
HIROSHIMA MATH. J.
22 (1992), 103-113

Cofine boundary behaviour of temperatures
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1. Introduction, notation and terminology

The Dirichlet problem for the heat equation is much less satisfactory
than that for Laplace's equation, because the set of irregular boundary points
is not necessarily polar, or even negligible. Therefore the behaviour of gener-
alized solutions near irregular boundary points is more important. In this
paper, we study such behaviour in the case of irregular points that are also
cofine boundary points, that is, boundary points in the fine topology for the
adjoint heat equation. We show that cofine limits exist and coincide with
the values of the given boundary function at many such points, and character-
ize the points where this occurs in terms of both barriers and zero limits of
the Green function. It is natural to call such points 'cofine regular'. Earlier,
Bauer [3] and Doob [6], p. 358, have studied the existence of fine limits
(that is, limits in the fine topology for the heat equation itself) of generalized
solutions at irregular boundary points, but our results differ from theirs in
both the topology and the fact that the limits assumed are the values of the
given boundary function.

Non-polar sets of irregular boundary points that are also cofine boundary
points, commonly occur within a single characteristic hyperplane. However,
such a phenomenon does not occur if cofine irregular points are considered
instead of (Euclidean) irregular ones. We prove this using a new reduction
(or balayage) operator, which is introduced in Section 3. There Theorem 2
establishes the most important properties, and Theorem 3 uses these to prove
a new result on the cofine boundary behaviour of greatest thermic minorants,
which easily implies the existence of zero cofine limits of potentials (and hence
of Green functions). Section 2 is devoted to proving a result which was
stated and given an erroneous proof by Doob in [6]. In fact, we give a
slight extension of the result, which is required for the proof of Theorem
2. Section 4 is where the results on cofine limits of generalized solutions
are established. The methods are adaptations of classical techniques.

Throughout this paper, D denotes an arbitrary open subset of real Eucli-
dean space Rn+l = {(x, t): x e Rn, t e R}. A typical point will be denoted by
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p or (x, ί) as convenient. Given p0 e D, we denote by Λ(pθ9 D) the set of all

pε D\{p0} which can be joined to p0 by a polygonal path in D along which

ί is strictly increasing from p to p0. The set Λ*(/?0, #) is defined analogously,
with 'increasing' replaced by 'decreasing'. A temperature on D is a solution

of the heat equation. Supertemperatures are defined in [9], and superparabo-

lic functions in [6]; the equivalence follows from the Riesz decomposition

theorems given independently in those works, or from [2], Theorem 2.5. The

class of all non-negative supertemperatures on D is denoted by S+(D). The

Green function for D is denoted by GD, except that the subscript is omitted

when D = Rn+1. If μ is a non-negative, locally finite Borel measure on D,

we put

= \
JD

GDμ(p) = \ GD(p, q) dμ(q)
JD

for all p e D, and call GDμ a potential if it is finite on a dense subset of D,

in which case GDμ E S+(D). If v E S+(D\ the greatest thermic (or parabolic)

minorant of v on D is that temperature u < v which majorizes all others, and

is denoted by GMDv. An element w e S+(D) is a potential on D if and only

if GMDw = 0. For details of these concepts see [6] or [9].

The fine topology is the coarsest topology that makes every supertempera-

ture continuous, and the cofine topology is the corresponding concept for the

adjoint heat equation. A polar set is any subset of the infinity set of any

supertemperature. A proposition which is true for all points outside a polar
set is said to hold quasi-everywhere (q.e.). For any set B, the set of cofine

limit points of B is written B*f, and the cofine boundary of B is d*fB. If

v is a function on D which has a cofine limit at a point q e D*f, that limit

is denoted by v*(q). In particular, if v, w e S+(D) then (t /w)* exists q.e. on

the subset of D where v + w > 0, and is finite q.e. on the subset where w > 0

([6], p. 351). If u is a function on D, its lower semicontinuous smoothing
ύ is the lower semicontinuous minorant of u that majorizes all others. Given

an arbitrary subset A of D and any v e S+(D), the parabolic reduction of v

on A is defined by

Rf = inf{w E S+(D): w > v on A} ,

and R* e S+(D). The reader is referred to [6] for details of these concepts.
The term 'increasing' is used in the wide sense.

Finally, u Λ v denotes the pointwise minimum of u and v.

2. An internal limit theorem

Theorem 1 below is a slight extension of a result given by Doob. Unfor-
tunately, Doob's proof ([6], p. 354) is invalid, since it is not necessarily true
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that (in his notation) 'the restriction of ύ to D0 is a potential', because the
Riesz measure associated with v may have some mass outside D0, particularly
in dZ. However, a modification of Doob's method reduces the result to the
corresponding one for non-negative temperatures on #" x ]0, oo[, and for
this there are several known proofs. Here u*(q) denotes the cofine limit of
u(p) as p^q.

THEOREM 1. Let v9 w e S+(D), let p0 be a limit point of {p: w(p) > 0} in
D, let Λ = Λ(p0, D), and let χ be the characteristic function on D of D\Λ, so
that vχ, wχ e S+(D). If v, ω are the Riesz measures associated with vχ, wχ
respectively, and vΛ, ωΛ are their restrictions to DΓldΛ, then

= =
w/ dω dωΛ

ω-a.e. on the component Γ of DΓldΛ that contains p0.

PROOF. Put E = Λ*(p0, D). We can assume that D = A U ΓU E. Since
p0 is a limit point of {p: w(p) > 0}, the quotient v/w is defined q.e. on E. Since
£ is a deleted cofine neighbourhood of p for every peΓ, we may further
suppose that v = vχ and w = wχ. It is sufficient to prove that (1) holds ω-a.e.
on an arbitrary compact subset F of Γ. We can therefore suppose that v
and w are potentials of finite measures on D; for if N is an open neighbour-
hood of F and is relatively compact in D, then R? e S+(D\ R% = v on N,
RV < v = 0 on A U Γ, and the Riesz measure associated with R" is supported
by the compact subset N\Λ of D and is therefore finite, so we could replace
Ό, w by Λ?, Λ£.

We now prove that if v(Γ) = 0 then (t /w)* = 0 ω-a.e. on Γ. Let b e

]0, oo [ and put B = {p: v(p) > &w(p)} τhen (as in [6], p. 354)

v>R?>bR» = bGD(ωδ») > bGDω' , (2)

where for each p e D the measure δ$(p, •) is the sweeping over B of the unit
mass concentrated at p, and ω' is the restriction of ω onto B*f\E, the set
of cofine limit points of B outside E. The Green function GE is the restriction
to £ x £ of GD ([9], p. 271, and [6], p. 300). Therefore, since v(D\E) = 0,
the restriction of v to E is a potential. By (2), this potential majorizes the
restriction to E of ί>GDω', which is a temperature and is therefore zero. Hence
ω(B*f\E) = 0, and therefore

cofine lim sup (v/w)(p) < b
p->q

for ω-almost every q e Γ. Since b is arbitrary, (t?/w)* = 0 ω-a.e. on Γ.

It follows from this result that
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^v - Gnω Λ* Λ fv-Gn

GDωΛ

ω-a.e. on Γ, so that (t /w)* = (GDvΛ/GDωΛ)* ω-a.e. on Γ. Thus only VΛ and
ωΛ are relevant, and we can suppose that v and ω are supported by ΛΓΠ Γ.

If v, ω are defined to be null on Rn+1\D9 there are non-negative tempera-

tures hv, hw on D such that

Gv = GDv + hv, Gω = GDω + hw (3)

on D ([9], p. 276), so that q.e. on E we have

w \Gω G ω / / \ Gω

There are already several proofs that, for any potentials on Rn+l of measures
on Rn x {0},

GvV dv
= ω - a.e. on Rn x {0} (4)

Gω/ dω l J v '

([5], [8], [4], [6] p. 382). Therefore the result will follow if we show that,
for u E {hv9 hw}, (w/Gω)* = 0 ω-a.e. on Γ. Since all the potentials in (3) are
zero on D\E9 the same is true of u. Since u is continuous on D, it therefore
suffices to show that (Gω)* > 0 ω-a.e. But this follows from (4), because

V dmn- = — < oo ω-a.e.
Gω/ αω

REMARKS, (i) It is easy to check that vχ = R*, with A = D\A9 in Theo-
rem 1.

(ii) If w = 1 on D, then ωΛ =mn on Γ. This is clear when D = Rn+l,
and the general case can be deduced from this using [9], Theorem 19.

3. Cooling

We now define the reduction operator, and use Theorem 1 to establish
its fundamental properties. Although it can be defined on arbitrary subsets,
we restrict its definition to those on which we can prove its idempotence;
this is ample for our present purpose.

DEFINITIONS. If A c Rn+1 and t e R, we write A(t) for A Π(Rn x {t}). If
D is open, A is a subset of D such that A(t) is Borel for all ί, and v e S+(D),
we put

ψ* = {w e S+(D): w* > t;* q.e. on A(t) for all t} ,
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and define CA , the cooling of v over A relative to D, by

CA = inf ΨA .

Where convenient, we write CA(v) for CA.
Obviously v > CA > CA on D. Also, if B £ D and the symmetric differ-

ence of A(t) and B(t) is polar for every ί, then CA = C* on D. By the
fundamental convergence theorem ([6], p. 314), CA e S+(D). There are several
other conclusions we could draw from that theorem, but they are all improved

upon by our next result, which shows that CA = CA on D and that cooling
is idempotent.

THEOREM 2. If A^D and VG S+(D), then

(i) CA = CA on D,
(ii) (CA)* = Ό* q.e. on A(t) for all ί,
(iii) CA = CA(CA) on D.
(iv) CΛ is a temperature on D\A.

PROOF. We begin by proving that (CA)* = v* q.e. on A(t) for all ί. Let

u = CA, fix f e t f , and let E = DΓ\(Rn x ]ί, oo[). If χ is the characteristic
function of E on D, then χ, vχeS+(D). Let A, v be the Riesz measures
associated with χ, vχ, respectively. Then λ is the restriction to D(t) of mn. Let

Z = D\E, and let vz denote the restriction of v to Z. Since vχ is a tempera-
ture on Z°, vz is supported by D(ί) There is a sequence {/?,•} in D(t) such
that both E and D(ί) remain unchanged if Z° is replaced by \j£ι A(pj9 D), and

it therefore follows from Theorem 1 that

-£
mll-a.e. on D(ί). Since the m^-null subsets of D(t) are precisely the polar
subsets of D(t) ([10]), (5) holds q.e. on D(t).

Let μ, denote the restriction to A(t) of the absolutely continuous part of

vz with respect to mπ, and let t;t = GDμt. Then t; > vχ > GDvz > vt on D, so
that for any w in ΨA(t) we have w* > vf q.e. on A(t). The absolute continuity

of μt and the coincidence of mπ-null sets with polar sets in ^(ί), imply that

polar sets are μf-null and that v? < w* μf-a.e. on D. Therefore the domination
principle ([6], p. 358) implies that vt < w on D. Thus CA > CA(t} > vt on D,

and therefore u > vt on D. Furthermore, by (5) and the corresponding result

for vt,

_ _ _
— — υ

dmn dmn
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mπ-a.e. on A(t\ hence q.e. on A(t\ Thus u* > v* q.e. on A(t\ and since
u < v on D we deduce that M* = t?* q.e on A(t). Since t is arbitrary, we

have proved that (Cf)* = v* q.e. on A(t) for all t.
It follows immediately that €*>€„, so that equality holds. Thus (i)

and (ii) are established.
If u = C,? and w e Ψf, then w e !P? by (ii), so that w > Cf = u. Therefore

Cf > M, so that equality holds and (iii) is established.
To prove (iv), let B be an open interval with B ̂  D. Following [6], for

each u e S+(D) we put τBu = u on D\B, τBu equal to the (parabolic) Poisson
integral PI(B, u) of u\dB on B, and τBu(q) = lim PI(B, u)(p) for inner points q

_ _

of the upper boundary of B. If u e 5P^ and 5 £ D\^? then τBw e 5P^ and
τBu < u on D. Therefore, on B,

By the Ήarnack convergence theorem ([6], p. 276), C* is a temperature on
B, and (iv) follows.

EXAMPLE. Let -oo < a < 0 < b < oo, let D = #" x ]α, b[, let μ be a
measure supported by B = Rn x {0} such that t? = GDμ is a potential, let
/ = dμ/dmn, let ,4 be a Borel subset of £ with characteristic function χA9 and let

dv(y) = f(y)χA(y) dy .

We show that Cf = GDv on D. If u = GDv then, by Theorem 1, t;* = / and
w* = flA ^ιπ-

a e on ^ so Λat w* = t?* mw-a.e. on A. Since mπ-null and polar
subsets of B coincide ([10]), uεΨ* and so u>C^. Let weΨ*. Since
M* < oo mn-a.e. on A and w* = t;* < w* q.e. on A, we see that u* < oo v-a.e.
and M* < w* q.e. on a Borel support of v. Therefore u < w on D by the
domination principle ([6], p. 358), so that u<Cf and hence GDv = C*. It
follows that the restriction of μ to B is absolutely continuous with respect
to mn if and only if Cf = v, and that it is singular if and only if Cf = 0.

Despite Theorem 2(ii), it is not necessarily true that C* = v on A. For
example, if v = 1, A = Rn x {0} and D = Rn+1, then Cf is the characteristic
function of Rn x ]0, oo[, so that Cf < v on A.

We now use Theorem 2 to prove a new result on the cofine boundary
behaviour of greatest thermic minorants.

THEOREM 3. // B is an open subset of D, and v e S+(D), then

(GMBv)* = y* < oo

q.e. on (DΓ(d*fB)(t) for all t.
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PROOF. Put u = GMBv on B, and u = v on D\B. Then u is the reduc-

tion of v over B relative to D, in the terminology of [9], p. 263 (but not a

parabolic reduction in the sense of [6]), so that u is the limit of a decreasing

sequence of elements of S+(D). Therefore M* is defined and finite q.e. on D

([6], p. 355). By Theorem 2(ii), (C™*)* = Ό* q.e. on (DΓ\dB)(t) for all ί.

Therefore, since the restriction to B of C™δB is a thermic minorant of v

on B (by Theorem 2(iv)), q.e. on (DίΊd*/B)(ί) for all t we have

v* > u* > (C?™*)* = t;* ,

which implies the result of the theorem.

COROLLARY. // v = GDv is a potential on D, and VB is the restriction of

v to B, then (GBvB)* = 0 q.e. on (DΓiδ*fB)(t) for all t.

PROOF. If we put vB(D\B) = 0, then GDvBeS+(D) and there is a non-

negative temperature h on B such that GDvB = GBvB + h on B ([9], p. 276).

Since GBvB is a potential on B, h = GMBGDvB. Therefore, by Theorem 3,

/ί* = (GDvβ)* < oo q.e. on (DΓ\d*fB)(t) for all ί, and the result follows.

EXAMPLE. Taking D = Rn+l and v to be the unit mass at a point r e B,

we see that Gβ( ,r)* =0 q.e. on (d*fB)(t) for all t.

4. The Dirichlet problem

Throughout this section, g denotes a given function on dD (which includes

the point at infinity if D is unbounded) and Hg, Hg, Hg denote, respectively,

the solution (if it exists), upper solution, and lower solution of the Dirichlet

problem for g in the PWB sense ([6]).

The example at the end of Section 3, combined with standard techniques,

yields new information about the behaviour of Hg, Hg and Hg at certain

irregular boundary points.

DEFINITIONS. A positive supertemperature u on D will be called a weak

cofine barrier for D at a point q e d*fD if u*(q) exists and is zero. It will

be called a cofine barrier for D at q if, in addition, inf u > 0 whenever B is

a (Euclidean) neighbourhood of q. DVB

If E is an open subset of D, and q e d*fE Π d*fD, then the restriction

to £ of a cofine barrier for D at q is a cofine barrier for E at q. Conversely,

suppose that there is an open neighbourhood V of q such that V Π D = VΓ\E,

and that there is a cofine barrier u for E at q. If α = inf H, then α > 0 and
E\V

the function v, defined by putting υ = α Λ u on D D K , t; = α on D\K, is a

cofine barrier for D at q. Thus the existence of a cofine barrier is a local

property.
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THEOREM 4. // there is a weak cofine barrier for D at q, then there is

a cofine barrier for D at q that is also a temperature on D.

PROOF. Follow [6], p. 333, choosing v to be continuous at 0 and taking

the limit at the end in the cofine topology.

THEOREM 5. // there is a cofine barrier for D at q, and if g is bounded

above, then

cofine lim sup Hg(p) < lim sup g(p) .
p-+q p^q

In particular, if g is bounded on dD and continuous at q, then

= H*(q) = g(q) .

PROOF. It is easy to adapt the proof for the classical case in [6], p.

126, to the present situation.

DEFINITION. A point q e d*fD is called cofine regular if, whenever g is

real-valued and continuous on dD,

THEOREM 6. A point q G d*fD is cofine regular if and only if there is a

cofine barrier for D at q.

PROOF. The proof follows that for the classical case in [6], p. 127, except

that the suggestion therein for a barrier is no use in thermic case (despite

the remark apparently to the contrary in [6], p. 334). Let / denote the

distance from q, let g = f Λ 1, take Hg as a weak cofine barrier for D at q,

and apply Theorem 4 above.

It follows from Theorem 6 that cofine regularity is a local property.

EXAMPLE. If g is a cofine regular point of d*fD and r e D, then

GD(Ί r)*(q) = 0. This follows because GD( , r) = G( , r) - Hg with g the restric-

tion of G( ,r) to dD ([6], p. 331).

This example, together with that in Section 3, suggests that cofine regular

boundary points might be characterized in terms of Green functions. This

is, indeed, the case, as we show in Theorem 7 below. It seems that the

corresponding result for (ordinary) regularity has not been given before, so

we draw attention to its details after the proof of the theorem. To some

extent, there is a parallel between the roles played by the components of D

in the case of Laplace's equation and by the sets Λ*(p, D) here. The main

differences occur because the relation r e Λ*(p, D) is not symmetric in r and

p, and because dΛ*(p, D) £ dD. In Theorem 7, we also use the results of
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Section 3 to prove that, for each ί, quasi-every point of (d*fD)(t) is cofine

regular.

We use the following terminology.

DEFINITION. If {pk} is a sequence of points in D such that the family

{Λ*(pk, D): k e N} covers D, we call {pk} an ancestral sequence for D.

The Lindelόf property ensures the existence of ancestral sequences.

THEOREM 7. Let q e d*fD, let {pk} be any ancestral sequence for D, and

let Iq = {k:qe d*fΛ*(pk, d)}.

( i ) // Iq = φ9 then q is cofine regular for D.

(ii) If Iq^ φ, then q is cofine regular for D if and only if q is cofine

regular for every Λ*(pk, D) such that k e Iq.

(iii) // Iq φ φ, then q is cofine regular for D if and only if GD(-9pk)*(q) = 0

for all k e Iq.

(iv) For each ί, quasi-every point of (d*fD)(t) is cofine regular for D.

PROOF.

( i ) Put

(6)

Since GD(-9pk)>Q on Λ*(pk, D) for each ίc, and {pk} is ancestral

for D, u > 0 on D. The series converges uniformly, so that u e

S+(D). For each j e N9 there is a cofine neighbourhood Vj of q

such that the y'-th partial sum of the series is zero on Vj Π D, because

GD(',pk) = 0 outside Λ*(pk, D) ([9], p. 271) and Iq = φ. Therefore

u < 2~j on VjftD, and it follows that u*(q) = 0. Hence u is a weak

cofine barrier for D at q, and q is cofine regular for D.

(ii) Suppose that q is cofine regular for D, and let v be a cofine barrier

for D at q. Given any k e Iq9 the restriction of v to Λ*(pk, D) is

a cofine barrier for that subset at q, so that q is cofine regular for

Λ*(pk, D). Conversely, suppose that q is cofine regular for every

Λ*(pk, D) such that k e Iq. Given any k e Iq, put E = Λ*(pk, D) and

choose a sequence {rf} in E with limit pk. The Green function GE

is the restriction of GD to E x E ([9], p. 271). Therefore, on E9

([6], p. 331), where g is the restriction to dE of G( , r f ) and Hg is

taken relative to E. The cofine regularity of q for £ implies that

GD(-9rί)*(q) = 0 for every i. Since {r*} converges to pk it is ances-

tral for E, and because this holds for each k e IQ the countable set
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{ r f i i e N , kεIq}U{pk:kcN\Iq}

can be arranged as an ancestral sequence {πj for D. This se-
quence has the property that, if q e d*fΛ*(πj9 D) for some j then

GD( ' , π/)*(fl) = 0. Therefore, if

7=1

then w is a weak cofine barrier for D at q. It follows that q is
cofine regular for D.

(iii) Suppose that GD( , pk)*(q) = 0 for all fce/4, and let u be defined
by (6). Then u is a weak cofine barrier for D at q, so that q is
cofine regular for D. The converse follows from the example in
this section.

(iv) Given t and fe, we know from the example in Section 3 that
GD(',pfc)* = 0 q.e. on (d*fD)(t). Therefore, given t, we have
GD( ,pfc)* = 0 for all k, q.e. on (d*fD)(t). The result now follows
from (iii).

Results analogous to Theorem 7 (i)-(iii) hold for (ordinary) regularity.
Let q E 3D, replace Iq by {k: q e dΛ*(pk, D)}, delete the word 'cofine' and
replace cofine limits by Euclidean limits, throughout the statements and proofs.

Theorem 7 (iv) shows that cofine regular points occur in sufficient quantity
to be of interest. In [9], a subset ab2(dD) of dD was defined by the conditions
that Λ(q, B(q, ε)) <Ξ D and Λ*(q9 B(q, ε))ΠD / φ for some ball B(q, ε) in Rn+1.

By [9], Lemma 31, ab2(δD) is contained in a countable union of hyperplanes
of the form Rn x {t}. It therefore follows from Theorem 7 (iv) that quasi-every
point of ab2(dD)Γ}d*fD is cofine regular.

The implication of Theorem 7(iv) is that more complete information
about boundary regularity can be obtained if we consider non-Euclidean
topologies. This was the idea behind the treatment of the Dirichlet problem
in [9], but the half-ball topology used there is not as appropriate as the
cofine topology, as can be seen by comparing Theorem 7(iv) with the results
in [1]. Perhaps the neatest Dirichlet problem will turn out to be one where
the cofine topology replaces the Euclidean one in both the boundary limits
and the boundary itself.

After the research for this paper was completed, I discovered that closely
related questions had been asked in [7].
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