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0. Introduction. Let y = y(t) be a nontrivial solution of the differential

equation

(0.1) y" + P(t)y' + q(t)y = 0

on the interval / and tί9 t2el be consecutive zeros of y(i) such that t1 < t2

and |p(01 ^ M l 9 \q(t)\ < M2 for tί < t < t2. Then the well-known inequality
of de la Vallee Poussin [16] states that for h = t2 — t1 the relation

-M2h
2 + 2Mίh> 1

holds. There were several attempts to sharpen this inequality (see for
references in [10] pp. 375-376) and Z. Opial [12] has established the optimal

inequality of this form

(0.2) M2h
2 + 2Mih>π2.

Recently J. H. E. Cohn [2] has found another inequality

ds
(0.3)

M2s
2 +

We shall see that this inequality is sharper than (0.2). The Cohn's proof is

a skillful application of some differential inequlity which has the flavour of a
particular Sturmian comparison theorem. Just this is the direction in which

we shall proceed in this paper to obtain (0.3) and similar results.
It is well-known that Sturm [15] worked out his theorems for differential

equations of the self-adjoint form

(0.4) (r(t)yj + q(t)y = 0

(see [5] or [6]). Kamke [7] gave a new proof of Sturmian theorems by

using Prύfer transformation and his method made possible the extension of

the Sturmian theorems to half-linear second order differential equations of the
form

(0.5)
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(see [1], [3] and the references therein) where f ( y , z) is some homogeneous
function of first degree.

In order to be precise we mention that under Sturmian theorems we
mean two groups of theorems in general. To the first group belongs only

one theorem on two linearly independent solutions of one differential equation

stating the interlacing property of the zeros of the solutions. To the second

group belong three theorems comparing special solutions of two differential
equations

(ri(t)yl)' + 4i(t)yi = 0, rt(t) > 0, i = 1, 2.

The first Sturmian comparison theorem compares the zeros of the solutions

y{(t), (i = 1, 2). The second one compares the functions r^/y^ The third

one—which is properly due to Watson ([17] p. 518, see also [4], [9])—
compares the solutions y1(t), y2(t) under the condition r i ( t ) = r 2 ( t ) .

The main difference between (0.1) and (0.4) is the fact that in the

"common" case (0.4) we have one term besides the second order expression

(ryj while in (0.1) there are two terms. By using the notation f(t) =

Qxp(^top(s)ds), q(i) = q(t)r(f) we can transform (0.1) into (0.4) with coefficients
r(ί), q(t), resp. and imposing the necessary restrictions on q, r we can get the
corresponding version of the comparison theorems (see [11]). The two terms
in (0.1) cause the difficulty which prevents a complete extension of Sturmian
comparison theorems to (0.1). However a partial extension is still possible.
In [8] H. G. Kaper and M.K. Kwong succeeded in proving the second and

the third comparison theorems under the extra restriction yi(t)y[(t) > 0 on /.
Keeping in mind the Cohn's proof and the results of H. G. Kaper and

M. K. Kwong we find that a proper setting of the problem should be a theory

of half-linear second order differential equations of the form

(0.6) y" + p(ί)|/|sgn y + q(t)y = 0.

These differential equations are no more linear but they preserve many
properties of linear equations. In Section 1 we extend the Sturmian theorems

to (0.6). In Section 2 we shall derive the inequalities

(0.7)

(0.8) M2 max y2(t) = M2y
2(t() > /2(ί1)^-Ml(ί'1~ίl)

ί l < ί < ί 2

for the solution y(t) mentioned at the beginning by application of the third
comparison theorem. The inequalities above are sharp and the sharpness of

(0.7) lies between (0.2) and (0.3).
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1. Sturmian theorems. Let α, b be real constants, a > 0 such that

(1.1) aτ2 + bτ + 1 > 0 for all τ > 0

and denote by A = A (α, b) the integral
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(1.2) A(α, b) = 2 ί°° -̂  - -
Jo aτ2 + bτ+l

- \ π — 2 arctan

— log-

for |

for b = 2x/α

for b > 2ja.

Let S = S(φ) be the solution of the differential equation

(1.3) S" + 6|S'|sgn S + αS-0 f o r - o o < φ < o o

with the initial conditions

(1.4) S(0) = 0, S'(0) = 1.

By (1.3) the function T(φ) = S(φ)/S'(φ) is a solution of

(1.5) r = aT2

hence

dτ
(1.6) ΓJo aτ b\τ\

which uniquely defines the funcin T(φ) on the interval (— A/2, A/2) with the
properties that T(φ) is strictly increasing there and

T(- φ) = - T(φ) and lim T(φ) = ± oo.
>±(π/2-0)

We extend this domain of definition of T(φ) to R \ (JΓ= -1

1
by

the relation T(φ + A)=T(φ). Hence \imφ^±ίί/2S
r(φ) = 0 and by (1.3) S(φ)

has a local maximum at φ = A/2 and a local minimum at φ = — A/2. Clearly

S(- φ) = - S(φ) on [- A/2, A/2]. With the aid of T(φ) the functions S(φ)

has the representation
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(1.7) S(φ) = — - - e~2» for -τt/2<φ<π/2.

Formula (1.7) can be proved directly by using the relations T = S/S' and (1.4),

(1.5).
For later purpose we need the particular value S(A/2) from (1.7):

(,.8,

Finally we extend the domain of definition of S(φ) from [— π/2, π/2] to
(— oo, oo) by the relation

S(φ + π) = - S(φ).

Hence the function S(φ) is periodic with the period 2π and S(φ) = 0 only for

φ = kπ, fc = 0, ±1, ±2,..., where S'(fcΛ) = (- l)fc and S'(<p) = 0 only at

φ = ( f c + - ) π with the particular values S\ ( f c + - )π ) = (- l)fcM(α, b). We
2,

should observe there that S((p) and S"(φ) are not vanishing anywhere at the
same time.

We then define f ( φ ) by

(1.9) f(φ) = ̂ M ϊorφ^kπ k = 0, ± 1, ± 2,...

Clearly, the functin T(φ) is periodic with period π, continuous and strictly
decreasing on (0, π). Let us introduce the polar coordinates <p, ρ(— oo < φ < oo,
ρ > 0) on the plane (x l 9 x2) as follows

(i.io)
X2 = ρS(φ)

The particular value ρ = 0 belongs to the origin (0, 0) of the plane (x l 9 x2)
 ίn

this case the value of φ may be taken arbitrary. For other points of the
plane (x1? x2) ρ > 0 and there is a unique value of φ0 on [0, 2π) such that
(1.10) holds with φ = φ0. In case x2 = 0 we have φ0 = 0 or π according to
x1 > 0 or Xi < 0 and ρ = \ x ί \ . Similarly, in case xί = 0 we obtain φ0 = π/2
or 3π/2 according to x2 > 0 or x2 < 0 and ρ = \x2\/M(a, b). Finally when
x1x2 Φ 0 we have T(φ0) = x2/*ι, and so there are two values φ and φ + π
such that φe(0, π), T(φ) = T(φ H- π) = x 2 /Xι- Since S(φ)S(φ + π) < 0 we
choose the proper value of φ0 from φ, φ + π for which x25(φ0) > 0. To
accomplish the procedure we take ρ = x2/S(φ0).

If we drop the restriction on φ we have infinitely many pairs of polar
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coordinates to every given point (x1? x2) ̂  (0, 0), namely (ρ, φ0 + 2/cπ) with

fc = 0, ± 1, ±2,....
We observe that the polar transformation defined by (1.10) is smooth,

locally invertible for ρ > 0, φ e R because the determinant of the Jacobian

δ(ρ, φ)/d(xί,x2) is

dρ dρ

dxv dx2

dφ dφ

dx^ dx2

1

ρA(φ)

where

(1.11) Δ(φ] = aS2(φ) + b\S(φ)S'(φ)\

and A(φ) is periodic with the period π and by (1.11) 0<min0<< /,<£Zf(φ)< Δ(φ)<

max0<^<^(φ)< oo.

Now we can pass over to the generalization of the Prϋfer transformation.

Let us consider the half-linear differential equation

(1.12) (r(t)yj + p(ί)|/|sgny + q(t)y = 0

where the functions p(t), q(t), r(t) are piece-wise continuous on / and

r(t) > 0. A function y = y(t) is a solution of (1.12) if y is continuous, piece-wise

continuously differentiable, r(t)y'(i) is continuous, piece-wise differentiate

satisfying (1.12) piece- wise (see [13], pp. 26).

Let us introduce the continuous functions ρ(ί), φ(t) as polar coordinates by

(113) y = Q(t)S(φ(t))

r(t)y' = Q(t)S'(φ(t)).

Then ρ = ρ(t), φ = φ(t) satisfy the first order differential system

(1.14) ^ = -J1(<p) + ^2(φ)
r r

(1.15)

where

Δ(φ)
S(φ)S'(φ),
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and A(φ) is given in (1.11). To a fixed solution y(ί) the radial part ρ(ί) is

fixed while φ(i) can be also φ(t) 4- 2/cπ for any k = 0, ± 1, ± 2,.... This

means that for φ(t) we have to give further information about how to choose

the proper value of k. We mention here that for the solution — y (t) we have

the same radial part ρ(ί) while for the second coordinate we have φ(t) ± π.

The functions Δ^φ) (i = 1, 2, 3) in (1.16) are Lipschitzian. Hence any

initial value problem to (1.14) with initial condition φ(t°) = φ° has a unique

solution φ(t). Inserting this already known function φ(t) into the differential

equation (1.15) of ρ we have

= ρ(ί°)exp t - - r— S(φ)S'(φ)

i.e. the function ρ(ί) is also unique; it remains finite and positive for all

ίe/. A singularity will occur if either r(ί)->0, or \q(t)\ -> oo or \p(t)\ -» oo at

some endpoint of /. Moreover by (1.13) we find that y(t) and y'(t) are not

vanishing simultaneously. This uniqueness of ρ(ί), φ(t) implies also the

uniqueness of the solutions of (1.12) with initial conditions y(t°) = y°,

r(ίV(ί°)=r°, ly ° l + I^Ί>0.
Suppose that the solution y(i) has consecutive zeros f 0, tί9 ί2> We

may assume y(t) > 0 on (ί0, ίj because the solutions y(t) and — y(t) have the

same zeros. By (1.13) φ(tt) = iπ, ί = 0, 1, 2,.... By (1.14), (1.16) φ'(ί£) =

l/r(i f) > 0 hence the function φ(t) takes on the values 0, π, 2π,... only once

and we have for the zeros of y(t) the relations

(1.17) φ(tt) = in, in < φ(t) < (i + l)π for ίf < ί < ίί + 1, ί = 0, 1, 2,....

As a consequence of this relation the zeros of a solution y(t) are not

accumulating at an inner point of /.

LEMMA 1.1. Let J c / be a closed interval. Then the number of the zeros of

any solution of (1.12) on J is bounded.

PROOF. Let y = y(t) be a solution with consecutive zeros at ί0, tl9...9tN on

J. Let φ(t) be the corresponding polar function satisfying (1.17). According

to the sign of b we have three possibilities.

If b > 0 then by (1.14), (1.17) we have

Γti + 1 Γti + 1

π = φ'dt <
J ί, J ί,

1 p q
max <;-,—,-

r or a

hence
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Nπ < max < - , — , - > .
J j [ r br a)

If b < 0 we have similarly

f ί1 P\ max<-, -—,
j (r br α,

If b - 0 then by (1.16) we get

1
2 ~2

consequently

1

max I , h - I .Γ

J j

In all cases we have established an effective upper bound of N which proves

the lemma.
In the theory of linear differential equations an important role is played

by the linear independence of solutions. This notion can be extended to the

half-linear differential equations, too. We say that two solutions y, y of (1.12)
are linearly dependent if there is a constant c Φ 0 such that y(t) = cy(t) for

all ίe/. If there is no such constant the solutions y and y are linearly
independent.

To any pair of solutions y, y of (1.12) we assign the Wronskian VFas usual

(1.18) W= W(t) = W(t; y, y) = r(y'y - yy')

Clearly, the function W(t) is continuous and piece-wise continuously
differentiable. Moreover, if y and y are linearly dependent then W= 0. The

converse statement is also true.

LEMMA 1.2. A pair of solutions of (1.12) is linearly dependent if and only if

W= 0 on I.

PROOF. The only thing to be proved is that if W(t°) = 0 at some point ί° e /

then W(t) = 0 on /. Let us consider the system of equations



210 Arpad ELBERT and Takasi KUSANO

Since W(t°) = 0 there exists a solution (xl9 x2) such that \x^\ + |x2 | > 0. We
claim that x1x2 Φ 0. Suppose the contrary. If xί = 0 then x2 Φ 0 and (1.19)
implies y(t°) = r(ί°)j>'(ί°) = 0 which is impossible. Hence x1 Φ 0. Similarly
we have x2 Φ 0.

Let c = x 1/x 2. Then by (1.19) the solutions y and cy satisfy the same
initial conditions at t = t° hence y = cy for all t e /. Consequently W(t) = 0
which proves the lemma.

Now we announce our extension of Sturmian theorem. For the sake of
convenience we introduce the notation /f0 by Ito — /Γ)(ί°, oo).

THEOREM 1.1. Let y(t), y(t) be two linearly independent solutions of
(1.12). Suppose y(t°) > 0, y(t°) > 0 and W(t°) > 0 for some ί°e/ where the
Wronskian W(i) is defined by (1.18). Denote by ί l 9 ί2,... the consecutive
zeros of y(t) on Ito and similarly by ί l 9 ί2,... the ones of y(t). Then
ί 1<ί 1<ί 2<ί 2<....

PROOF. Define the polar functions ρ, φ of y and ρ, φ of y, resp. by
(1.13). The conditions y(t°) > 0, ^(ί°) > 0 imply that we can choose
0 < φ(t°) < π, 0 < φ(t°) < π. Then the condition W(t°) > 0 can be written
by (1.18) as

(1.20) LS'(φ)S(φ) - S(φ)S'(φ)l = to > 0.

We claim that

(1.21) 0 < φ(ί°) < φ(ί°) < π.

Since S'(Λ) = - 1 the possibility φ(t°) = π is excluded by (1.20). If φ(t°) = 0
there is nothing to prove in (1.9). If 0 < φ(t°) < π then on using (1.9) the
inequality in (1.20) can be written as f(φ(t°)) > f(φ(t°)). Since f(φ) is
strictly decreasing on (0, π) we conclude (1.21). The uniqueness of the
solutions of (1.15) with given initial condition implies the inequality φ(t) < φ(t)
for all ίe/. We have also φ(t^ = φ(t^ = in, hence by (1.17) tt < tt.

Using (1.16) we can see that φ(t) = φ(t) + fi is also a solution of (1.14),
hence by (1.21) we obtain φ(t) < φ(t), consequently φ(ti+1) = (i -f l)π <
φ(ti+1) + A and again by (1.17) tt < ti+l which completes the proof of our
theorem.

The importance of Theorem 1.1 lies in the fact that it makes possible
the classification of differential equations of the form (1.12) into two classes. A
solution y(t) of (1.12) is nonoscillatory if it has finitely many zeros on /. Then
by Theorem 1.1 every solution of (1.12) has only finitely many zeros and we
say that (1.12) is nonoscillatory. On the other hand if there is a solution
which has infinitely many zeros then by Lemma 1.1 the zeros are tending to
one or both endpoints of /. Again by Theore 1.1 every solution has infinitely
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many zeros and differential equation (1.12) is called oscillatory one.
Now we shall deal with comparison theorems for differential equations of

the form

(Eqύ (r^yj + Pi(t)\y'\ sgn y + qι(t)y = 0 i = 1, 2

Then the differential equation Eq2 is a Sturmian major ant of Eqi on / if the
inequalities

(1.22) r1(ί)>r2(t)>0, < , qι(t)<q2(t) o n /
r2(ί)

hold.
The first Sturmian comparison theorem can be generalized as follows.

THEOREM 1.2. Let Eq2 be a Sturmian majorant of Eql on /,o and let y, (ί),
i = 1, 2, be solutions of Eqt with the initial conditions

at some ί°e/ with \y°\ + |y°| > 0. Suppose y ί ( t ) has consecutive zeros

tι,t29...9tn on Ito. Then y2(t) has consecutive zeros ίί9i29...9tn on Ito such

that the inequalities ίt < tl9 t2 < t2, ...,?„< tn hold.

PROOF. Let φί9 φ2 be defined by (1.13) as polar coordinates belonging to the

solutions yjί), 3;2 (ί), resp. such that φ^(t°)9 Φ2(
ίo)e[°» Λ). Then (1.23) yields

immediately (pi(t°) = φ2(t°). By (1.14) φt satisfies a differential equation of
the form

where

_ 1 Pi

rt

 1 rt'

By (1.16) and (1.22) we have Gx(φ) < G2(φ) for every φ eR hence the standard

theory of differential inequalities (see e.g. [5], p. 27) implies φι(t)< φ2(t) on

/ro. By (1.17) we have for t = tt(i=l929...9n) in < φ2(
ίi) BY the continuity

there exists a value ^(ί0, ίj where φ2(i^ = iπ. Again by (1.17) the value

ti is unique which completes the proof.

REMARK 1.1. The severe restrictions in (1.23) can be relaxed if we combine

the statements of Theorem 1.1 and Theorem 1.2 as follows: Let

(I 24)^ ' « /Λ>\ . ./ /^.0\ ,. /*0\ ,, {+0\v / f O \ Λ.f (fQ\ ^ π
— V i \t TSlΓ ]VΊ\^ j -> VJ.
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Then under the conditions of Theorem 1.2 the inequalities ίx < tl9 i2 < t2,...

tn < tn hold.

PROOF. Let y(t) be the solution of Eq^ with the initial conditions

y(t°) = y2(t°), MfW) = Y° = r2(ί°)yi(ί°).

Then W(t°; y, y) > 0 and by Theorem 1.1 y(t) has consecutive zeros t ί 9 t 2 , m m m

tn on Ito satisfying the inequalities ίt < ί1? Ϊ2 < ί2,... tn < tn. Now we can

apply Theorem 1.2 to j (ί), y2(0 satisfying the conditions (1.23), therefore we
have for the zeros of y2(t) ^ <tl9...in<tni finally ίx < ί1?... in < tn as stated.

THEOREM 1.3. Suppose Eq2 is a Sturmian major ant of Eq1 and yt(t) is a
solution of Eq{ (i = 1, 2) satisfying the relations (1.24) at some f °e/. Let (c, d)
be an interval such that c > ί° and yl9 y2 has the same number of zeros on
[ί°, c] and no zeros on (c, d}. Then

(1.25)

PROOF. As in Remark 1.1 we define the solution y(t) of Eq1 and by (1.13)

the corresponding function φ(t). We consider also the functions φι(t)9 φ2(t)
as in the proof of Theorem 1.2. Then we find 0 < φ^t0) < φ(t°) < φ2(ί°) < π.
Using the differential inequality and the uniqueness for the solutions of (1.14)

we obtain φx(ί) < φ(t) < φ2(t). Suppose y^t), y2(ή have exactly k zeros on
(ί°, c] (k = 0, 1,...). Then by (1.17) and by the assumptions about [c, d~\ we

obtain

kπ < φx(0 < φ2(t) < (k + l)π on (c, d),

consequently f(φ1(t))> f(φ2(ή) on (c, d) which is equivalent to (1.25) due

to (1.13).
The next comparison theorem was found by Watson (see [16], p. 518).

THEOREM 1.4. Let Eq2 be a Sturmian major ant of Eq1 and suppose

rl(i) = r2(i). Let y^t) be a solution of Eq{ (i = 1, 2) satisfying the initial
conditions (1.23). If the solution y2(t) has no zero on (ί°, d) and y° + Y°δ > 0
for sufficiently small δ > 0 then the relations

(1.26) >yl(t)^y2(t) on(t»,d)

hold.



On the differential equation y" + p(ί)|/|sgn y + q(t)y = 0 213

PROOF. As in the proof of Theorem 1.2 we introduce functions ψι(t), φ2(t)
and we find 0 < φ^t) < φ2(t) < n on [ί°, d]e/ ί0. Using the function f ( φ )
we obtain the first inequality in (1.26). Suppose first that y° > 0 in
(1.23). Then by integration we obtain for ίe[ί°, d)

i.e. the second inequality in (1.26) is also valid. In the second case when
y° = 0, 7° > 0 in (1.23) we obtain by integration over [ί° + δ, ί] with
sufficiently small δ > 0 that

, J>ι(ί)

Applying the mean value theorem we find y^t0 + δ) = δy((tδ), y2 (ί° + δ) =

δy2(tδ) where ί° < tδ, tδ < ί° + δ. Since the functions r^ήy^t) (i = 1, 2) are
continuous we get

*-> + o g r(ί° + 0)

thus we derive again the inequality yι(t)>y2(t) which completes the proof.

REMARK 1.2. The theorems above concern the behaviour of the solutions on
some right neighbourhood on an inner point ί° in /. The statements can be
extended to the left neighbourhood of ί°, too, by making the observation that
the function y(t) = y(2t° — t) is a solution of the differential equation (1.12) if
we replace the functions r(ί), p(t), q(t) by r(t) = r(2ί° - ί), p(t) = p (2ί° - ί),
q(t) = q(2t° — t) and we take into consideration the change y'(t) = - y'(2t° — t).

In applications we often have to deal with singular differential equations
and don't have any explicitly given initial value problem at any inner point
of / like in (1.23) but we have some restriction at one endpoint of /. Such
situation was considered by Szegδ [14] and we are going to extend his result

to our half-linear diffential equations.

THEOREM 1.5. Let I = (α, β) and suppose in (Eq^ that rl=r2 = r, p^ = p2= p
and the differential equations Eqt are not oscillatory at the endpoint α. Let

yt(t) be a solution of Eqt (i = 1, 2) such that

(1.27) lim w(ί) = 0,
— *
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where w(t) = r ( t ) [ y ( ( t ) y 2 ( t ) — yι(t)y2(t)'] Let Eq2 be a Sturmian majorant of
Eq^. For the sake of simplicity we may assume that y^t) > 0 (i = 1,2) on

some right neighbourhood U of α and q1(t) < q2(t) there.

In case p(t) φ 0 on U we assume in addition that

sgn y{(t) = sgn y'2(i) = ε, where εe{l, — 1}, ίe 17, and —at exists.

Let all the consecutive zeros of y^t)—if any—be denoted by t1,t2,...and

similarly the ones of y2(t) by f 1 ? ?2,.... Then the relations

it<ti9 i = l , 2,...

hold.

a i \
- J. Differentia-

ting the function w(t) we obtain

p
w' + s-w = (q2 -qi)yίy29 or (uεw)' = (q2 - q^y^if

r

The continuity of w(ί), u(t) and the assumption (1.27) implies

wεw = (q2-

hence w(t) > 0 on U. Choosing a value ί° in U we obtain the desired result
as in Remark 1.1 which completes the proof.

REMARK 1.3. The requirement (1.27) in Theorem 1.5 can be relaxed to lim ί_>α +

w(t) > 0 as in [14]. The case limί^α+ w(ί) > 0 is easier to prove because now

the function w(ί) is continuous on [α, β) hence w(ί°) > 0 provided ί° is
sufficiently near to α. Then we can proceed via Remark 1.1 to obtain the
inequalities tί < ίt .

REMARK 1.4. A similar statement can be formulated for the right endpoint
β of / in Theorem 1.5 requiring lim,.^. w(t) < 0 obtaining the relations...,

t2<t29t1 <ί\.

2. Applications. We consider the solution y(t) of (0.1) with consecutive

zeros tί9 ί2 We may suppose that y(t) > 0 for t1 < t < t2. Clearly, y(t) is
also a solution of the half-linear differential equation
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(2.1) y" + p(t)\y'\sg*y + q(t)y = o,

where p(t) = p(ί)sgn (y(t)y'(t)). By our assumptions the differential equation

(2.2) Ύ" + M! I y'| sgn 7 + M 2 y = 0

is a Sturmian majorant of (2.1). Moreover by (1.3) the function Y(t) =
/(ίi)5(ί- ίx) is a solution of (2.2) where y'(ti)>Q. To apply Theorem 1.4
to (2.1), (2.2) we choose ί° = tl9 π = π(M2, MJ, d = ̂  + Λ and we obtain
the inequalities

(2.3) / ^ S'(t - tj
y(t) S(t - ίj

Therefore it follows immediately that t2>tί+π or h = t2 — t±>π which is
the Cohn's result due to (0.3), (1.2).

Let ί* be defined by

(2.4) t max2 y(t) = y(t*)9 t*e(tl9t2).

By definition of ί* we have y'(t*) = 0 and the first inequality in (2.3) implies

(2.5) ί*-ί1^l

and the second inequality implies

Hence by (1.8), (2.4) we have

(2.6)

Combining (2.5), (2.6) we have the inequality in (0.8).
Another consequence of the second ineuality in (2.3) can be the following :

(2.7) f2 y2(t)dt > y'2(t,) Γ+* S2(t - tjdt.
Jίl Jίl

To evaluate the integral on the right hand side we multiply the differential
equation (1.3) by S(φ) and integrate over [0, π]. Taking into consideration
(1.4) and the value of S(π/2) from (1.8) we obtain
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0 -ΓJo
S'2(φ)dψ-a \ S2(φ)dφ = bS2(-}.

To determine the first integral here we multiply (1.3) by |S'(φ)| and integrate
over [0, π]:

b
Jo

The last two equations give the value of the integral on the right hand side
of (2.7) and we obtain by (1.8)

(2.8)

M2

Let us observe that if we introduce the new variable s = ^/άτ in (1.2) we
get

(2.9) Λ(β,6) = 4=Λ(1.2<r), where σ = - MI

Therefore the relation (2.8) can be written in the form

(2.10) M3

2'
2Γ y2(t)dt>y'2(t1)μ(σ)

where

π for σ = 0

—^ 2σέΓ™(1'2σ) for σ > 0.
2σ

Inequality (2.10) is concerned with L2-norm of y(t) on [ίl5 ί2] Similar
estimates hold also for ί/-norm of y(t) with p > 0.

We have to prove the inequality in (0.7). Since h > π(M2, M^ it is
sufficient to show by (2.9) that

(111) w = (1 + r)ί0"?τtrΓi^ for^α

Since H(Q) = π/2 the inequality (2.11) is sharp. Differentiating (2.11) with
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respect to σ we find

L J /. . 2 f °° s2 - πs + 1 ,
/j (<τ) = — I — -as.

πJ 0 (s2 + 2σs + I)2

A direct calculation shows that H'(Q) = 0. Now we claim that the function

/ 2 \2

G(σ)= 1 +-σ H'(σ)
\ n J

is strictly increasing. Indeed, by differentiation we get

.
(s2 + 2σs+l) 3

hence G(σ) > G(0) = 0 for σ > 0. Consequently H'(σ) > 0 for σ > 0 and the

equality in (2.8) holds if and only if σ = M1/2^/M2 = 0, i.e. when M± = 0.
OpiaΓs inequality (0.2) provides the following lower estimate:

It is easy to show that h^ < π/(λ/M2 + Af t/π) for M! > 0, i.e. our lower
bound in (0.7) is better than the OpiaΓs bound.
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