn(ξ) + ίHQ^φ-1ξ

So it suffices to show

(4.1) HQΛnφ-ίξm(σnφ))dP(φ) < Hm(ξ).
J Qφ

In the following we use the same notations as in §2. We see that

the left hand side of (4.1)

κ(Qφι.....φjnrt?Φ~lAMdpenfi»ά<Pι>' > <Pn)dP(σnφ)

nφ) = Hm(ξ).

Here we used Jensen's inequality and τn- in variance condition (2.4) of Q. Thus
we obtain (4.1).

From Lemma 4.2 we know the existence of the limit

The value hQ(P) defined below is called the metrical entropy of {(M,

(Φ,#,P),β}:

hQ(P) = sup{hQ(P, ξ): ξ is a. finite measurable partition of M}.
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For an invertible random dynamical system, we can define entropies

similarly. That is, for {(M, d\ (Φ, #, P)},

htop(P) = limdίamα^0 lim^00logtyΓ(αM(φ))/n P-a.e.0
α open covering

where for a finite open convering α of M, αw(φ) = V"Γ^ f φ~ xα and Λ/Xα^φ)) is
the minimal cardinality of subcoverings of απ(φ), and for {(M, J*), (Φ, ,̂ P), β}
with QeSP(M x Φ),

hQ(P) = sup{/ιβ(P, ξ): ξ is a finite measurable partition of M},

/n for P-a.e.φ,

As for the P-a.e. existence of hQ(P, ξ) in the above, we note the following
estimate and then apply Kingman's subadditive ergodic theorem to
{HQφ(ξn(φ)): neN} as functions of φ:

HQ,(ξn+m(Φ)) = HQφ(ξn(φ)V nφ-^ξm(σnφ}}

= HQφ(ξn(φ)) + HQσnφ(ξm(σnφ)),

where we use the τ"-invariance condition (2.6).
The following propositions are the random version of the equality hμ(f, ξ)

= Hμ(ξ\ VfLJ-^ξ) for a deterministic (/, μ).

PROPOSITION 4.3. Let {(M, J>), (Φ, #, P), Q] be a random dynamical
system. Then for a finite measurable partition ξ of M,

hQ(P, ξ) < {πQ

PROOF. Clarly for weN.

(HQΦ( v?^1 iφ~ί

But

= (HQφ(φ^ζn_,
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(Replace n and m by 1 and n — 1 respectively in (4.1).) Therefore

Hn(ξ) - Hn.

and from this

Hn(ξ) < Σl =

where we put HQφ(ξ) for the term corresponding to k = 1. Thus, considering

HQ,(ξ\^n

i = liφ-lξ)iHQ.(ξ\V^,iφ-lξ) as n|α),

we obtain

For an invertible random dynamical system, we obtain the following
stronger results.

PRPOSITION 4.4. Let {(M, 28\ (Φ, ,#", P\ Q} be an invertible random
dynamical system. Then for a finite measurable partition ξ of M,

(4.2) hQ(P, ξ) = HQφ(ζ\ V Γ= ! 'Φ ~ l ξ) dP(φ).

PROOF. Clearly

HQφ(ξn(Φ)) = HQφ(ξ\ VΓ'ί'φ-^ + H^ίφΓ1 V

= HQ . (ξ I V ?~ί jφ - ! I) + ί/^( V ?-0

= HQφ(ξ\ VJ-ί'φ-^) + flc^K.-tί

Therefore putting

a n = l ,

and Hm(ξ, φ) = HQ.(ίπ(φ)) for nεN, we have
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and so

(4.3)

Since

(n-i, σ'φ).

• [gdP (note that 0 < g < log(#fl),

and

Hn(ξ,φ)/n-^hβ(P,ξ) for P-a.e.φ,

for arbitrary ε > 0, there exist Ke& and N e N such that

> 1 - ε,

(4.4)

|G(n, <p)-g(φ)\<ε,

π _ 1 f

( \Ha(ξ, φ)/n - hΰ(P, ζ)\ < ε,

for all φ e K and for n > N, ne N. If we put

Jf = {0 < J < n - 1 : σ''0eK, n - i > N},

there exists ΛΓ^eN such that

(4.5) 1 - #J*/n < ε for all n > N^, for P-a.e. φ.

Then we have, from (4.3), (4.4) and (4.5),

hQ(P, ξ) - gdP <\hQ(P,ξ)-Hn(ξ,Φ)/n\

(n - i, σ'φ) - g(σlφ)\

n'Ή^gtfΦ)- (

for some φeK and n > N$. Since ε > 0 is arbitrary, we obtain (4.2).

In what follows, we will summarize some results on conditional entropies
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for later use. The arguments developed here are almost the same as in
[4]. Let (X, sf, v) be a probability space and φ: X -> X be an endomorphism,
i.e. a measurable v-preserving transformation (resp. an automorphism i.e. an
invertible v-preserving transformation). We assume that a sub σ-algebra #
satisfies φ~l<% a Ή (resp. φ~1(& = <€\ Then for a finite measurable partition ξ
of X,

(4.6) Λ?(φ, {) = lim^α oπ-1>ίv(V7-0

1φ-1ξ|«)

exists, which is called the entropy of φ with respect to ξ given #. We also
define h*(φ) by

ti%(φ) = sup{/z^f(φ, ξ): ξ is a finite measurable partition of X}.

The following properties hold:

(4.7) h>, ξ) < Λ?(φ, η) + Hv(ξ\P(η) V <f),

(4.8) fcftφ, ξ) = A*(φ, V f = 0 φ~ i ξ)(resp. A?(φ, V f = _ k φ - ^ ) ) for fceN,

(4.9) ΛftφHlim^Mφ.'ϋ,

where ζ and f/ are finite measurable partitions in (4.7) and (4.8) and {ηn} is an
increasing sequence of finite measurable partitions of X such that 3F{ V nηn) V #
= » in (4.9).

Returning back to random dynamical systems, we can apply the above

results.

LEMMA 4.5. If ξ and ζ are finite measurable partitions of M and Φ (resp. Φ)
respectively, then for {(M, »\ (Φ, ,̂ P), Q] (resp. {(M, »\ (Φ, #, P), β}),

(4.10) ΛQ(P, ξ) = /ι^(τ, ξ x Q (resp. hQ(P9 ξ) = Λgx^(τ, ξ x 0),

where 91 w trivial σ-algera of M constructed from M and φ.

PROOF. Since clearly

for Aieξ and B,eζ, we have

. x # ) = \Ho.(ξm(φ))dP(φ).

Replacing V, v, φ and ξ by 91 x #, β, τ and ξ x C in (4.6), we obtain (4.10). In
the invertible case, the equality can be shown just in the same way.

LEMMA 4.6. For {(M, Λ\ (Φ, #, P), Q] (resp. {(M, Λ), (Φ, #, P), Q}) ̂ -
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pose that a finite measurable partition ξ of M satisfies &( V ?i0

 lφ ~ l ξ) = @ for

P-a.e.φ(resP.#
r(V?=-00

ίΦ~1ξ) = @ for P-a.e.φ}. Then

hQ(P) = hQ(P, ξ) (in both cases).

PROOF. Replace #, v, φ, ξ and η by 91 x #, Q, τ, ί/ x C0

 and
V^oi"1 '^ x Co) respectively in (4.7), where £0 is the trivial partition of Φ and η
is an arbitrary finite measurable partition of M. Then in view of (4.8) and
Lemma 4.5, we have

(4.11) hQ(P, η) < hQ(P, ξ) + HQ(η x CoW VU*~''K x Co)) V (91 x

But clearly

HQ(η x CoW VUτ~''« x Co)) V (91 x

Letting fe -> oo, we obtain

which implies /ιβ(P, ξ) = /ιβ(P). In the invertible case the equality can be
shown just in the same way.

To derive the variational principle for a random dynamical system, we
quote from [6] the relativised variational principle for continuous maps. Let
X and Y be compact mteric spaces and T: X -> X, S: Y-> Y, π : X -> Y be
continuous maps such that π is surjective and π ° T = S ° π. The relativised
variational principle for T, S are given by

THEOREM 4.7 ([6]). Fix a ve^(Y) such that S*v = v. Then

= μ, π*μ = v} = ffc(T, π'1

log sn(T, X, (5),

sn(T, K, δ) = max{#£: E ^ K9 E is (T, n, δ}-separated]

for a compact K^X. (E c X w cα//^J (T, n, δ)-separated ifd(Tx, Ty) > δ for
some Q <ί <n - ΐ, for all x, ye£, x / y.)

To apply this theorem we see the next lemma in connection with Lemma
4.5.
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LEMMA 4.8. Let {(M, J*), (Φ, .#", P\ Q} be a random dynamical system

(resp. {(M, 0$\ (Φ, ̂ ", P), Q} be an invertible random dynamical system). Then

hQ(P) = h*^(τ] (resp. hQ(P) = h**(τ)).

PROOF. From Lemma 4.5, it is easy to see hQ(P) < h^^(τ). We prove

the converse inequality. Since M and Φ are seprarable metric spaces, we can

choose increasing sequences {ξn} and {£„} of finite measurable partitions of M

and Φ respectively such that &( V „ ξn) = @ and JΓ( V n ζn) = &. Then

&( Vn(ζn x U) = Λ x & and by (4.9) and Lemma 4.5,

MP) > limsupπ/ιQ(P, £„) = limn^/^(τ, £„ x Q = Λ«**(τ).

In the invertible case the proof is the same as above.

Applying Theorem 4.7 to a random dynamical system (resp. to an

invertible random dynamical system), in view of Lemma 4.1 and Lemma 4.8, we

immediately have the following theorem.

THEOREM 4.9. Let Φ be compact with respect to the uniform topology and

{(M, J*), (Φ, ,̂ P), Q] be a topological random dynamical system (resp. {(M, )̂,

(Φ, «#, P), g} £e an invertible topological random dynamical system). Then

htop(P) = sup{/ze(P): Qe^P(M x Φ)} (resp.

/ιίop(P) = sup{/ιQ(P): βe^P(M x Φ)}.)

Lastly in this section we briefly treat the random version of the Shannon-

McMillan-Breiman theorem for an invertible random dynamical system.

THEOREM 4.10. Let {(M, $\ (Φ, ,̂ P)} be an invertible random dynamical

system. Then for a finite partition ξ of M,

IQφ(ξ, x, φ) = \imn^00IQφ(ξn(φ))(x)/n

exists for Q-a.e.(x, φ) and

ΪI

PROOF. Since proof is analogous to that of the deterministic case, we show

a rough sketch of it. First note that the following equality holds :

(4.12) IQφ(ξn(Φ))(x) = Σ"=θfn-i°Λx, Φ)

where
, J>2,
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Indeed, we have

V lφ-lξ V -. V --^-^(x)

l V?.-/ '4Γ'fl + lQφ( V?- ' '0 -'

= /„(*, Φ) + W V

= /„(*, Φ) + /fl.4(ί.-ι

where we used the τ-invarίance condition (2.5) of Q. Using this equation
repeatedly we obtain (4.12).

On the other hand by Doob's theorem,

(4.13) f ( x , φ) = lim^/Λje, φ)

exists both for β^-a.e. and in Ll(M, Q#) for P-a.e.φ. (Note that
.) But

f/(x, φ)dQ(κ, φ) = ί f/(x,

= Jlim^, ίfm(x, φ)dQφ(φ)dP(φ)

= flim^^/ί

= hQ(P, 0,

where we used Proposition 4.4 in the last eqality. Applying BirkhofFs ergodic
theorem, we know that

Ax, φ) = lim^n-1^1/0^*, φ)

exists for β-a.e.(x, φ) and

JM'« = hQ(P, ξ).

Then follwing the arguments in the deterministic case we can show the
statements in the theorem is true with IQφ(ξ, x, φ) = f.
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§5. Unique maximal measure of a random Bernoulli shift

Let S ={1, .-., s}(seN), M = Sz and ψ be the shift transformation on
M: (ψx)n = xπ + ι, neZ for x = (xn)neZeM. It is well known that each ι
has the unique maximal measure μ = {1/s, ••• , l/s}z(see e.g. [7]). This maximal
measure is common throughout ieN. (The maximal measure means the
measure with espect to which its metrical entropy coincides with the topological
entropy.) We are interested in what occurrs when the shifts operated are
randomly chosen. The following theorem is a slight generalization of the
unique maximality in the deterministic shift.

THEOREM 5.1. Let M, ψ and μ be the same as above. Suppose that Φ
= [ψ , \l/2} and P is an ergodic σ -invariant probability measure on Φ. Then

(5.1) hQ(P) < htop(P) for all QeJP(M x Φ).

The equality in (5.1) holds if and only if Q = μ x P.

PROOF. Though inequality in (5.1) is deduced from Theorem 4.9, here we
try to prove (5.1) derectly. The following notations are used.

;[*i •"*/]./ = {y = OϋπeNeM: yk = xk, i <k<j}

«iJ={tLxt xJ']j Xt, , X j e S }

for i, j 6 Z with i < j and

Let us define the partition α = {0[xo*ι]ι: *o> *ι£S} of M. Then we have

lod s if φe(ψ)

2 logs if φeW 2 ),
(5.2) . . i ,,,_. ;f A _ Λ . 2 .

and so

(5.3) hμxP(P) = ΛμxP(P, α) = P((ι/0)log s + 2P((ιA2))log s,

using Proposition 4.4 and Lemma 4.6. We can easily check that htop(P)
coincides with the right hand side of (5.3) taking the sequence of open coverings

Suppose that QeJP(M x Φ). Then

(5.4) HQφ(x\ V £ ι ty"1*) ^

for all rcgN, and for x = (xfc)fc
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ι V^VθLΛ0
~ log *, Γ

\ LX1
if

if

where N(0, n) = 1 + #{1 < i < n: φ{ = ψ} 4- 2#{1 <i<n: φi = ψ2}. Set for

C£,φ,n — Q$(l [X2 *" XJV(^

Then from Proposition 4.4, Lemma 4.6, (5.2)-(5.5), we have

hμ*P(P) - hQ(P) = ΛμxP(P, α) - ΛQ(P, α)

I
-loίv dQ$(x)dP(φ).

Put C0fΠ = {xeC°'N(<M: α^^π > 0} and take a maximal subset EφtΛ of Qtll such

that for all x = (xfc)keN, y = (yk)k^eE^n, x =£ $ satisfy 0[x0 '"XN($tn^N(φtn) *
oLyo '" yN($,n)]N($,n)' Since — log y > 1 — y, y>Q with the equality only
when y = 1, we have

I,J (Φ2
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where we used Σ*eE+tn
b*.Φ.n ^ s and Σ^,nc*,*,» ^ s2 τhus we obtain (5.1).

Now we prove that the equation in (5.1) implies Q = μ x P. In order that
the inequalities used in the above estimate become equalities, the following
conditions are necessary:

ί^L= 1 for all *eCφΛ9 P-a.e. φe(ψ), and
S

_

5

for all neN. We may replace a.e. φ by all φ in the above condition with an
elimination of a σ-invariant null set N. Putting a$^^ b^tn and c$^%n back into
measures of cylinders, we have for all neN,

(̂ •6) Qφ(lLXl '" XN(φ,n)]N(φ,n)) = S Qφ(θLX0 " ' XN(φ,n)]N(φ,n))

for all Λ(=(Xfc) t e z)eCΛ l l, and φe(ιA), and

(5-7) Qφ(2\iXl '" XN(φ,n)]N(φ,n)) = S 6<^(θ[X0 ' ' * XN(φ,n)]N(φ,n))

for all xeC^M, and φe(ψ2).

We will show the following equality for all neN by induction.

(5.8) ρ^(ol>o -χN(φ^N(φ,n)) = s- (N(*>n) + 1}

for all xθ9 ~9 XN(<M e S, φ e Φ.

First we consider the case when n = 1. Then from (5.6) and (5.7),

(5.9) e^ι[*ι*2]2) = sρ^[x0xιx2]2) for a11 *eC, f l, φeWO, and

(5.10) e^(2[x2x3]3) = s2 β^(ol>o*ι*2*3;i3) for all *eC,tl, φe(ιA2).

Summing over x l 9 x2 in (5.9) and over *2>
 X3 ^n (5.10), we have

s-1 for all ^0^5 s.t. β^oC^olo) > 0, φe(^), and

) ̂  s~2 for a11 xo, ^1^5 s.t. β^(0[x0^ι]ι) > 0, φeOA 2 ).

Since

Σχoes β^oC^olo) = 1 and Xxo,Xl6S 6^(o[^o^ι]ι) = 1»

we have from above

(5.11) β^(0[x0]o) = 5-1 for all x0eS, φe(ψ), and

(5.12) β<^(o[^oXι]ι) = 5"2 for all x0, x^eS, φe(ιA2).
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Next summing over x2 in (5.9),

for all x0, x^eS s.t. (^(oOoXiL) > 0, φe(^). But from (5.11) and (5.12), if

06 0/0,

where we used the codition (2.5). Therefore we have

for above x0, xί and φe(ψ), which by the same arguments as above together

with (5.12) yields

β0(o[xo*ι]ι) = s~2 for all x0, XieS,

Then returning back to (5.9) and (5.10), we have

for all xeCftl, φe(ψ), and

for all xeCφtl9 φE(φ2). Again by the similar arguments and combining two

cases, we obtain (5.8) when n = 1.

Assume that (5.8) holds for neN. Since N(φ, n + 1) = N(φ, n + 1)

= N(σφ, n) 4- i if φe(\l/l\ i = 1, 2, from (5.6) and (5.7) we have

O C Γ x x 1 ) = s—

~ S

Y Ί ^ — cxN(φ,n+l)JN(σ$,n)) ~ S

for all XeC$tn+ί, φe(ψ), and

Γ(^,fi+l)) = S Q$\2\-X2 '

Y 1 \ — -
XN(φ,n+l)lN(σφ,n)) ~ S

for all

From these we obtain (5.8) for n + 1 similarly as above. Therefore by
induction we obtain (5.8) for all neN.

Since N(φ9 n)| oo as n f oo, taking (2.6) into consideration, we consequently
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obtain Qφ(m[xm x^]n) = sn~m+1 for all xm, ~,xnGS9 m, n e Z such that m<n
and φ e Φ. This implies Q$ = μ for all φ e Φ and Q = μ x P. Thus the
theorem is proved.

REMARK 5.2. We can obtain the analogous results to the above theorem
for Φ = {ψ, , ^ f c}(/ceN) by applying the same arguments.

REMARK 5.3. We consider the case when M = SN, Φ = [ψ, ^2}N, (ψ: M
-» M is the shift transformation) and P is σ-invariant and erodic. Suppose that
βe</p(M x Φ). In order that hQ(P) = htop(P\ we obtain the following
condition by the same arguments as above and Proposition 4.3

Qφ(ί EX1 ' ' ' XN(φ,n)ΐ) = S

for all x(=(x fc) teN)eC0 f l l, φe(ψ), and

βφG CX2 ' " XN(<p,n)J ) = S Qφ(θ LX0 ' ' ' XN(φ,n)] N(φ,n) )

for all xeC^,,, φe(ψ2), for all neN. In the above, notations are the same as

in the proof of Theorem 5.1. Including the case x φ C^n, we consequently have

(5.13) βφdC*! "'XN(φ,nγ\) = S Qφ(θLX0 " ' XN(φ,n)]N(φ,n))

for all x0,---,xN (^n )eS, φe(ψ)9 and

(5.14) Qφ(2l
x2 •-*N(φ,n)']) = s2 Q$(0 [x0 XN(^,Π)]AΓ(^Π))

for all x0, ••-, xN(^n)eS, φe(ψ2). Although we have not yet obtained the
unique maximality in this system of random (non-invertible) shift, (5.13) and
(5.14) will be a criterion for a certain measure to be maximal. (See Fact 6.4 in

§6.)

§6. Application to Tsujii random dynamical systems

Let (M, ̂ ) amd (Φ, &) be the same as in §2. We fix a

pe^(Φ, y\ Consider a μe^(M), a sub σ-algebra ^0 of # and a measurable
function 7: M x Φ->R+ which satisfy the following conditions

(6.1) φ*μ = μ for all φeΦ,

(6.2) φ"1^ is independent of ^0 with respect to μ for all

(6.3) γ( , φ): M -+R+ is JQ- measurable for all φeΦ,

r
(6.4) y(x, φ)dρ(φ) = 1 for all xeM.
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Define Qe0>(M x Φ) by

(6.5) Q(B x F1 x '- xFnx Φ" + 1'°°)

Π"=ι ίFl(<PMi~1<PX> <Pi)dρ(φι)'-dp(φn)dμ(x)= I l

for all BeJ^, F^ •••, Fne^ and all neN, where we set lφ = φ1° '-°φ2 iΠ > 1
and °φ = id for (φl9 ••• , φn). Put

(6.6) P = πlQ.

Then Qe^p(M x Φ)([10]). We call the metrical random dynamical system
{(M, )̂, (Φ, ,̂ P), β} constructed above a Tsujii random dynamical system.

In the following we fix a Tsujii random dynamical system {(M, J*),
(Φ, ̂ , P), Q} constructed from μ, p, &0 and γ.

FACT 6.1. P = p™ for ρyε0>(Φ) defined by

dpy(φ) = y(<p)dp(φ), y(<P) = y(x, φ)dμ(x).

PROOF. For Fl9 •••, Fne 3F, using (6.1)-(6.6), we have

P(F1 x -. x Fn x Φ" + 1 °°)

= lFι(<PlM*>Φl)Π?=2^

= ίlFtίΦi)!" J7fc Φι)dμW ίπ?=2lFί(φί)7Γ1^

and

where

,.! f W i f i = 2
2Φ = Λ ( ( j θ ί _ 1 o . . . o φ 2 i f i > 3 , for

Therefore we have

! x ••- x Fn x φ" + 1 °°)

\ \ Π?=2 ^(φdyVΊφx, φi)dμ(x)dp(φ2) dp(φn)
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Repeating this procedure, we obtain

P(Fl x - x F n x Φ " + 1 00) = py(F1). .py(Fll)

which implies P = p* since neN and F x, •••, Fπe^ are arbitrary.

A typical element of </P(M x Φ) is v x P with p*v = v, where p* :
is defined by

-ifp*λ(B)= lB(φx)dpy(φ)dλ(x) for

These measures are often considered. But QεJ>p(M x Φ) defined by (6.5) is

not equal to any of these measures except for the trivial case.

FACT 6.2. Suppose that

(6.7) β = v x P, p*v = v.

Then v = μ and

(6.8) y(x, φ) = y(φ) μ x p-a.e.(x, φ).

PROOF. If (6.7) holds, then π&g = v, where π M : M x Φ - > M is the
natural projection. On the other hand, we have π^Q = μ. Therefore v

= μ. Let HI : M x Φ -> M x Φ1'1 be the natural projection. Then both πf β

and πf(v x P) are absolutely continuous with respect to μ x p and the Radon-

Nikodym derivatives at (x, φ) are y(x, φ) and y(φ) respectively. Hence if (6.7)
holds, we obtain (6.8).

If (6.8) fails to hold, Q constructed by (6.5) is decomposed into the family of
regular conditional probability measures [Q$\ φeΦ}, for which the mapping φ
-> Q$ is not trivially measurable, namely, not constant. Therefore the invariant
measure Q is one of examples whose decomposition {β^: φeΦ} depends

essentially on φeΦ.
Next let us consider the ergodicity of this system {(M, )̂,

(Φ, J*", P), Q}. The tools used here are the results obtained in §3.

FACT 6.3. Let {(M, J*), (Φ, ,̂ P), Q} be a Tsujii random dynamical system

constructed as above. Then Q is Markov in the sense of Definition 3.1.

PROOF. It suffices to note that

Γ Γ
= •'•

J J

<PX><Pi)dp(<Pn+i)~'dp(q>m)
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for all Fn + l9 ~, Fme& and w, neN, w > n, Q-a.e.(x, φ).

From Fact 6.3 and Theorem 3.5, (τ, Q) is ergodic if and only if Q is M-
ergodic and the M-ergodicity of Q is nothing but the ergodicity of the Markov
operator

ί'= f ( x , <P)y(x, φ)dp(φ) for feLl(M, μ).

This coincides with the result obtained in Theorem 4 in [10].
Apart from general situations, we give a concrete example of Tsujii random

dynamical system. We consider the following objects:

^ : the σ- algebra of M generated by cylinders,

Φ = [ψ, ψ2}, φ: M-+M is the shift,

pe0>(Φ, &} such that p1 = ρ({ψ1}) > 0 for i = 1,2,

&0: the σ-algebra generated by {0Mo : xeS},

y : M x Φ -> R+ such that

γ(x, φj) = yy if xe 0[Clo» 1 < ϊ < 5, = 1, 2,

V i i P i +7i2P2 = 1 for 1 < i < s,

(6.9) yy ^ IVj for some 1 < i Φ i' < s, = 1 or 2.

It is easy to see that M, ^,- , y above satisfy the conditions (6.1)-
(6.4). Hence we can construct Q and P by (6.5) and (6.6), from which we obtain
a Tsujii random dynamical system £f = {(M, J*), (Φ, ̂ , P), β}. Next let us
consider the entropies of £S. It is clear that μ x P e £fP(M x Φ) is one of the
maximal measure, that is,

(See Theorem 5.1, (5.3) and Fact 6.1.) On the other hand, in view of Fact 6.2
and (6.9), we have Q Φ μ x P. As for hQ(P\ we obtain the following result.
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FACT 6.4. ha(P) < htop(P).

PROOF. Suppose that hQ(P) = htop(Q). Then, putting n = 1 in (5.13) and

(5.14), we have

(6.10)

for all x0, x l 5 x2eS and for all φe(ψ), and

(6.H)

for all xθ9 xl9 x2, x 3eS and for all φe(ψ2). But from the definition (6.5) of β,

we have

[Q*(θl>0*l*2]2)<*P(φ) = β(θ[*0*l*2]2 X WO)

0

f
= Pi y(x, φ)dμ(x) =

and

I
= PI y(χ,

Therefore (6.10) implies

£fe= 1y k l >syn for all ieS,

from which we consequently have

7/ι = 5 ~ ι X f c = ι 7 f c ι for all ieS.

This contradicts (6.9) if j = 1 in (6.9). If j in (6.9) is equal to 2, we can similarly

deduce a contradiction from (6.11). Therefore we obtain the desired inequality.
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