
HIROSHIMA MATH. J.
21 (1991), 163-186

Martin boundary of a harmonic space with adjoint structure
and its applications

Fumi-Yuki MAEDA
(Received January 16, 1990)

Introduction

Consider the parabolic operator

Lu(x, t) = a(x)- - Δxu + <A(x, ί), Vxu) + c(x, t)u

and its adjoint operator

du
L*w(x, ί) = - a(x)—- Axu - <A(x, ί), Fxw> + c*(x, ί)«

όt

with sufficiently smooth coefficients a > 0, A (/?"-valued), c and c* = c - Vxb on
a domain D in /?" x /?. If we write L= (L + L*)/2, then, noting that c = LI
and c* = L*l, we have

zf xw = — Lu + uLl.

Therefore, if the "lateral" boundary dsD of D is sufficiently regular, then for /,
geC2(D) such that g vanishes on dsD, Green's formula implies

(0.1) ί <FJ, FX0> dxdί + I fgLl dxdt = \ gLfdxdt,
JD JD J D

provided that all the integrals exist.
The purpose of the present paper is to establish a formula corresponding to

(0.1) on a harmonic space (X, 3F) with an adjoint structure J f *, as an
application of the theory of Martin boundary of X with respect to the
structures Jf and Jf *.

In §2 — §6, we develop a theory of Martin boundary of such a harmonic
space (X, 3P\ Theories of Martin boundary of general harmonic spaces have
been discussed to some extent by M. Sieveking [8], K. Janssen [3] and C.
Constantinescu-A. Cornea [1; Chapter 11]; and some results in §2 — §6 of the
present paper can be obtained from these general theories. However, in order
to obtain some properties which we need in establishing the above mentioned
formula, we rather follow the classical approaches by Martin-Brelot-Naim and
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their "parabolic" counterparts discussed in J. L. Doob [2; Chap. XIX], and we

give details of the theory for reader's convenience.

We then introduce (in § 7) a class 2F of functions on X for which we can

naturally define boundary values on the Martin boundary. In §7, we show

that "energy finite" bounded functions belong to 3F. Finally, in §8, we

establish formulas of type (0.1) for an energy finite bounded function/and an

energy finite function g of potential type. There, we make use of the boundary

values of/on the Martin boundary of X and their relations with the minimal

fine limits of/with respect to the adjoint structure $C * (cf. [5; §5.6 and §6.7]

for such relations).

§ 1. Preliminaries

Let X be a connected locally compact space with countable base and

consider a pair (Jjf, JP*) of mutually adjoint harmonic sheaves on X as defined

in [7]. By definition, (X, Jjf) and (X9 <&*) are P-harmonic spaces and there

exists a Green function G(x, y) satisfying the following conditions :

(GO) G(x, y) is lower semicontinuous on X x X and continuous off the
diagonal

(Gl) For each yeX9G( ,y) is an Jf-potential and is Jtf -harmonic on

x\{y}ι
(G*l) For each xeX, G(x, •) is an jf *-potential and is Jf *-harmonic on

x\{χ};
(G2) Any continuous Jif -potential p is uniquely expressed as p = Gμ with a

nonnegative measure μ on X, where Gμ(x) = J G(x, y) dμ(y)

(G*2) Any continuous Jf7 *-potential q is uniquely expressed as q = G*v with
a nonnegative measure v on X, where G*v(y) = |G(x, y)dv(x).

We further assume that the constant function 1 is J f - and $f *-superharmonic.

We denote by £f + the set of all nonnegative tff -superharmonic functions

on X, & the set of Jf- potentials and 2PC the set of continuous J f-

potentials. The corresponding sets with respect to Jf * are denoted by ¥*+,

0>* and ^g, respectively.
We recall ([7]) that, associated with G(x, y), there exist measure

representations σ: & -> M and σ* : ̂ * -> M> where ^ (resp. #*) is the sheaf of

functions which are locally expressible as the difference of two continuous jf -

(resp. Jf *-) superharmonic functions and Jί is the sheaf of signed measures on

X. By definition, σ(Gv + u) = v if ueJΊf(X) and G|v|e^c. Also, by assump-

tion, σ(l) > 0 and σ*(l) > 0.
The reduction operator with respect to Jt? (resp. Jί?*) will be denoted by R
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(resp. #*) (cf. [7; p.3] and [1 pp. 39-40]). For an open set U in X and
(resp. we5^), let

Rυv = R(χvv) (resp. R*w =

where χ^ is the characteristic function of U. (In [1], Rvv is denoted by
/O Then Rvve^+ (resp. K£we^*), and Rvυe& (resp. tf £we^*) if 17 is
relatively compact.

LEMMA 1.1. Let U be a relatively compact open set in X. If ve£f + is
locally bounded on X and is continuous on U, then there exists a unique
nonnegatiυe measure μ on X such that Rυv = Gμ and Supp μ c U. If, in
addition, v\veJ^(U), then Supp μ c 317.

PROOF, (i) Uniqueness : Let $1 = {/e^*(AΓ) | Supp / is compact}. Note
that /= G*(σ*(/)) for /e#J. Suppose Rυv = Gμ. Then for any

(fdμ = f G*(σ*(/))dμ = f Gμdσ*(/) = f^i; Aτ*(/).

Since &* is dense in ^Q(X) ( = the space of continuous functions with compact
support in X; cf. [1; Theorem 2.3.1]), μ is determined by Rvv.

(ii) Existence: Let {Un} be an exhaustion of U and choose φne^Q(X) such
that 0 < φn < 1 on X, φn = 1 on Un and Supp φπ c [7 (n = 1,2,...). Put ι?5

= R(φnv). Then uπe^c

 an(l ^c;̂  = nmn^oo ϋ« (cf [1 i Theorem 4.2.3]). Let μn

= σ(vn). Then Supp μn c ί7 (cf. [7; Lemma 1.1]). Choose ^6^0(X) such that
^ = 1 on (7. Then

μπW = μn(U) < (R*ψdμn = [vndσ*(R*ψ) < [υdσ*(R*ψ) < oo,

since Supp σ*(K*^) is compact. Hence, a subsequence {μn.} vaguely converges
to a nonnegative measure μ with Supp μ c C7. By the lower semicontinuity of

G(x, •), Gμ < limπ_>00ι;π = Rvv. On the other hand, since vn = v on [7n, μ,,!̂

= σίt;)!^ for all n, so that μ\Un = ^n\un- Together with the continuity of G(x, •)
on C7\{x}, it follows that GμΠj. -> Gμ on U. Hence Gμ = Rvv = v on 17, which
implies Gμ > R^t; on Jί. Thus, Gμ = Rvv. The above arguments also show
that μ l t / ^ 0 if v\v

LEMMA 1.2 ([1; Proposition 7.1.2 and Corollary 7.1.2]). Let U be a

relatively compact open set in X. Then, for each xeX, there exists a nonnegative
measure δ% on U such that

(Ruυ)(x)= I vdδ"-ί;
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for all

LEMMA 1.3. Let U be an open set in X. Then

for any x, yeX.

PROOF. Since Rvv = lim^^Runx^ for an exhaustion {Xn} of X and for

any vefff+ ([1; Corollary 4.2.2]), we may assume that U is relatively
compact. By the above lemma,

(Z, y)dδu

x(z) = (G*δu

x)(y)

for any x, yεX. We see easily that RVG( , y) = G( , y) if yell (cf.
[6; Proposition 2.5]). Hence G*δυ

x = G(x, •) on 17, so that G*δυ

x > RξG(x, •)
on Jf for any xe^f, namely,

for all x, yeX. By symmetry, we obtain the converse inequality.

§2. Martin boundary

A nonnegative measure λ on X will be called a standard ^-reference

measure if λ(X) < oo, G*/l is bounded continuous on X and is positive
everywhere. In view of [4; Lemma 3.6], we see that a standard 3tf -reference
measure is a reference measure with respect to tf in the sense of [3], namely X
is the smallest absorbent set (with respect to J f ) containing Supp λ. We fix
such a measure λ throughout this and the next four sections.

Let

udλ < 00} and

udλ<l}.

By Harnack's inequality [1 Proposition 6.1.5], jΊfλtl is locally uniformly
bounded on X, and by [1; Theorem 11.1.1], we see that it is compact with
respect to the locally uniform convergence topology.

We define the λ-Martin kernel Kλ(x, y) by

ΓXv t,\

for >
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LEMMA 2.1. For a compact set E in X, {Kλ(x, )}xe£ is uniformly bounded
outside a neighborhood of E.

PROOF. Let V be a relatively compact neighborhood of E. Then there is
α > 0 such that G(x, y) < α(G * λ) (y) for all x e E and y E δ V. By
[6; Proposition 2.5], this inequality holds for all xeE and yεX\V, namely,
Kλ(x, ) < α on X\Kfor all xεE.

There exists a (unique) compactification Xλ of X such that every Kλ(x, )
has a continuous extension to Xλ and {Kλ(x9 -)}xeX separates points of dλX
= Xλ\X. Then Kλ( , 77) e jf Λ > 1 for any η e dλX. Xλ is metrizable in fact, for
a countable dense set {x7 } in X, {Kλ(xp )}j separates points of dλX.

LEMMA 2.2. Let ue3tfλ and U be an open set in X. Then there exists a
nonnegative measure μυ on Xλ such that Supp μυ ci dλU (= the boundary of U in

and

"ί. ,η)dμu(η).

In particular, for each u e Jf λ there is a nonnegative measure μ on dλX such that
and

-IJ d"

Kλ(;η)dμ(η).

PROOF. Let {Xn} be an exhaustion of X and set Un = U n Xn. By Lemma
1.1, for each n, there is a nonnegative measure μn such that Supp μn c dUn and
RUnu = Gμn. Let vn = (G*λ)μn. Since

(2.1) vn(JSQ = I G*λdμn = \Rϋnudλ < ίudλ < oo,

{vn} has a vaguely convergent subsequence as measures on Xλ. Let μv be its
limit measure and set υ = $Kλ( , y)dμv(y). Then, Supp μυ c δΛC7 and (2.1)

implies that μυ(Xλ] = \Rυudλ, since Λ^wl^^w. Also, since RUn

u

= § K λ ( - 9 y)dvn(y) and Kλ(x, •) is continuous on ^ Λ \{x} and lower semicon-
tinuous on Xλ, we see that v = Rvu = u on U and v < Rvu on X. Since
i? 6.9^ + , it follows that v = Rvu.

LEMMA 2.3. Let U be an open set in X.
(i) For each xeX, ^ι-^[Λ[/XΛ( , η)~](x) is lower semicontinuous on Xλ.
(ii) If U is relatively compact, then, for any ηεdλX, RvKλ(-, y)

-> RvKλ( , η) uniformly on X as y -> η (yeXλ).

PROOF. By Lemma 2.1 and [1; Theorem 11.1.1], if U is relatively
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compact, then Kλ( 9y)-> Kλ( - , η) uniformly on Ό as y-*η (ηe BλX,
y E Xλ). Hence we have (ii) of the lemma. Then (i) follows from the fact that

n

Kλ(', η) for an exhaustion {Xn} of X.

Let ηedλX and U be a relatively compact open set in X. By Lemma 1.1,
there is a unique nonnegative measure εj7 such that Supp εj7 c dU and

Note that ε°(X) = f Λι/XA( , >/)<U < 1.

LEMMA 2.4. Leί U be a relatively compact open set in X. Then η\

lac/ / d£η is continuous on dλX for each

PROOF. If /= (p/G*λ)\dϋ with pe^£ such that Supp σ*(/?) is compact,
then /= J xXA(x, )dv(x) on <317, where v = σ*(p), so that

ί /<= ί j ί Xλ(x,y)<ωJΛ(x)= ί RvKλ( ,η)dv.
JdU Jx LJdU J Jx

Hence, in view of Lemma 2.3 (ii), the assertion of the lemma holds for such an
/. Since ε^(3l/) < 1 for all ηedλX, [1; Theorem 2.3.1] implies that the
assertion of the lemma holds for any

By the above lemma, for any nonnegative measure μ on dλX and a
relatively compact open set U in X,

Γ /Γ \
(2.2) μϋ(f)= ( fdε^\dμ(η) for feV(dU)

JdλX \JdU /

defines a nonnegative measure μu such that Supp μu c 5L7 and μu(SU)
< μ(dλX).

« = ί KA ,
J6*X

LEMMA 2.5. Let μ be a nonnegative measure on dλX and let

η) dμ(η).

Then for any open set U in X,

(2.3) R0u=t RvKλ( ,η)dμ(η).

Furthermore, if U is relatively compact, then

(2-4) *„«= ί Kλ( ,y)dμv(y),
JdU
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where μu is the nonnegative measure defined above.

PROOF. First, let U be relatively compact. Since (2.2) holds for any

nonnegative lower semicontinuous function, we have

f Kλ(X,y)dμu(y) = f i f Kλ(x, y)dε"(y)}dμ(η)
Jdu Jd*x Uac; J

J d'JdλX

for any xεX. On the other hand, by Lemma 1.2,

ί
Jd

lRvKλ( .,>/)] (x) dμ(η) = Kλ(z, η) dδu

x(z) dμ(η)
J

= u(z)dδ*(z) = (Rϋu)(x).
u

Hence, (2.3) and (2.4) hold when U is relatively compact. To prove (2.3) for

any open set 17, it is enough to note that Rvv = lim,,^ RUnXnv for ve^+ and

an exhaustion {Xn} of X.

§3. Reduced functions for boundary sets

For a closed set F c= dλX let 93(F) be the set of open neighborhoods of F in

X\ and for ve^ + 9 let

RFv = inf{we^+ | w > υ on Vn X for some

By Perron's theorem ([1; Theorem 2.2.1]) we see that RFveJ^(X). If

then Rdλχ = u, since X is an MP-set (cf. [1; Corollary 2.3.3]). Obviously, if

Fίcι F2 and t^ < υ2, then RFίv1 < RF2v2. Note that if Fπe93(F), n = 1,2,...,

satisfy

(3.1) Kί+1 c KM, n = 1,2,..., and Π Vn = F9
n=l

then KFu = lim^^Ry^xυ. Thus, by [1; Theorem 4.2.1], we obtain

LEMMA 3.1. If F is a closed set in dλX and vl9 v2e£f + , then

LEMMA 3.2. If F is a closed set in dλX and ve£f + , then

RF(RFv) = RFv.
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PROOF. Obviously, RF(RFv) < RFv. For any

since RVnXv = v on Vr\X. Since RVnXv — RFve£f + , using Lemma 3.1, we
have

RFv = JM*κnjίtO = RF(RVnχV - RFv)

< Rvπxv - RFv + RF(RFv).

Taking the infimum on V, we obtain RFv < RF(RFv).

COROLLARY 3.1. IfF^F2 are closed sets in dλX such that F1 c F2 and if

, then

PROPOSITION 3.1. For a closed set F in dλX and weJf Λ , there exists a

nonnegative measure μ on dλX such that Supp μ c= F, μ(F) = \xRFudλ and

RFu= [ Kλ( 9

JF
η)dμ(η).

PROOF. Let 7we93(F) satisfy (3.1). Applying Lemma 2.2 with U = Vn[\X

and taking a vaguely convergent subsequence of the corresponding measures,

we easily obtain the proposition.

COROLLARY 3.2. Let w e J^A and ηεdλX. If R[η}u = u, then u = (\udλ)

KA( > n)- V in addition u φ 0, then \ Kλ(-,η)dλ = 1.

PROOF. By the above proposition, R(η]u = cKλ(-, η) with c = $χR{η} udλ.

PROPOSITION 3.2. Let μ be a nonnegative measure on dλX and let

u= Kλ(.,η)dμ(η).
JdλX

Then, for any closed set F in dλX,

RFu= RFKλ(.,η)dμ(η).
Jd*x

PROOF. Taking Kπe93(F) satisfying (3.1), applying (2.3) in Lemma 2.5 with

U = VnnX and letting n->oo, we obtain the required result by Lebesgue's

convergence theorem.
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§4. Minimal boundary points

We say that u e 3F(X\ u > 0, is minimal if u φ 0 and 0 < v < u with
v e JJf(X) implies v = cu (c: constant).

LEMMA 4.1. If ueJ^λ is minimal and F is a closed set in dλX, then either

RFu = 0 or RFu = u.

PROOF. Since RF u E tf \ and 0 < RFu < u, RFu = cu. Using Lemma 3.2,

we see that c = 0 or 1.

LEMMA 4.2. Let F be a closed set in dλX. Ifue 3? λ is minimal and R{η}u

= 0 for all ηeF, then RFu = 0.

PROOF. For each ηeF, there is Vηe^({η}) such that Rv nxu φ u. We

can cover F by a finite number of closed sets FJ9 j = l , . . .,/c such that Fj ci Vη

for some ηeF for each j. Then RF.u = 0 by the above lemma, and hence

RFu < ΣjR

Fju = 0.

PROPOSITION 4.1. If ue3tfλ is minimal, then there exists a unique ηeBλX

such that R{η}u = u, and hence u = (§udλ)Kλ( , η) (by Corollary 3.2).

PROOF. The uniqueness follows from Corollary 3.2. By Lemma 4.1,

R{η} u = u or 0 for each ηedλX. If R[η}u = 0 for all ηedλX, then Rd*xu = 0

by the above lemma, which implies u = 0. Thus R[η}u = u for some ηedλX.

We shall say that ηedλX is a λ-minimal point if XA( , η) is minimal and

\xKλ( , η)dλ = 1. Let d{X be the set of all Λ-minimal points and let d$X

= dλX \ d\X.

PROPOSITION 4.2.

dλ,X = {ηedλX I KA( , η)*0 and R[η} Kλ( , η) = Kλ( 9 η)}.

PROOF. Let A be the set in the right hand side. By Proposition 4.1, d{X

c A. LεtηeA and suppose 0 < u < Kλ( , η) with u e Jf (X). Put υ = Kλ( , η)

— u. Then υeJ^λ and by Lemma 3.1

R{η}u + R{η]v = R{η} Kλ( , η) = Kλ( 9 η) = u + v.

It follows that R(η] u = u, and thus ηed^X by virtue of Corollary 3.2.

PROPOSITION 4.3. d%X = {η e dλ X\ R { η } Kλ( - , η) = 0} .

PROOF. If R(η} Kλ( , η) = 0, then ηφd*X by the above proposition.

Conversely, suppose ηed^X. If Kλ( ,ί/) = 0, then obviously R[η}Kλ( , η )

= 0. If Kλ( ,η)^Q9 then by Proposition 3.1 R[η} Kλ( , η) = cKλ( 9 η) with
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0 < c < 1. Since ηφd^X, cφ\. Using Lemma 3.2, we see that c2 = c, so that

c = 0.

PROPOSITION 4.4. The set d^X is an F σ-set. For any weJf \ and for any

closed set F contained in d^X, RFu = 0.

PROOF. First, note that if there is Coe5o^ such that κλ(m> Co) = °> then

R { ζ o } w = 0 for any weJf Λ by Proposition 3.1.

For an open set U in Xλ, 0 < ί < 1 and xeX, let

FϋM = {ηe8λX\lRUnXKλ(; >,)](*) < tKλ(x, η)}.

By Lemma 2.3, F^, is a closed set. Let Px = {η e δΛX | KA(x, *?) > 0} an^ set

^ι/,x,ί = ^c/,jc,r Γ\UΓ\PX. Then X^f is an Fσ-set. We show that if F is a closed
set contained in AUM and if we Jf Λ, then #Fw = 0. In fact, by Proposition 3.1,

there is a nonnegative measure μ with Supp μ c F such that #Fw

= $Kλ( 9η)dμ(η). Since [K^O, >?)] (x) < tKλ(x9 η), Lemma 3.2 and Propo-

sition 3.2 imply that (RFu)(x) < t(RFu)(x\ and hence (RFu)(x) = Q, or

JFXλ(x, ?y)dμ(^) = 0. Since F cz PX9 it follows that μ = 0, i.e., RFu = 0.

Choose a countable base {l/π} of open sets in X, a countable dense set {xk}

in X and a sequence {ίm} of positive numbers such that f m T l Then, using

Propositions 4.2 and 4.3, we see that d^X \ {C0} = UM,fc,m^ι/n,χk,tm This,
together with the above observation, implies the required results.

REMARK 4.1. If we define a mapping φ: dλX -> JfA>1 by

then φ is injective and continuous. Let Δλ

e = (we Jf λ 4 | M is minimal and J w d / l

= 1}. By Proposition 4.1, φ(dλ

1X) = Δλ

e. Thus, we can see that d^X is a Gδ-

set by a general theory (cf. [3]).

LEMMA 4.4. If ηed*X and F is a closed set in dλX, then

Kλ( 9 η ) ifηeF

PROOF. If ι/6 F, then K fKA( , ^7) = XA( , ^) by Proposition 4.2. If ηφF,

then Λ { ζ } X A ( , η) = 0 for any CeF by Lemma 4.1 and the uniqueness in

Proposition 4.1. Hence RFKλ(-9 η) = 0 by Lemma 4.2.

LEMMA 4.5. Let ηεd\X and let {Xn} be an exhaustion of X. Then ε*n -> εη

(the unit mass at η) vaguely.

PROOF. Since ε*n(Xλ) < 1, {εf1} is vaguely relatively compact. Let μ be

any limit measure. Then Supp μ cz dλX. Letting n -> oo in the equality

ίdxnKλ(; y)dtfn(y) = RXnKλ(., η\ we have



Martin boundary of a harmonic space 173

1J d'

Since Kλ(-, η) is minimal and μ(dλX) < 1, it follows that μ = εη.

§5. Canonical representations

A signed measure v on dλX is called a canonical measure (with respect to λ)

if |v|(3SX) = 0.

LEMMA 5.1. If μ is a canonical nonnegative measure on dλX and

u= ίxλ(-,!,) dμ(η)9

then, for any closed set F in dλX

RFu=\ Kλ( ,η)dμ(η) and μ(F)=\RFudλ.

PROOF. By Proposition 3.2 and Lemma 4.4, we have the first

equality. Integrating both sides by λ, we obtain the second.

COROLLARY 5.1 (Uniqueness of the canonical representation). If

for canonical nonnegative measures μ1 and μ2, then μ1 = μ2.

THEOREM 5.1. I f u e J J f λ , then there exists a unique canonical nonnegative

measure μu on dλX such that

f
u= Kλ( , η)dμu(η)-

PROOF. The uniqueness is given in the above corollary.

Let dQX=(J*=1An with closed sets An such that An^An + l. By

Proposition 4.4, RAnu = 0. Hence, given an exhaustion {Xn} of X, we can find

vnG^+ such that 0 < υn < u, vn = u on Vn[\X for some Vn£%(An) and υn < 2~n

on Xn (cf. the proof of [1 Proposition 5.3.2]). Set v = Σ?=ιVn. Then ve^ +

and v is locally bounded on X. For m > 0, set Um = Uί°=ι(^ιΠ ••• Π Vn+m) and
Fm = dλX \ Um. Then, Fm is a closed set contained in d±X and Fm c Fm + 1 for

each m. By Proposition 3.1, there is a nonegative measure μm such that

Supp μm c Fm (so that μm is canonical), μm(F^ = ^RFmudλ and .RFmw

= JX λ ( , ^y) dμm(η) for each m. By Corollary 3.1 and Lemma 5.1, we have
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G \ f
Kλ( ,η)dμm+ί(η) \ = Kλ( , η) dμm+l(η).

/ J f m

By Corollary 5.1, it follows that μm + ι\Frn = /V Since μm(Fm) < \uάλ < oo,
there is a nonnegative measure μ on dλX such that μ\Frn = μm for all m and

μ(dλX\ Um=ι^m) = O Then, μ is a canonical measure and

Γ Γ
(5.1) Kλ(.,η)dμ(η)=lim^ Kλ( , η)dμm(η) = Urn RFm u < u.

For fixed m, take w€£f+ such that 0 < w < u on X, w = u on Wn X for some
We^β(Fm). Since v>mu on t/ w n^ and L/ m U W^=) 5λJί, we see that v/m
+ w > u on X. Hence, i /m + RFmu > u for any m. This, together with (5.1),
implies that u = J Kλ ( ,

REMARK 5.1. In view of Remark 4.1, the above theorem can also be
obtained through a general theory (cf. [3; Theorem 2.5]).

PROPOSITION 5.1. If μ is a canonical nonnegative measure on dλX and {Xn}
is an exhaustion of X, then μXn -> μ vaguely, where μu denotes the measure defined
by (2.2).

PROOF. Since ε*n(Xλ) < 1, the functions η\-^^dXnfdSηn are uniformly
bounded on dλX for each fG^(Xλ). Hence, we obtain the required result by
Lemma 4.5 and Lebesgue's convergence theorem,

COROLLARY 5.2. Let ue3?λ and let [Xn] be an exhaustion of X. If RXnu
= §8XήKλ( , y)dμn(y\ then {μn} vaguely converges to μu (the canonical measure
representing u).

PROOF. By Lemma 2.5 and the uniqueness in Lemma 1.1, μn = μ*n.

§6. Minimal fine limits

Given ηεd^X, a set A c X is said to be J^λ-minimal thin or, simply J^λ-
thin at η, if there is an open set U c X such that AdJ and

LEMMA 6.1. For an open set U in X, it is Jtf λ-thίn at ηed{X if and only if

PROOF. The "if" part is obvious, since Kλ( , η)ejf(X)9 ^0. To prove
the "only if" part, let v = RvKλ(-9 η). Since ve& + 9 v = h + p with h e J f ( X )
and pe0>. Since RvKλ( , η) / Kλ(-, η) and Kλ( , η) is minimal, h = cKλ(-9 η)
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with 0 < c < 1. Since Rvυ = v, we have

cKλ( , η) + p = Rv(cKλ(-, η) + p) = cυ + Rvp = c2Kλ( , η) + cp + Rvp,

which implies that c = c2. Hence, c = 0, i.e., v = pe^.

LEMMA 6.2. For ηed^X, %* = {Fez X \ X \ V is tf λ-thin at η] is a filter.

PROOF. It is enough to verify that if Uί and U2 are open sets which are
JfA-thin at η, then so is [/ 1 uC/ 2 ;and this is easily seen by the inequality

Ru^ϋ2Kλ('9 n) ^ KiΛί , *y) + &u2

κλ('> n) and the above lemma.

The limit (resp. upper limit, lower limit) of a function/on X with respect to
the filter 93£ will be denoted by

F-lim/(x) (resp. F-limsup/(x), F-liminf/(x)).
χ-*η χ-*η χ-+η

LEMMA 6.3. Let ηεd*X. Then, for any neighborhood V of η in Xλ, X\V

is Jjfλ-thίn at η.

PROOF. Choose We%({η}) such that Wλ c V and let U = X\W. By

Lemma 2.2, there is a nonnegative measure μ on Xλ such that Supp μ <^ dλU
^Xλ\W,

RυKλ(.,η)=[ Kλ(.,ζ)dμ(ζ) and μ(Xλ) = \RυKλ( , η)dλ.
J\λ J

Put u = \dλχ Kλ ( , ς) dμ(ζ) and p = $xKλ (-, ζ) dμ(ζ). Then, u e Jf Λ and
0 < u < Kλ (-, η), so that u = cKλ ( , η) with 0 < c < 1 by the minimality of

Kλ(-, η). On the other hand,

μ(dλX) = μ(Xλ) - μ(X) = RvKλ(',η)dλ- \pdλ = \udλ = c.
J J J

Hence, if c ^ 0, then the minimality of Kλ( , η ) implies that μ = cεη, which
contradicts the choice of μ. Hence, c = 0, and so RvKλ(-, η) = pe0>, i.e., U is

Jfλ-thin at η by Lemma 6.1. Hence X\ V is JfA-thin at η.

COROLLARY 6.1. For any extended real valued function f on X and for any

liminf f(x) < F-liminf/(x).

Let 1 = h1 + G(σ(l)) with h1e^f(X). Then /^e^, so that there is a

unique canonical nonnegative measure ω{ on dλX such that
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Kλ( ,η}dω\(n).

REMARK 6.1. If h^ = 0, then ωί = 0 so that all the results in the rest of

this section become trivial.

LEMMA 6.4. For an ω^-measurable set E in d*X, let

Then, an open set U in X is tf \-thin at ω\-a.e. ηeE if and only if Rυ

PROOF. By Lemma 2.5,

RvuE = RvKλ(.9η)dωϊ(η).
J E

Let A = {ηeE\ U is not Jfλ-thin at η}. Then, A is ωi-measurable and

RU^E = ί Kλ( , η)dω\(η) + \ RvKλ( , η)dω\(η).
J AΓ\E <JE\A

The first integral in the above belongs to 2tf λ and, by Lemma 6.1, the second
integral belongs to .̂ Hence, RvuE€0> if and if ω^AnE) = 0.

LEMMA 6.5. For any pe0> and ε > 0, the set

is J^λ-thin at ω{-a.e.

PROOF. Vp >ε is an open set in X and p > εRVp Eh1. Hence Rv Ji^ e^, so
that the lemma follows from the previous one.

PROPOSITION 6.1. If pe0>, then ¥-\imx^ηp(x) = 0 for ω\-a.e. ηed^X.

PROOF. By the above lemma, for any ε > 0, F-limsup^^x) < ε for a.e.
ηed*X, since h^ < 1.

COROLLARY 6.2. F-lim^/z^x) = 1 for ω\-a.e. ηed*X.

PROOF. It is enough to note that 1 - h1e^>.

PROPOSITION 6.2 (cf. [3; Proposition 2.20] and [8; §2, Satz 3]). For a
bounded ω\-measurable function φ on dλX, let

κλ('> l)φ(η)dω{(η).
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Then

¥-limhφ(x) = φ(η) for ω\-a.e. ηed\X.
x^η

PROOF. It is enough to consider the case φ = χ£, the characteristic
function of an ω{ -measurable set E. Let u = hχε and v = h1 — u = hχει, where
E' = ΰ\X \ E. For n > 0, Vn = {xe X | nu(x) > v(x)} is an open set in X and
vn ΞΞ min { nw, i;} e <9V Let vn = un + pn with un e Jlfλ and pn e ̂ . Let μπ be the
canonical measure representing un. Then, for any closed set F contained in £',
Lemma 5.1 implies

μn(F) = RFundλ < RFvndλ < n RFudλ = = 0.

Hence μn(E') = 0. Similarly, using the inequality υn < v, we have μn(E)
= 0. Thus μn = 0, so that vne0>. Since RVnv < vn, it follows that RVnve0>,
and hence Vn is Jfλ-thin at coj-a.e. ί / e d ι X \ E by Lemma 6.4. Since
u <v/n < l/n on X \ 7n, letting n -> oo, we see that

F-limw(x) = 0 for ω^-a.e. ηeE'.
χ->η

Similar arguments show that F-lim^^φc) = 0 for ω^-a.Q. ηeE. Since u = hl

— v, Corollary 6.2 implies that F-lim^,, tφc) = 1 for coi-a.e. ηeE. Hence the
required assertion holds for φ = χE.

COROLLARY 6.3. I f u e ^ f ( X ) is bounded, then

u= Kλ( ,
Jd*x

with φu(η) = F-limx_^^M(x), which exists for ω\-a.e. ηed{X.

PROOF. We may assume that u > 0. If μu is the canonical measure
representing u and if u < M, then μu(F) < Mω\(F) for any closed set F in dλX
by Lemma 5.1. Hence, μu is absolutely continuous with respect to ω{ and μu

= φuωί for some ω{ -measurable function φu with 0 < φu < M. Thus, u = hφu

and ¥-limx-+ηu(x) = φu(η) for ω^-a.Q. ηed{X.

§7. Function classes 2Fλ and 2?

Let Λ* be the set of all standard J f *-reference measures, namely the set of
all nonnegative measures λ on X such that λ(X) < oo and Gλ is positive
bounded continuous on X. Let ̂ co = {pe^c | Supp σ(p) is compact}.
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LEMMA 7.1. Let v be a nonnegatίve measure on X such that

\pdv<ao for anyί<
Then there exists λeΛ* such that J Gλ dv < oo .

PROOF. Let {Un}neN be a countable base of the open sets in X and let J

= {(w, n)eN x N\ Um is compact and Um c= £/„}. For each (m, n)e J, choose

Φ(m,n)e^0W such that 0 < φ(IIIfllJ < 1 on JT, φ(m?n) = 1 on Um and Supp φ( l f l f l l )

c [/„. Let p(mfΠ) = /ty(m,B). Then p(m,π)e^Cf0, 0 < p(IFIflI) < 1 on X and p(m>II)

= 1 on l/m. Put /VM) = σ(p(m,M)). By assumption, a(m,n) = fp ( m > I I)dv < oo.

Choose ε(ιw>ll) > 0, (m, n)e J, such that

Σ(m,n)ej
ε(m,π)max{α(m,π), μ(m,π)(^), 1} < oo

and set λ = X(w,π)ejβ(m5M)μ(w?π). Then, we see easily that this λ has the required

properties.

The mutual gradient measure <5[/fff] and the gradient measure δf for /,

ge&(X) are defined by (see [6])

δ[f,βi = i ί/^to) + gfσ(/) - σ(fg) - fgσ(l)} and 5r - δ[fj].

We know that δf > 0 ([6; Theorem 3.1]). If we define δfrtβ] for/,
similarly in terms of σ*, then <5[/>ff] = δfftβ] whenever /,

([7; Theorem 2.1]). Therefore, we can define δUtβ} for fe£(X)Γ\&*(X) and
+ 0t*(X) in such a way that the mapping g^-^δ[fιg^ is linear on

Let ^F - {pe^c I σ(p)(X) < 00} and £F = 0>F- 0>F. We consider the

function classes

&λ = {q/Gλ \qε£F} for λeΛ *, and J^ = \Jλe^λ.

LEMMA 7.2. Suppose fε $(X) and ge£F satisfy the following conditions (i),
(ii) and (iii):

( i ) f is bounded',

(ii) J j r | f l f |d |σ(/)-/σ( l ) |<oo;

(iii) ί/ίX) < oo flAirf ίff(A') < oo .

ThenfgeΆF.

PROOF. Let v = σ(fg). Since v = fσ(g) + ̂ σ(/) - /^σ(l) - 2δUtβ}9
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\\f\d\σ(g}\ + \ \ g \ d \ σ ( f ) - f σ ( l ) \
J J

Since /is bounded and \σ(g)\(X) < oo, J|/|d|σ(0)| < oo. By conditions (ii) and
(iii), the last two integrals in the above are finite. Hence, \v\(X) < oo. Thus,
Gve £F and u = fg - Gve3f(X\ If |/| < M and g = p^ - p2 with pί9 p2e0>F,
then \u\ < M(pl + p2) + G\v\e0>c. It follows that u = 0, and thus fg

PROPOSITION 7.1. Iffe3$(X) satisfies the following three conditions (i), (ii)
and (iii), then fε^:

( i ) f is bounded',
(i i) δf(X)<oo;

(iii) \pd\σ(f) -fσ(l)\ < oo for any

PROOF. In view of condition (iii), by Lemma 7.1, we find λeΛ* such that
fGλd|σ(/)-/<7(l) |<oo. Note that δGλ(X) < J Gλ dλ < oo by [7; Theorem
3.1]. Hence, by Lemma Ί.2,fGλe£F9 i.e.,

REMARK 7.1. Condition (iii) in Proposition 7.1 is valid if one of the
following is satisfied:

(a) G*|σ(/)-/σ(l)| is locally bounded;
(b) |σ(/)-/σ(l)|(*)<oo;
(c) \σ(f)\(X) < oo and J/2 dσ(\) < oo;
(d) \G\σ(f)\d\σ(f)\ < oo and j/2dσ(l) < oo.

PROOF. If (a) is satisfied, then $pd\σ(f) -/σ(l)| = fG*|σ(/) -/σ(l)|
dσ(p) < oo for any p e ̂ Ci0 Since any p e gPc# is bounded, (b) implies (iii) of
Proposition 7.1. Also, by [7; Theorem 3.1], Jp 2dσ(l) < \pdσ(p) < oo for any
pe^C)0. Hence, J/2dσ(l) < oo implies §p\f\dσ(l) < oo for any pe^c^ by
Schwarz's inequality, and, in view of [7; Proposition 2.2], jG|σ(/)|d|σ(/)| < oo
implies \pd\σ(f)\ < oo for any pe^c>0. Thus, each of (c) and (d) implies (iii) of
Proposition 7.1.

Let

δu(X) +

rι - pdσ(p) < oo >,

= &!- &I9 and

+ &ι\f bounded}.
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COROLLARY 7.1. Any fe&EB satisfies conditions (i), (ii) and (iii) of

Proposition 7.1 so that $EB c J^.

PROOF. Let/e^£β. By definition, (i) of Proposition 7.1 is satisfied. By

[7; Theorem 3.1], we see that δf(X) + J/2dσ(l) < oo. Therefore, (ii) and (iii) of

Proposition 7.1 are valid in view of (d) in the above Remark.

§8. Green's formulae

Given λeΛ*, we denote by X*(x, y) the adjoint λ-Martin kernel, namely,

The adjoint /UMartin compactification X*λ is defined by {K*( , y)}yeX and, for

Now, let 1 = Λ? + G*(σ*(l)) wi*h *Te-^*W- For

/ i feJ f f . By Theorem 5.1 (applied to Jf7*), there is a unique canonical

nonnegative measure ωfA on d*μX such that

K*(ξ, )dω*λ(ξ).

LEMMA 8.1. Let λeΛ*. I f f = p / G λ with pe0>F, then

(8-1) f(ξ)= ί Kί(ξ,y)dσ(/Gλ)(y)
Jx

belongs to Ll(ω^λ)\ and hence (8.1) is defined ω^λ-a.e. on d*λX and fe L1 (ω^λ) for
any

PROOF. If / = p/Gλ with p e ̂ F, then

ί /dωfλ = ί j ί Kϊ(ξ, y}dω*λ(ξ) \dσ(p}(y)
Jd*λx Jx (.Jd**x )

\
Jx

= h*1dσ(p)<σ(p)(X)<ao.
x

We define

H*f=f K*λ(ξ, )f(ξ)dωΐ
Jd**X

for fe&λ. Then H*fe3f* - Jt>*. Obviously, H*\ = h\.

PROPOSITION 8.1. Let {Xn} be an exhaustion of X and let τ* be the
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nonnegative measure on dXn such that Rχnh^ = G*τ* (cf. Lemma 1.1). Then,
for any /e J^,

H*f(y) = lim^ G*(fτ*)(y) for all ycX.

PROOF. We may assume ihatf=p/Gλ with pe^V and λεΛ*. Let μ
= σ(p) = σ(fGλ). Then for any ye X,

H*f(y)= ί Kϊ(ξ,
Jd*λχ

-ί.
-L

, y) Kl(ξ, z) dμ(z) dω

K*λ(ξ,y)K*λ(ξ,z)dωΐλ(ξ)dμ(z).

By Corollary 5.2, {(Gλ)τ*} vaguely converges to ωfA. Since

(̂ , z) is continuous near d*λX for fixed j, zeX, we have

Ja*
, y ) K Ϊ ( ξ , z)

= lim ί Kΐ(x, y)Kf(x, z) Gλ(x)dτ*n(x)
* dX»

KΪ(x,y)G(x,z)dτ (x).
ι

For any relatively compact neighborhood V of y, there is c > 0 such that

«, y) < c for xεX \ V (cf. Lemma 2.1). Then, for Xn ^ V

0 < ί K*(x, y)G(x, z) dτϊ(x) < c ί G(x, z)dτπ*(x) = c(ΛJnΛf)(z) < c
J δXn J δXn

for all zεX. Since μ(X) < oo, Lebesgue's convergence theorem implies

H * f ( y ) = lim ί { ί KΛ*(x, y)G(x, z) dτ*(x)

= lim ί KJ(x, y) Gμ(x) dτ*(x) = lim ί G(x, y)f(x) dτ*(x).
11-^Ja*,, ^°°JδA:n

COROLLARY 8.1. For fe&, H*f is independent of the choice of

λεΛ*;H*f> 0 iff> 0; \H*f\ < H / L / z f .

PROPOSITION 8.2. Suppose fe@(X) and gε£F satisfy conditions (i), (ii) and
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(iii) in Lemma 1.2 and f also satisfies condition (iii) in Proposition 7.1. Then

(8.2) σ(fg)(X) = f H*fdσ(g) + f fg dσ*(l).

PROOF. By Proposition 7.1 and Lemma 7.2, we see that /eJ^ and

fgeΆF. Thus, \σ(fg)\(X)«x>. Let g = Pl - p2 with Pje0>F (j = 1, 2); let
I/I < M on X. Then, using Corollary 8.1, we have

|/0| *7*(1) < M f (P! + p2)dσ*(l) - M ί G*(σ*(l))^σ(Pl + p2)
x Jx Jx

Thus, every term in (8.2) is well-defined and finite valued. Since R'xji*

+ G*(σ*(l))ίl, we have

σ(fg)(X) = lim f {R*nhf + G*(σ*(l))} dσ(fg)
"-^JΛ

= lim i f G*τtdσ(fg)+ f G*(σ*(\))dσ(fg)
"-*00 (Jx Jx

= lim i f /0dτn*+ f fgdσ*(l)\
n"x (Jdx Jx )

By Proposition 8.1, G*(/τ*)->#*/• Since (G*(/τ*)} is uniformly bounded
and |σ(gr)|(X) < oo, Lebesgue's convergence theorem implies

H fdσ(g).
X

lim f G*(/τn*)dσ(^)= f
"-*°°JΛ: J:

THEOREM 8.1. Iffe@EB and geΆIF = £,n£F, then

2δlf,g](X)+ f fgdσ(ί)+ f fgdσ*(l)
Jx Jx

= ί (f-H*f)dσ(g)+ ί gdσ(J).
Jx Jx

PROOF. By Corollary 7.1, / satisfies (i) and the first condition in (iii) of
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Lemma 7.2 and (iii) of Proposition 7.1. Since ge^/, the second condition in

(iii) of Lemma 7.2 is also satisfied. If /= u + q with UE JJfE and geJ/, then

Jx 9 J;
G(\σ(g)\)d\σ(q)\

ί X

L oo

by [7 Proposition 2.2], and

f \fg\dσ(\)<\\[ u2dσ(\} + \ q2dσ(l)] + f g2dσ(l)<ao.
Jx z Ux Jx J Jx

Thus (ii) of Lemma 7.2 is satisfied. Hence, (8.2) in the previous proposition and

the definition of δ[ft9] yield the required formula.

LEMMA 8.2. Let λtΛ* andf=p/Gλ with pe0>F. Then

f(ξ) = liminf f(x) for any ξ e d f λ X .

PROOF. Let μ = σ(p). Then,/(x) = JKJ(x, y)dμ(y). Hence, by the lower

semicontinuity of K f ( , y) on Xλ, we have f(ξ) < liminfx^^/(x).

To prove the converse inequality, let α < liminfx^/(x). Then there exists

a neighborhood Fof ξ in X*λ such that /(x) > α on VΓ\X. Let {Xn} be an

exhaustion of X and let vn be the nonnegative measure such that Supp vn a dXn

and R$nK$(ξ, •) = J K*(x, •) dvn(x). Note that by Lemma 4.5 applied to ^*,

vn -> εξ vaguely as n -> oo. Hence, vn(X n V) -> 1 (n -> oo). Thus, we have

f(ξ) = ί Kϊ(ί,y)dμ(y)= lim ί ίRϊnKί(ξ9

Jx ^^Jx

= lim ί j ί XJ(x, y)dvjdμ(y) = lim ί
w->oo !v ( I ,v ) n->oo l

«/ X v. J 8Xn J *

> αlimsup vn(X n F) = α.
n-> oo

Hence, /(£) > liminfx^ξ/(x).

Given /le^i* and ξedfλX9 F*-lim, F*-limsup and F*-liminf are

defined with respect to the filter 9S|F = {V^ X \ X \ V is Jf J-thin at ξ}.

PROPOSITION 8.3. Lei Ae^i* and fε^λ. Then

for ωfA-ί/.e.
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PROOF. Since f(ξ) is finite for ω?λ-a.e. ξ e d f λ X 9 it is enough to show that
the equality F*-limx^ξf(x)=f(ξ) holds for all ξed*λX in casef=p/Gλ with
pe0*F. By Corollary 6.1 (applied to Jt?*),

liminf/(x) < F*-liminf/(x) for all ξed*λX.
x^ξ x^ξ

Hence, together with Lemma 8.2, we have

/({) < F*-liminf f(x) for all ξ e d*λX.
x~ξ

To prove F*-limsupx^/(x) </(£), we may assume thatf(ξ) < oo. Let α >f(ξ)
and set 11^ = {xeX \f(x) > α}. Then UΛ is an open set in X. Using Lemma
1.3, we have

(8.3) lR

(Gλ)(x)

Let {Jίπ} be an exhaustion of X and consider the measures μXίfl = δ^Xn defined
in Lemma 1.2. Then, since Supp μx „ c Ϊ7α and G/l < p/α on UΛ9 we have

ί [ΛϋβG( , y)](x)d%)= lim ί [ΛϋβnχnG(.,y)](x)d%)
Jx M^°°JΛ:

= Km ί jί Gίz^Jdμ^ίzjjdλίy)
"-^JxUt/. J

= lim Gλ dμ,^ < - lim p dμx,n
π - o o j j j αn-oo J^

= - lim [RUatnXnp](x) < -
OC π-^oo OC

Hence, by (8.3),

f l

Jx α

Thus, using Lemma 2.3 (applied to Jf *) and Lemma 8.2, we have

f RJ KJ(£,-)d/l<-liminf/(x) = i/(£)<! = f Kf(ξ, )dλ,
Jx ' α «-« α Jx

which implies that R^XJ(ξ, •) Φ Kf(ξ, •), i.e., U, is JfJ-thin at ξ. Hence, F*-
limsupjc_ί/(x) < α, and thus F*-limsup,t^ί/(x) <f(ξ). This completes the
proof.
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LEMMA 8.3. If fe&[\(tf*(X) + Jg), where ££ = &%- 0>£, and if f is
bounded, thenf=H*f+ G*(σ*(/)).

PROOF. Let fe&λ, λεΛ*. Since feJff*(X) + J2£, /= w* + G*(σ*(/))
with M*eJf*(Jί). Then w* is bounded on X. Hence, by Corollary 6.3 applied
to jf *,

= ί
Jd t x

K*λ(ξ, ) φ ( ξ ) d ω * λ ( ξ )

with φ(ξ) = ¥*-limy^ξu*(y), which exists ωfΛ-a.e. ξεd^X. By Proposition
6.1 (applied to Jf *),

FMirn G*(σ*(f))(y) = 0 for ωfA-a.e.

Hence

i = (/>(£) for ω?Λ-a.e.

Thus, by Proposition 8.3, f(ξ) = φ(ξ) ωfλ-a.e. on 5*AAr, and hence H*f= u*.

We write σ(/) - (σ(f) + σ*(/)}/2 for

THEOREM 8.2. Iffe3tEBn(Jl?*(X) + J?

(8.4) <W*) + /0Λ»(1) = 0<to(/).
x

PROOF. By Corollary 7.1, /eJ^. Thus, by Lemma 8.3, f-H*f
= G*(σ*(/)). Therefore,

= ί G*(σ*(/))dσto)= ί
Jx J

(/-HWσfo)
x Jx

Hence, (8.4) follows from Theorem 8.1.

COROLLARY 8.2. If f€&tEBϊ\St%B and ge£IF + &fF9 then (8.4) holds.
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